DSNB detection in liquid scintillators?

Background considerations Atmospheric neutrino nc – reactions The quest for pulse-shapediscrimination

Monte-Carlo simulations for JUNO - PhD by Julia Sawatzki (TUM) – for the JUNO experiment

2. Irreducible background: reactor neutrinos

3. cosmogenic background: ⁹Li – production via cosmic muons

4. cosmogenic background: fast neutron production via cosmic muons

Denotion channel $u + \frac{12}{3}$									
Reaction channel $\nu_x + -C \longrightarrow \nu_x +$								ratio in %	
(1)	n					+	^{11}C	35.7	
(2)	n	+	р			+	¹⁰ B	26.0	
(3)	n	+	2p			+	⁹ Be	11.5	
(4)	n	+	р	+	2 H	+	⁸ Be	8.7	
(5)	n	+	р	+	lpha	+	6 Li	8.2	
(6)	n	+	$_{3p}$			+	8 Li	2.8	
(7)	n	+	4p			+	$^{7}\mathrm{He}$	1.0	
(8)	n			+	lpha	+	$^{7}\mathrm{Be}$	0.8	
(9)	n	+	2p	+	α	+	$^{5}\mathrm{He}$	0.8	
(10)	n			+	^{2}H	+	${}^{9}B$	0.7	
(11)	n	+	2p	+	2 H	+	$^{7}\mathrm{Li}$	0.7	
(12)	n			+	3 He	+	8 Be	0.7	
(13)	n	+	5p			+	6 H	0.5	
(14)	n	+	р	+	^{3}H	+	$^{7}\mathrm{Be}$	0.5	

5. Atmospheric neutrino nc – reactions on C-nuclei

- Inelastic neutrino
 scattering and
 production of a fast
 neutron inside the
 scintillator volume
- Excited nuclei plus recoil of neutron on protons => prompt signal
- Neutron capture => delayed signal

5. Atmospheric neutrino nc - reactions

DSNB plus total background

$$^{11}\mathrm{B} + p \rightarrow ^{11}\mathrm{C} + n$$

Off-axis measurements for choosing neutron energy (range between ca. 5 and 11 MeV)

with

Final detector

assembly at MLL

calibration device

LAB scintillator exhibits excellent PSD behavior PhD-thesis V. Zimmer, TUM Similar results from B. von Krosigk et al. (Univ. Dresden), Eur.Phys.J. C73 (2013) 4, 2390

Neutron rejection vs gamma acceptance

Light yield @ TUM measurement: 628 ± 40 p.e. / MeV

LAB + ppo + bis/MSB (JUNO type)

This is a promising result, but not the end of the story...

Neutron energies are higher and de-excitation has to be considered

Conclusions

- Inverse beta decay opens a window for DSNB measurement with liquid scintillator detectors
- Atmospheric neutrino nc reactions on C-nuclei with neutron emission provide the most severe background contribution
- Identification of those events via pulse shape discrimination required
- LAB based scintillator provide this opportunity
- Further experimental studies and simulation necessary
- Borexino exposure is (after 10 years of data taking) large enough to study atmospheric neutrino nc reactions