### Non-relativistic QED in different gauges

Wojciech Dybalski

LMU / TU Munich

"Foundational and Structural Aspects of Gauge Theories"

Mainz, May 31, 2017



- Classical Electrodynamics (CED) teaches that a change of gauge  $A'_{\mu}=A_{\mu}+\partial_{\mu}f$  does not matter. After all  $F_{\mu\nu}=F'_{\mu\nu}$ .
- ② In Quantum Electrodynamics (QED) canonical quantization requires gauge fixing.
- In spite of the freedom promised by (CED) the list of different choices appearing in the literature is rather short:

$$\partial_i A^i = 0, \quad \partial_\mu A^\mu = 0, \quad e_\mu A^\mu = 0, \dots$$

- Classical Electrodynamics (CED) teaches that a change of gauge  $A'_{\mu}=A_{\mu}+\partial_{\mu}f$  does not matter. After all  $F_{\mu\nu}=F'_{\mu\nu}$ .
- In Quantum Electrodynamics (QED) canonical quantization requires gauge fixing.
- In spite of the freedom promised by (CED) the list of different choices appearing in the literature is rather short:

$$\partial_i A^i = 0, \quad \partial_\mu A^\mu = 0, \quad e_\mu A^\mu = 0, \dots$$

- Classical Electrodynamics (CED) teaches that a change of gauge  $A'_{\mu} = A_{\mu} + \partial_{\mu} f$  does not matter. After all  $F_{\mu\nu} = F'_{\mu\nu}$ .
- In Quantum Electrodynamics (QED) canonical quantization requires gauge fixing.
- In spite of the freedom promised by (CED) the list of different choices appearing in the literature is rather short:

$$\partial_i A^i = 0, \quad \partial_\mu A^\mu = 0, \quad e_\mu A^\mu = 0, \dots$$

- Classical Electrodynamics (CED) teaches that a change of gauge  $A'_{\mu}=A_{\mu}+\partial_{\mu}f$  does not matter. After all  $F_{\mu\nu}=F'_{\mu\nu}$ .
- In Quantum Electrodynamics (QED) canonical quantization requires gauge fixing.
- In spite of the freedom promised by (CED) the list of different choices appearing in the literature is rather short:

$$\partial_i A^i = 0, \quad \partial_\mu A^\mu = 0, \quad e_\mu A^\mu = 0, \dots$$

I will argue that different gauge fixing prescriptions may give theories which are not unitarily equivalent.

#### Strategy:

Consider spacelike asymptotic flux of the electric field

$$\Phi(n) := \lim_{r \to \infty} r^2 n \cdot E(rn), \quad n \in S^2.$$

- Oifferent gauge fixing prescriptions in the quantization procedure may lead to different Φ and therefore unitarily inequivalent reps of QED. (Cf. [Buchholz 82]).
- Problem: E is an observable, should not depend on gauge. But the limit may depend on state in which it is taken.



I will argue that different gauge fixing prescriptions may give theories which are not unitarily equivalent.

#### Strategy:

Consider spacelike asymptotic flux of the electric field

$$\Phi(n) := \lim_{r \to \infty} r^2 n \cdot E(rn), \quad n \in S^2.$$

- ② Different gauge fixing prescriptions in the quantization procedure may lead to different Φ and therefore unitarily inequivalent reps of QED. (Cf. [Buchholz 82]).
- Problem: E is an observable, should not depend on gauge. But the limit may depend on state in which it is taken.



I will argue that different gauge fixing prescriptions may give theories which are not unitarily equivalent.

#### Strategy:

Consider spacelike asymptotic flux of the electric field

$$\Phi(n) := \lim_{r \to \infty} r^2 n \cdot E(rn), \quad n \in S^2.$$

- Different gauge fixing prescriptions in the quantization procedure may lead to different Φ and therefore unitarily inequivalent reps of QED. (Cf. [Buchholz 82]).
- Problem: E is an observable, should not depend on gauge. But the limit may depend on state in which it is taken.



I will argue that different gauge fixing prescriptions may give theories which are not unitarily equivalent.

#### Strategy:

Consider spacelike asymptotic flux of the electric field

$$\Phi(n) := \lim_{r \to \infty} r^2 n \cdot E(rn), \quad n \in S^2.$$

- Different gauge fixing prescriptions in the quantization procedure may lead to different Φ and therefore unitarily inequivalent reps of QED. (Cf. [Buchholz 82]).
- Problem: E is an observable, should not depend on gauge. But the limit may depend on state in which it is taken.



I will argue that different gauge fixing prescriptions may give theories which are not unitarily equivalent.

#### Strategy:

Consider spacelike asymptotic flux of the electric field

$$\Phi(n) := \lim_{r \to \infty} r^2 n \cdot E(rn), \quad n \in S^2.$$

- Different gauge fixing prescriptions in the quantization procedure may lead to different Φ and therefore unitarily inequivalent reps of QED. (Cf. [Buchholz 82]).
- Problem: E is an observable, should not depend on gauge. But the limit may depend on state in which it is taken.



## Classical Maxwell-Newton equations

The classical Maxwell-Newton system:

$$\begin{array}{lcl} \partial_t B(t,x) & = & -\nabla \times E(t,x), \\ \partial_t E(t,x) & = & \nabla \times B(t,x) - j(t,x), \\ \nabla \cdot E(t,x) & = & \rho(t,x), \\ \nabla \cdot B(t,x) & = & 0, \\ m\ddot{q}_j(t) & = & e\big(E_\varphi(t,q(t)) + \dot{q}(t) \times B_\varphi(t,q(t))\big). \end{array}$$

where

$$egin{array}{lll} 
ho(t,x) &:=& earphi(x-q(t)), \ j(t,x) &:=& earphi(x-q(t))\dot{q}_j(t), \ E_arphi(t,q(t)) &:=& \int d^3x\, arphi(q(t)-x)E(t,x), \end{array}$$

and  $\varphi$  is the charge distribution of the electron, hence  $e\hat{\varphi}(0)$  is the charge.



## Quantum Maxwell-Newton system in Coulomb gauge

- Hilbert space  $\mathcal{H}:=L^2(\mathbb{R}^3)\otimes \mathcal{F}$ .
- Time-zero fields:

$$A(x) := 1 \otimes A_{\perp}(x)$$
, so that  $\nabla \cdot A(x) = 0$ ,

$$E(x) := 1 \otimes E_{\perp}(x) + E_{\parallel}(x) \otimes 1,$$

$$B(x) := 1 \otimes (\nabla_x \times A_{\perp}(x)),$$

where

$$A_{\perp}(x) = \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \sqrt{\frac{1}{2|k|}} e_{\lambda}(k) \left( e^{ikx} a(k,\lambda) + e^{-ikx} a^*(k,\lambda) \right),$$

$$E_{\perp}(x) = \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \sqrt{\frac{|k|}{2}} e_{\lambda}(k) i \left( e^{ikx} a(k,\lambda) - e^{-ikx} a^*(k,\lambda) \right),$$

$$E_{\parallel}(x) = -\nabla_{x} \int e\varphi(x') \frac{1}{4(k+1)!} d^3x'.$$

# Quantum Maxwell-Newton system in Coulomb gauge

- Hilbert space  $\mathcal{H}:=L^2(\mathbb{R}^3)\otimes\mathcal{F}$ .
- Time-zero fields:

$$\begin{split} &A(x) &:= \quad 1 \otimes A_{\perp}(x), \text{ so that } \nabla \cdot A(x) = 0, \\ &E(x) &:= \quad 1 \otimes E_{\perp}(x) + E_{\parallel}(x) \otimes 1, \\ &B(x) &:= \quad 1 \otimes (\nabla_x \times A_{\perp}(x)), \end{split}$$

where

$$\begin{split} A_{\perp}(x) &= \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \, \sqrt{\frac{1}{2|k|}} e_{\lambda}(k) \big( \mathrm{e}^{\mathit{ikx}} \mathit{a}(k,\lambda) + \mathrm{e}^{-\mathit{ikx}} \mathit{a}^*(k,\lambda) \big), \\ E_{\perp}(x) &= \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \, \sqrt{\frac{|k|}{2}} e_{\lambda}(k) \mathit{i} \big( \mathrm{e}^{\mathit{ikx}} \mathit{a}(k,\lambda) - \mathrm{e}^{-\mathit{ikx}} \mathit{a}^*(k,\lambda) \big), \\ E_{\parallel}(x) &= -\nabla_x \int e\varphi(x') \frac{1}{4\pi|x'+a-x|} d^3x'. \end{split}$$

## Quantum Maxwell-Newton system in Coulomb gauge

- Hilbert space  $\mathcal{H}:=L^2(\mathbb{R}^3)\otimes\mathcal{F}$ .
- Time-zero fields:

$$\begin{split} &A(x) &:= \quad 1 \otimes A_{\perp}(x), \text{ so that } \nabla A(x) = 0, \\ &E(x) &:= \quad 1 \otimes E_{\perp}(x) + E_{\parallel}(x) \otimes 1, \\ &B(x) &:= \quad 1 \otimes (\nabla_x \times A_{\perp}(x)), \end{split}$$

Hamiltonian

$$H = \frac{1}{2m} (p \otimes 1 - eA_{\perp,\varphi}(q))^{2} + \frac{1}{2} \int d^{3}x \left\{ : (1 \otimes E_{\perp}(x))^{2} : + : (1 \otimes \nabla_{x} \times A_{\perp}(x))^{2} : \right\}$$

Time-dependent quantities

$$E(t,x) := e^{itH}E(x)e^{-itH}, \ B(t,x) := e^{itH}B(x)e^{-itH}, \ q(t) := e^{itH}qe^{-itH}.$$



### The quantum Maxwell-Newton equations

The time dependent fields satisfy

$$\begin{array}{lcl} \partial_t B(t,x) & = & -\nabla \times E(t,x), \\ \partial_t E(t,x) & = & \nabla \times B(t,x) - j(t,x), \\ \nabla \cdot E(t,x) & = & \rho(t,x), \\ \nabla \cdot B(t,x) & = & 0, \\ m\dot{v}(t) & = & eE_{\varphi}(t,q(t)) + \frac{1}{2}e\bigg(v(t) \times B_{\varphi}(t,q(t)) - B_{\varphi}(t,q(t)) \times v(t)\bigg), \end{array}$$

where

$$v := \frac{1}{m} (p \otimes 1 - eA_{\perp,\varphi}(q)), \quad v(t) := e^{itH} v e^{-itH}, \quad \dot{v}(t) := i[H, v(t)],$$

$$\rho(t,x) := e\varphi(x - q(t)),$$

$$j(t,x) := \frac{e}{2} \left( \varphi(x - q(t))v(t) + v(t)\varphi(x - q(t)) \right).$$

So the quantisation was 'correct'



### The quantum Maxwell-Newton equations

The time dependent fields satisfy

$$\begin{array}{lcl} \partial_t B(t,x) & = & -\nabla \times E(t,x), \\ \partial_t E(t,x) & = & \nabla \times B(t,x) - j(t,x), \\ \nabla \cdot E(t,x) & = & \rho(t,x), \\ \nabla \cdot B(t,x) & = & 0, \\ m\dot{v}(t) & = & eE_{\varphi}(t,q(t)) + \frac{1}{2}e\bigg(v(t) \times B_{\varphi}(t,q(t)) - B_{\varphi}(t,q(t)) \times v(t)\bigg), \end{array}$$

where

$$\begin{split} v &:= \frac{1}{m} (p \otimes 1 - eA_{\perp,\varphi}(q)), \quad v(t) := e^{itH} v e^{-itH}, \quad \dot{v}(t) := i[H, v(t)], \\ \rho(t,x) &:= e\varphi(x-q(t)), \\ j(t,x) &:= \frac{e}{2} \bigg( \varphi(x-q(t))v(t) + v(t)\varphi(x-q(t)) \bigg). \end{split}$$

So the quantisation was 'correct'.



- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*,$
- $f(t,x) := e^{itH'} f(x) e^{-itH'},$

From this one computes

- $A_0'(t,x) := e^{itH'} A_0'(x) e^{-itH'} = U A_0(t,x) U^* \partial_t f(t,x),$
- $v' = UvU^* = \frac{1}{m}(p \otimes 1 eA'_{\varphi}(q)),$
- $E'(t,x) = UE(t,x)U^*,$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*,$
- $f(t,x) := e^{itH'} f(x) e^{-itH'},$

From this one computes:

$$A_0'(t,x) := e^{itH'} A_0'(x) e^{-itH'} = U A_0(t,x) U^* - \partial_t f(t,x)$$

$$v' = UvU^* = \frac{1}{m}(p \otimes 1 - eA'_{\varphi}(q)),$$

$$\bullet$$
  $E'(t,x) = UE(t,x)U^*$ 

$$B'(t,x) = UB(t,x)U^*$$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*$ ,
- $f(t,x) := e^{itH'} f(x) e^{-itH'},$

From this one computes

$$A_0'(t,x) := e^{itH'} A_0'(x) e^{-itH'} = U A_0(t,x) U^* - \partial_t f(t,x)$$

$$v' = UvU^* = \frac{1}{m}(p \otimes 1 - eA'_{\varphi}(q)),$$

$$B'(t,x) = UB(t,x)U^*$$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*$ ,
- $f(t,x) := e^{itH'} f(x) e^{-itH'},$

From this one computes

$$A_0'(t,x) := e^{itH'} A_0'(x) e^{-itH'} = U A_0(t,x) U^* - \partial_t f(t,x),$$

$$v' = UvU^* = \frac{1}{m}(p \otimes 1 - eA'_{\varphi}(q)),$$

$$E'(t,x) = UE(t,x)U^*$$

$$B'(t,x) = UB(t,x)U^*$$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*$ ,
- **9**  $f(t,x) := e^{itH'} f(x) e^{-itH'}$ ,

#### From this one computes:

- $A_0'(t,x) := e^{itH'} A_0'(x) e^{-itH'} = U A_0(t,x) U^* \partial_t f(t,x),$
- $v' = UvU^* = \frac{1}{m}(p \otimes 1 eA'_{\varphi}(q)),$
- $E'(t,x) = UE(t,x)U^*$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*$ ,
- $f(t,x) := e^{itH'} f(x) e^{-itH'},$

From this one computes:

- $A_0'(t,x) := e^{itH'} A_0'(x) e^{-itH'} = U A_0(t,x) U^* \partial_t f(t,x),$
- $v' = UvU^* = \frac{1}{m}(p \otimes 1 eA'_{\varphi}(q)),$
- $E'(t,x) = UE(t,x)U^*$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*,$
- $f(t,x) := e^{itH'} f(x) e^{-itH'},$

From this one computes:

- $E'(t,x) = UE(t,x)U^*$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .
- $\bullet$   $H' := UHU^*$ ,
- **9**  $f(t,x) := e^{itH'} f(x) e^{-itH'}$ ,

From this one computes:

- $v' = UvU^* = \frac{1}{m}(p \otimes 1 eA'_{\varphi}(q)),$

- **1**  $U := e^{ief_{\varphi}(q)}$  where f is a function with values in operators on  $\mathcal{F}$ .

- $f(t,x) := e^{itH'} f(x) e^{-itH'},$

From this one computes:

- $v' = UvU^* = \frac{1}{m}(p \otimes 1 eA'_{\varphi}(q)),$
- **9**  $B'(t,x) = UB(t,x)U^*$ .



$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)),$$

- ① For h = const we get f = 0 and we stay in the Coulomb gauge.
- ② For  $h(n) = \delta(n \hat{n})$  we get the axial gauge in the direction  $\hat{n}$ .
- For h supported in small sets we obtain similar potentials to [Mund-Schroer-Yngvason 04]
- ① I will use  $h(n) = |Y_{1,0}(n)|^2 = c_Y^2 \cos^2 \theta_n$ ,  $c_Y^2 := 3/(4\pi)$

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)),$$

- For h = const we get f = 0 and we stay in the Coulomb gauge.
- ② For  $h(n) = \delta(n \hat{n})$  we get the axial gauge in the direction  $\hat{n}$ .
- For h supported in small sets we obtain similar potentials to [Mund-Schroer-Yngvason 04]
- ① I will use  $h(n) = |Y_{1,0}(n)|^2 = c_Y^2 \cos^2 \theta_n$ ,  $c_Y^2 := 3/(4\pi)$

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)),$$

- For h = const we get f = 0 and we stay in the Coulomb gauge.
- **②** For  $h(n) = \delta(n \hat{n})$  we get the axial gauge in the direction  $\hat{n}$ .
- For h supported in small sets we obtain similar potentials to [Mund-Schroer-Yngvason 04]
- ① I will use  $h(n) = |Y_{1,0}(n)|^2 = c_Y^2 \cos^2 \theta_n$ ,  $c_Y^2 := 3/(4\pi)$

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)),$$

- For h = const we get f = 0 and we stay in the Coulomb gauge.
- **3** For  $h(n) = \delta(n \hat{n})$  we get the axial gauge in the direction  $\hat{n}$ .
- For h supported in small sets we obtain similar potentials to [Mund-Schroer-Yngvason 04]
- ① I will use  $h(n) = |Y_{1,0}(n)|^2 = c_Y^2 \cos^2 \theta_n$ ,  $c_Y^2 := 3/(4\pi)$

$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)),$$

- For h = const we get f = 0 and we stay in the Coulomb gauge.
- **②** For  $h(n) = \delta(n \hat{n})$  we get the axial gauge in the direction  $\hat{n}$ .
- For h supported in small sets we obtain similar potentials to [Mund-Schroer-Yngvason 04]
- I will use  $h(n) = |Y_{1,0}(n)|^2 = c_Y^2 \cos^2 \theta_n$ ,  $c_Y^2 := 3/(4\pi)$

For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n) = 1$ , we set

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_\perp(x)).$$

• Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f_{\varphi}(q) = (-) \int d^3k \, e^{ikq} \frac{\widehat{\varphi}(k)}{i|k|} (g(\widehat{k}) \cdot \widehat{A}_{\perp}(k))$$

$$\widehat{A}_{\perp}(k) = \sum_{\lambda=1,2} \frac{1}{\sqrt{2|k|}} (e_{\lambda}(k)a(k,\lambda) + e_{\lambda}(-k)a^*(-k,\lambda))$$

$$g(\widehat{k}) := \int d\Omega(n) \, h(n)(n \cdot \widehat{k})^{-1} n \in L^{\infty}(S^2), \quad \widehat{k} := k/|k|$$

- ② *U* is a unitary if  $\hat{\varphi}(k) \sim |k|^{\alpha}$  near zero. (Zero charge).

For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_\perp(x)).$$

**3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f_{\varphi}(q) = (-) \int d^3k \, e^{ikq} \frac{\widehat{\varphi}(k)}{i|k|} \left( g(\widehat{k}) \cdot \widehat{A}_{\perp}(k) \right)$$

$$\widehat{A}_{\perp}(k) = \sum_{\lambda=1,2} \frac{1}{\sqrt{2|k|}} \left( e_{\lambda}(k) a(k,\lambda) + e_{\lambda}(-k) a^*(-k,\lambda) \right)$$

$$g(\widehat{k}) := \int d\Omega(n) \, h(n) (n \cdot \widehat{k})^{-1} n \in L^{\infty}(S^2), \quad \widehat{k} := k/|k|$$

- ② U is a unitary if  $\hat{\varphi}(k) \sim |k|^{\alpha}$  near zero. (Zero charge).
- ① U is not a unitary if  $\hat{\varphi}(k) > c > 0$  near zero. (Non-zero charge). But  $U \cdot U^*$  is a (singular) Bogolubov transformation.

For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_\perp(x)).$$

**3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f_{\varphi}(q) = (-) \int d^3k \, e^{ikq} \frac{\hat{\varphi}(k)}{i|k|} \left( g(\hat{k}) \cdot \widehat{A}_{\perp}(k) \right)$$

$$\widehat{A}_{\perp}(k) = \sum_{\lambda=1,2} \frac{1}{\sqrt{2|k|}} \left( e_{\lambda}(k) a(k,\lambda) + e_{\lambda}(-k) a^*(-k,\lambda) \right)$$

$$g(\hat{k}) := \int d\Omega(n) \, h(n) (n \cdot \hat{k})^{-1} n \in L^{\infty}(S^2), \quad \hat{k} := k/|k|$$

② *U* is a unitary if  $\hat{\varphi}(k) \sim |k|^{\alpha}$  near zero. (Zero charge).

W. Dybalski

① U is not a unitary if  $\hat{\varphi}(k) > c > 0$  near zero. (Non-zero charge). But  $U \cdot U^*$  is a (singular) Bogolubov transformation.

For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

• Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f_{\varphi}(q) = (-) \int d^3k \, e^{ikq} \frac{\widehat{\varphi}(k)}{i|k|} \left( g(\hat{k}) \cdot \widehat{A}_{\perp}(k) \right)$$

$$\widehat{A}_{\perp}(k) = \sum_{\lambda=1,2} \frac{1}{\sqrt{2|k|}} \left( e_{\lambda}(k) a(k,\lambda) + e_{\lambda}(-k) a^*(-k,\lambda) \right)$$

$$g(\hat{k}) := \int d\Omega(n) \, h(n) (n \cdot \hat{k})^{-1} n \in L^{\infty}(S^2), \quad \hat{k} := k/|k|$$

- ② U is a unitary if  $\hat{\varphi}(k) \sim |k|^{\alpha}$  near zero. (Zero charge).
- ① U is not a unitary if  $\hat{\varphi}(k) > c > 0$  near zero. (Non-zero charge). But  $U \cdot U^*$  is a (singular) Bogolubov transformation.

For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

**9** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f_{\varphi}(q) = (-) \int d^3k \, e^{ikq} \frac{\widehat{\varphi}(k)}{i|k|} \left( g(\hat{k}) \cdot \widehat{A}_{\perp}(k) \right)$$

$$\widehat{A}_{\perp}(k) = \sum_{\lambda=1,2} \frac{1}{\sqrt{2|k|}} \left( e_{\lambda}(k) a(k,\lambda) + e_{\lambda}(-k) a^*(-k,\lambda) \right)$$

$$g(\hat{k}) := \int d\Omega(n) \, h(n) (n \cdot \hat{k})^{-1} n \in L^{\infty}(S^2), \quad \hat{k} := k/|k|$$

- ② U is a unitary if  $\hat{\varphi}(k) \sim |k|^{\alpha}$  near zero. (Zero charge).
- ① U is not a unitary if  $\hat{\varphi}(k) > c > 0$  near zero. (Non-zero charge). But  $U \cdot U^*$  is a (singular) Bogolubov transformation.

For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

**9** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f_{\varphi}(q) = (-) \int d^3k \, e^{ikq} \frac{\widehat{\varphi}(k)}{i|k|} \left( g(\hat{k}) \cdot \widehat{A}_{\perp}(k) \right)$$

$$\widehat{A}_{\perp}(k) = \sum_{\lambda=1,2} \frac{1}{\sqrt{2|k|}} \left( e_{\lambda}(k) a(k,\lambda) + e_{\lambda}(-k) a^*(-k,\lambda) \right)$$

$$g(\hat{k}) := \int d\Omega(n) \, h(n) (n \cdot \hat{k})^{-1} n \in L^{\infty}(S^2), \quad \hat{k} := k/|k|$$

- ② U is a unitary if  $\hat{\varphi}(k) \sim |k|^{\alpha}$  near zero. (Zero charge).
- $\bullet$  *U* is not a unitary if  $\hat{\varphi}(k) > c > 0$  near zero. (Non-zero charge). But  $U \cdot U^*$  is a (singular) Bogolubov transformation.



## Example: regularized axial gauge. Potential

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$A'(x) = \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \sqrt{\frac{1}{2|k|}} (1 - |\hat{k}\rangle\langle g(\hat{k})|) e_{\lambda}(k) (e^{ikx} a(k, \lambda) + h.c.)$$

$$A_{\perp}(x) = \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \sqrt{\frac{1}{2|k|}} e_{\lambda}(k) (e^{ikx} a(k, \lambda) + h.c.)$$

# Example: regularized axial gauge. Potential

$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **9** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$A'(x) = \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \sqrt{\frac{1}{2|k|}} (1-|\hat{k}\rangle\langle g(\hat{k})|) e_{\lambda}(k) (e^{ikx}a(k,\lambda) + h.c.)$$

$$A_{\perp}(x) = \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \sqrt{\frac{1}{2|k|}} e_{\lambda}(k) (e^{ikx} a(k,\lambda) + h.c.)$$



$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .

$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **9** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .
- ② Then  $E'(x) = UE(x)U^* \neq E(x)$ . In fact:  $\Delta E_i(x) = E_i'(x) E_i(x) = ie[f_{\varphi}(q), E_{\perp i}(x)]$  $= (-)ie \int d^3y \, \varphi(q-y) \int d\Omega(n) \, h(n)(n \cdot \nabla_y)^{-1} n_j [A_{\perp j}(y), E_{\perp i}(x)]$



For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .
- Then  $E'(x) = UE(x)U^* \neq E(x)$ . In fact:

$$\Delta E_i(x) = E_i'(x) - E_i(x) = ie[f_{\varphi}(q), E_{\perp i}(x)]$$

$$= (-)ie \int d^3y \, \varphi(q-y) \int d\Omega(n) \, h(n) (n \cdot \nabla_y)^{-1} n_j [A_{\perp,j}(y), E_{\perp,i}(x)]$$



$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .
- ② Then  $E'(x) = UE(x)U^* \neq E(x)$ . In fact:

$$\Delta E_i(x) = E_i'(x) - E_i(x) = ie[f_{\varphi}(q), E_{\perp i}(x)]$$

$$= (-)ie \int d^3y \, \varphi(q-y) \int d\Omega(n) \, h(n) (n \cdot \nabla_y)^{-1} n_j [A_{\perp,j}(y), E_{\perp,i}(x)]$$



For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .
- ② Then  $E'(x) = UE(x)U^* \neq E(x)$ . In fact:

$$\Delta E_{i}(x) = E'_{i}(x) - E_{i}(x) = ie[f_{\varphi}(q), E_{\perp i}(x)]$$

$$= (-)ie \int d^{3}y \, \varphi(q - y) \int d\Omega(n) \, h(n) (n \cdot \nabla_{y})^{-1} n_{j} [A_{\perp, j}(y), E_{\perp, i}(x)]$$

 $\bullet \ [A_{\perp,j}(y), E_{\perp,i}(x)] = -i\delta_{j,i}^{\perp}(y-x) = -i\int \frac{d^3k}{(2\pi)^3} e^{ik(y-x)} (\delta_{j,i} - \hat{k}_j\hat{k}_i).$ 



$$f(x) = (-) \int d\Omega(n) h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .
- Then  $E'(x) = UE(x)U^* \neq E(x)$ . In fact:

$$\Delta E_i(x) = e(2\pi)^{-3/2} \int d^3k \, \hat{\varphi}(k) e^{ik(q-x)} \frac{1}{i|k|} (\hat{k} - g(\hat{k}))_i$$



For a function h on  $S^2$  s.t.  $\int d\Omega(n)h(n)=1$ , we set

$$f(x) = (-) \int d\Omega(n)h(n) \frac{1}{(n \cdot \nabla_x)} (n \cdot A_{\perp}(x)).$$

- **3** Recall that  $U = e^{ief_{\varphi}(q)}$  with  $f_{\varphi}(q) = \int d^3y \, \varphi(q-y) f(y)$ .
- ② Then  $E'(x) = UE(x)U^* \neq E(x)$ . In fact:

$$\Delta E_{i}(x) = e(2\pi)^{-3/2} \int d^{3}k \, \hat{\varphi}(k) e^{ik(q-x)} \frac{1}{i|k|} (\hat{k} - g(\hat{k}))_{i}$$

Change of the flux:

$$\Delta\Phi(\tilde{n}) := \lim_{r \to \infty} r^2 \tilde{n} \cdot \Delta E(\tilde{n}r) = -2e(2\pi)^{-3/2} (\frac{1}{1} - c_Y^2) \frac{\pi}{4} \neq 0$$

for 
$$\tilde{n} = (0, 0, 1)$$
,  $\hat{\varphi}(k) = e^{-|k|}$ .



### Conjecture

- H', E'(f), B'(f) are well-defined self-adjoint operators for  $f \in C_0^{\infty}(\mathbb{R}^3)_{\mathbb{R}}$ .
- **②** For  $\hat{\varphi}(0) \neq 0$ , there is no unitary  $V : \mathcal{H} \to \mathcal{H}$  s.t.

$$V(i+H)^{-1}V^* = (i+H')^{-1},$$
  

$$V(i+E(f))^{-1}V^* = (i+E'(f))^{-1},$$
  

$$V(i+B(f))^{-1}V^* = (i+B'(f))^{-1}.$$

**3** For  $\hat{\varphi}(0) = 0$  such a unitary exists.

**Supporting argument for part 2:** Up to domain questions

$$2e(2\pi)^{-3/2}\frac{\pi}{4} \leftarrow Vr^2\tilde{\mathbf{n}} \cdot E(\tilde{\mathbf{n}}r)V^* = r^2\tilde{\mathbf{n}} \cdot E'(\tilde{\mathbf{n}}r) \rightarrow 2e(2\pi)^{-3/2}c_V^2\frac{\pi}{4}$$



#### Conjecture

- H', E'(f), B'(f) are well-defined self-adjoint operators for  $f \in C_0^{\infty}(\mathbb{R}^3)_{\mathbb{R}}$ .
- **2** For  $\hat{\varphi}(0) \neq 0$ , there is no unitary  $V : \mathcal{H} \to \mathcal{H}$  s.t.

$$V(i+H)^{-1}V^* = (i+H')^{-1},$$
  

$$V(i+E(f))^{-1}V^* = (i+E'(f))^{-1},$$
  

$$V(i+B(f))^{-1}V^* = (i+B'(f))^{-1}.$$

**3** For  $\hat{\varphi}(0) = 0$  such a unitary exists.

### Supporting argument for part 2: Up to domain questions

$$2e(2\pi)^{-3/2}\frac{\pi}{4}\leftarrow \textit{Vr}^2\tilde{\textit{n}}\cdot\textit{E}(\tilde{\textit{n}}\textit{r})\textit{V}^*=\textit{r}^2\tilde{\textit{n}}\cdot\textit{E}'(\tilde{\textit{n}}\textit{r})\rightarrow 2e(2\pi)^{-3/2}c_Y^2\frac{\pi}{4}$$



#### Conjecture

- H', E'(f), B'(f) are well-defined self-adjoint operators for  $f \in C_0^{\infty}(\mathbb{R}^3)_{\mathbb{R}}$ .
- **2** For  $\hat{\varphi}(0) \neq 0$ , there is no unitary  $V : \mathcal{H} \to \mathcal{H}$  s.t.

$$V(i+H)^{-1}V^* = (i+H')^{-1},$$
  

$$V(i+E(f))^{-1}V^* = (i+E'(f))^{-1},$$
  

$$V(i+B(f))^{-1}V^* = (i+B'(f))^{-1}.$$

**3** For  $\hat{\varphi}(0) = 0$  such a unitary exists.

### **Supporting argument for part 2:** Up to domain questions

$$2e(2\pi)^{-3/2}\frac{\pi}{4} \leftarrow Vr^2\tilde{n} \cdot E(\tilde{n}r)V^* = r^2\tilde{n} \cdot E'(\tilde{n}r) \rightarrow 2e(2\pi)^{-3/2}c_Y^2\frac{\pi}{4}$$



### Conjecture

- H', E'(f), B'(f) are well-defined self-adjoint operators for  $f \in C_0^{\infty}(\mathbb{R}^3)_{\mathbb{R}}$ .
- **2** For  $\hat{\varphi}(0) \neq 0$ , there is no unitary  $V : \mathcal{H} \to \mathcal{H}$  s.t.

$$V(i+H)^{-1}V^* = (i+H')^{-1},$$
  

$$V(i+E(f))^{-1}V^* = (i+E'(f))^{-1},$$
  

$$V(i+B(f))^{-1}V^* = (i+B'(f))^{-1}.$$

**3** For  $\hat{\varphi}(0) = 0$  such a unitary exists.

### **Supporting argument for part 2:** Up to domain questions

$$2e(2\pi)^{-3/2}\frac{\pi}{4} \leftarrow Vr^2 \tilde{n} \cdot E(\tilde{n}r)V^* = r^2 \tilde{n} \cdot E'(\tilde{n}r) \rightarrow 2e(2\pi)^{-3/2} c_Y^2 \frac{\pi}{4}$$



#### Conjecture

- H', E'(f), B'(f) are well-defined self-adjoint operators for  $f \in C_0^{\infty}(\mathbb{R}^3)_{\mathbb{R}}$ .
- **2** For  $\hat{\varphi}(0) \neq 0$ , there is no unitary  $V : \mathcal{H} \to \mathcal{H}$  s.t.

$$V(i+H)^{-1}V^* = (i+H')^{-1},$$
  

$$V(i+E(f))^{-1}V^* = (i+E'(f))^{-1},$$
  

$$V(i+B(f))^{-1}V^* = (i+B'(f))^{-1}.$$

**3** For  $\hat{\varphi}(0) = 0$  such a unitary exists.

### **Supporting argument for part 2:** Up to domain questions

$$2e(2\pi)^{-3/2}\frac{\pi}{4} \leftarrow Vr^2\tilde{n} \cdot E(\tilde{n}r)V^* = r^2\tilde{n} \cdot E'(\tilde{n}r) \to 2e(2\pi)^{-3/2}c_Y^2\frac{\pi}{4}$$

