Dark Gamma Ray Bursts

based on : VB, J. Kopp, J. Liu, Phys. Rev. D 95, 055031(arXiv:1607.04278)

Vedran Brdar

Johannes Gutenberg Universität Mainz Max-Planck-Institut für Kernphysik Heidelberg

MITP Mainz, SNOBS2017

BSM particle content

- fermionic (Dirac) DM \sim (1,1,0)
- $\sim \mathcal{O}(1)$ GeV dark photon or scalar coupling to
 - DM
 - SM via kinetic mixing (vector) or higgs portal (scalar)

Capture Rates and DM Distribution in the Star

- $\rho_i(r, t), T(r, t)$ and chemical composition from Heger *et al.*
- $m_{DM} \in [10, 10^3]$ GeV, $\sigma^{SD} = 10^{-40} cm^2$, $\sigma^{SI} = 10^{-46} cm^2$
- DM core contracts along with the baryonic matter
- Quasi-instantaneous thermalization ($n_{\text{DM}}(r) = n_0 \exp[-m_{\text{DM}}\phi(r)/T_{\text{DM}}])$
- Large C_{cap} at early times due to large σ_{SD} on H

Dark Gamma Ray Bursts

Capture and Annihilation Rates

DM Annihilation Burst during Supernova cooling phase

- \blacktriangleright density and temperature fixed to $10^{14}~g\,cm^{-3}$ and 3 MeV
- DM particles within $R_{core} \sim 30 km$ (size of proto-neutron star)
- $\blacktriangleright\,$ DM gets thermalized within $\sim 10^{-6}$ seconds

Dark Gamma Ray Burst

Properties

- An observable gamma ray signal after ν arrival
- ► Δt_{burst} = (C^{SN}_{ann}N₀)⁻¹ related to sensitivity
- $\Delta t_{burst} \in$ [$\mathcal{O}(10), \mathcal{O}(10^3)$] sec for p-wave, $\mathcal{O}(10^2)$ sec for s-wave
- Benchmark locations: 0.1kpc and 8kpc from GC

- We have computed the evolution of the DM core in a massive star until core collapse
- If the DM annihilation products are able to leave the exploding star and decay to SM particles later, this may lead to an observable signal
- Such dark gamma ray burst can be detected by CTA for p-wave DM
- ► p-wave has larger photon flux than s-wave! This is a special feature since p-wave annihilation is generally harder to detect than s-wave $(<\sigma v>=\sigma_0 v^2$, with $v \sim 10^{-3}$ for galactic DM)
- The best signal is around $m_{
 m DM} \sim O(100)$ GeV

BACKUP SLIDES

Dark Gamma Ray Bursts

MITP Mainz, SNOBS2017

æ

< ∃ >

・ロト ・日下 ・ 日下

DM annihilation in the Sun

Capture and Annihilation $(dN/dt = C_{cap} - C_{ann}N^2)$

1. Conditions:

•
$$C_{ann}^{\text{Sun}} \equiv \frac{1}{N^2} \int d^3 r \langle \sigma v_{\text{rel}} \rangle n_{\text{DM}}^2(r) \sim 10^{-53} s^{-1}$$

• $C_{cap} = \sum_i \int_0^{R_{\text{star}}} dr \, 4\pi r^2 \frac{dC_i(r)}{dV} \sim 10^{22} s^{-1}$

► parameters:
$$m_{DM} = 100 GeV$$
,
 $\sigma_{SD}^{H} = 10^{-40} cm^2$ and
 $\langle \sigma v_{rel} \rangle = 3 \times 10^{-26} cm^3 s^{-1}$

2. Results:

►
$$N(t) = \sqrt{\frac{C_{cap}}{C_{ann}}} \tanh \frac{t}{t_{eq}} \rightarrow \sqrt{\frac{C_{cap}}{C_{ann}}} \sim 10^{37}$$

► $t_{eq} \equiv 1/\sqrt{C_{cap}C_{ann}} \sim 10^{15}s, t_{Sun} = 10^{17}s$
► $C_{ann}N^2 = C_{cap} = 10^{22}s^{-1}$

3. Conclusion: For the case of the Sun, there is an equilibrium!

3

伺 と く ヨ と く ヨ と

Decay modes of dark mediators

Liu, Weiner, Xue, arXiv:1412.1485

イロン 不聞 とくほとう ほどう

MITP Mainz, SNOBS2017

3

Supernova progenitors versus the Sun

- $\mathcal{O}(10^8)$ further than the Sun, $\sim 1 kpc$
- much heavier than the Sun, $\gtrsim 8M_{Sun}$
- $\mathcal{O}(10^{-2})$ shorter lifetime $\sim 10^{15} s$

MITP Mainz, SNOBS2017

- density, temperature and chemical composition change in time much faster
- End up with a core collapse Supernova
- ▶ Peak annihilation rate (dark gamma ray burst coincident with the supernova) O(10¹²) larger than the Sun!
- Capture and Annihilation Not in Equilibrium!

Photon Spectrum

MITP Mainz, SNOBS2017

< □ > <