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@ Classical Electrodynamics (CED) teaches that a change of gauge
A, = A, + 0.f does not matter. After all F,, = F,.
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@ Classical Electrodynamics (CED) teaches that a change of gauge
A, = A, + 0.f does not matter. After all F,, = F,.

@ In Quantum Electrodynamics (QED) canonical quantization requires
gauge fixing.

@ In spite of the freedom promised by (CED) the list of different
choices appearing in the literature is rather short:

QA =0, 09,A"=0, eA"=0,...
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@ Classical Electrodynamics (CED) teaches that a change of gauge
A, = A, + 0.f does not matter. After all F,, = F,.

@ In Quantum Electrodynamics (QED) canonical quantization requires
gauge fixing.

@ In spite of the freedom promised by (CED) the list of different
choices appearing in the literature is rather short:

QA =0, 09,A"=0, eA"=0,...

@ Even for this short list, | could not find reliable information about
equivalence of the resulting quantum theories.
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Goal of this talk

| will argue that different gauge fixing prescriptions may give theories
which are not unitarily equivalent.
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Goal of this talk

| will argue that different gauge fixing prescriptions may give theories
which are not unitarily equivalent.

Strategy:
© Consider spacelike asymptotic flux of the electric field

®(n) := lim r’n-E(m), neS>

r—o0

This is a superselection rule which traditionally plays a role in
discussions of infrared problems in QED.
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Goal of this talk

| will argue that different gauge fixing prescriptions may give theories
which are not unitarily equivalent.

Strategy:
© Consider spacelike asymptotic flux of the electric field

®(n) := lim r’n-E(m), neS>

r—o0

This is a superselection rule which traditionally plays a role in
discussions of infrared problems in QED.

@ Different gauge fixing prescriptions in the quantization procedure
may lead to different ® and therefore unitarily inequivalent reps of
QED. (Cf. [Buchholz 82]).
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Goal of this talk

| will argue that different gauge fixing prescriptions may give theories
which are not unitarily equivalent.

Strategy:
© Consider spacelike asymptotic flux of the electric field

®(n) := lim r’n-E(m), neS>

r—o0

This is a superselection rule which traditionally plays a role in
discussions of infrared problems in QED.

@ Different gauge fixing prescriptions in the quantization procedure
may lead to different ® and therefore unitarily inequivalent reps of
QED. (Cf. [Buchholz 82]).

© Problem: E is an observable, should not depend on gauge.
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Goal of this talk

| will argue that different gauge fixing prescriptions may give theories
which are not unitarily equivalent.

Strategy:
© Consider spacelike asymptotic flux of the electric field

®(n) := lim r’n-E(m), neS>

r—o0

This is a superselection rule which traditionally plays a role in
discussions of infrared problems in QED.

@ Different gauge fixing prescriptions in the quantization procedure
may lead to different ® and therefore unitarily inequivalent reps of
QED. (Cf. [Buchholz 82]).

© Problem: E is an observable, should not depend on gauge.
But the limit may depend on state in which it is taken.
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Classical Maxwell-Newton equations

The classical Maxwell-Newton system:

(B(t,x) = =V xE(t,x),
(E(t,x) = V x B(t,x)—j(t,x),
E( x) = p(t,x),
V-B(t,x) = 0,
mi(t) = e(Ey(t,q(t)) +d(t) x By(t, q(t)))-
where

p(t,x) = ep(x—q(t)),
= ep(x —q(t))q;(t),

Eta(®) = [ dxelalt) - 0E(E)

—.

—~

\.l‘f-
Il

and ¢ is the charge distribution of the electron, hence e®(0) is the
charge.
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Quantum Maxwell-Newton system in Coulomb gauge

© Hilbert space H := [*(R3) @ F.

Q@ Time-zero fields:

A(x) = 1®AL(x), sothat V-A(x) =0,
E(x) = 1®E(x)+E(x)®1,
B(x) = 1®(VxxAL(x)),
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Quantum Maxwell-Newton system in Coulomb gauge

© Hilbert space H := [*(R3) @ F.

Q@ Time-zero fields:

A(x) = 1®AL(x), sothat V-A(x) =0,
E(x) = 1®E(x)+E(x)®1,
B(x) = 1®(VxxAL(x)),

where

Z/ 27 Jsz (k) (™ a(k, \) + o3 (k. X)),
3
Z / 2(;_)/;/2 \/7 A(k) ( ikx (k )\) _’kxa*(k,/\)),

1
E =-V, N = g3/
1(x) v /ew(x)47r|x’+q—x\d X
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Quantum Maxwell-Newton system in Coulomb gauge

© Hilbert space H := [?(R3) @ F.

© Time-zero fields:

A(x) = 1®AL(x), sothat VA(x) =0,
E(x) = 1®E(x)+E(x)®1,
B(x) = 1®(VixAL(x)),

© Hamiltonian
H = i( ®1—eAl ,(q))?
- om P 1L,0\d
1
+§/d3x{ C(I®EL(X)? 4+ (1® Vi x AL(x))?: }
@ Time-dependent quantities

E(t,x) := e™E(x)e™™ B(t,x) := ™ B(x)e ™, q(t) :=e™ge .
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The quantum Maxwell-Newton equations

The time dependent fields satisfy

OB(t,x) = =V x E(t,x),
O:E(t,x) = V x B(t,x)—j(t,x),
V-E(t,x) = p(t x),
V-B(t,x) = 0,
. 1
mi(e) = B (t.ale) + e v(e) x B (r.alt) - By(t.a(0) % v(r)).
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The quantum Maxwell-Newton equations

The time dependent fields satisfy

OB(t,x) = =V x E(t,x),
O:E(t,x) = V x B(t,x)—j(t,x),
V-E(t,x) = p(t x),
V-B(t,x) = 0,
. 1
mi(e) = B (t.ale) + e v(e) x B (r.alt) - By(t.a(0) % v(r)).
where

%(p ®1—eA ,(q), v(t):=eMve ™ y(t):=i[H,v(t)],
p(t.x) = ep(x — a(t))
J(t.x) = ((x«nwu)+Wﬂmx«nQ.

So the quantisation was ‘correct’.
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Changing gauge

Q U := e™%(9) where f is a function with values in operators on F.
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Changing gauge

Q U := e™%(9) where f is a function with values in operators on F.

Q@ A'(x) := UA(x)U* + VFf(x),
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Changing gauge

Q U := e™%(9) where f is a function with values in operators on F.
Q@ A(x) := UA(x)U* + Vf(x),
Q H' = UHU*,
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Changing gauge

Q@ U := e%(9) where f is a function with values in operators on F.
Q@ A(x) := UA(x)U* + Vf(x),

Q@ H = UHU*,

0 f(t,x) = e f(x)e ™,
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Changing gauge

Q@ U := e%(9) where f is a function with values in operators on F.
Q@ A'(x) := UA(x)U* + VFf(x),
Q@ H' := UHU*,
Q f(t,x) = et f(x)e
From this one computes:

O Al(t,x) = e Al(x)e~™ = UA(t, x)U* + V£(t,x),
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Changing gauge

Q@ U := e%(9) where f is a function with values in operators on F.
Q@ A(x) := UA(x)U* + Vf(x),
Q@ H = UHU*,
Q f(t,x):= e f(x)e tH",
From this one computes:
Q A(t,x) = e A(x)e ™ = UA(t, x)U* + VF(t,x),
Q A(t,x) == ™ AY(x)e™ ™" = UAo(t, x)U* — 8,f(t,x),
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Changing gauge

Q@ U := e%(9) where f is a function with values in operators on F.
Q@ A(x) := UA(x)U* + Vf(x),
Q@ H = UHU*,
Q f(t,x):= e f(x)e tH",
From this one computes:
Q A(t,x) = e A(x)e ™ = UA(t, x)U* + VF(t,x),
Q A(t,x) == ™ AY(x)e™ ™" = UAo(t, x)U* — 8,f(t,x),
Q v =Uvw* = %(p@ 1 —eAl(q))
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Changing gauge

Q@ U := e%(9) where f is a function with values in operators on F.
Q@ A(x) := UA(x)U* + Vf(x),
Q@ H = UHU*,
Q f(t,x):= e f(x)e tH",
From this one computes:
Q A(t,x) = e A(x)e ™ = UA(t, x)U* + VF(t,x),
Q A(t,x) == ™ AY(x)e™ ™" = UAo(t, x)U* — 8,f(t,x),
Q v =Uvw* = %(p@ 1 —eAl(q))
Q E'(t,x) = UE(t,x)U*,
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Changing gauge

Q@ U := e%(9) where f is a function with values in operators on F.
Q@ A(x) := UA(x)U* + Vf(x),
Q@ H = UHU*,
0 f(t,x) = e f(x)e ™,
From this one computes:
Q A(t,x) = e A(x)e ™ = UA(t, x)U* + VF(t,x),
Q A(t, x) := e Al(x)e ™ = UAy(t, x)U* — 9,f(t, x),
Q@ v =UwW*=1(pa1—eA,(q)),
Q@ E'(t,x)= UE(t,x)Ur,
Q@ B'(t,x) = UB(t,x)U*.

The transformed system satisfies again the Maxwell-Newton equations.



Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)

© For h = const we get f = 0 and we stay in the Coulomb gauge.
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)

© For h = const we get f = 0 and we stay in the Coulomb gauge.

@ For h(n) = 6(n— A) we get the axial gauge in the direction A.
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)

© For h = const we get f = 0 and we stay in the Coulomb gauge.
@ For h(n) = 6(n— A) we get the axial gauge in the direction A.

© For h supported in small sets we obtain similar potentials to
[Mund-Schroer-Yngvason 04]
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)

© For h = const we get f = 0 and we stay in the Coulomb gauge.
@ For h(n) = 6(n— A) we get the axial gauge in the direction A.

© For h supported in small sets we obtain similar potentials to
[Mund-Schroer-Yngvason 04]

OQ | will use h(n) = |Y10(n)]? = ¢} cos®b,, ¢ :=3/(4m)
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

1
(n-Vy)

F(x) = () / dQn)h(n) (n- AL(x).

© Recall that U = ™) with f,(q) = [ d®y ¢(q — y)f(y).
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

1
(n-Vy)

F(x) = () / dQn)h(n) (n- AL(x).

© Recall that U = ™) with f,(q) = [ d®y ¢(q — y)f(y).

o) = () [ Phea = (g(hy A, (1)

W. Dybalski QED in different gauges



Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = ()/dQ(n)h(n)(n .1VX)(n CAL(X).
© Recall that U = ™) with f,(q) = [ d®y ¢(q — y)f(y).

) =) [ d3ke"kq“”|kk)(g<£) AL (K)

(ex(k)a(k, ) + ex(—k)a*(—k, \))

0= 3
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = ()/dQ(n)h(n)(n .1VX)(n CAL(X).
© Recall that U = ™) with f,(q) = [ d®y ¢(q — y)f(y).

) =) [ d3ke"kq“”|kk)(g<£) AL (K)

(ex(k)a(k, ) + ex(—k)a*(—k, \))

Azl:z V |k
g(k) = /dQ(n) h(n)(n-k)™tn e L(S?), k:=k/|k|
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = ()/dQ(n)h(n)(n .1VX)(n CAL(X).
© Recall that U = ™) with f,(q) = [ d®y ¢(q — y)f(y).

=) [ d3ke"kq“”.|kk)(g<%) AL)

e,\ k)a(k /\)+e)\( k) *(—k, )\))

Azl:z V |k
g(k) = /dQ(n) h(n)(n-k)™tn e L(S?), k:=k/|k|

@ U is a unitary if $(k) ~ |k|* near zero. (Zero charge).
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Example: regularized axial gauge

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = ()/dQ(n)h(n)(n .1VX)(n CAL(X).
© Recall that U = ™) with f,(q) = [ d®y ¢(q — y)f(y).

=) [ d3kefkq“5.|(kk)(g<%) AL)

(ex(k)a(k, ) + ex(—k)a*(—k, \))

)\ZI:Z \4 |k
g(k) = /dQ(n) h(n)(n-k)™tn e L(S?), k:=k/|k|
@ U is a unitary if $(k) ~ |k|* near zero. (Zero charge).

@ U is not a unitary if $(k) > ¢ > 0 near zero. (Non-zero charge).
But U - U* is a (singular) Bogolubov transformation.
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Example: regularized axial gauge. Potential

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)

Q Recall that U = (@) with £,(q) = [ d®y ¢(q — y)f(y).
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Example: regularized axial gauge. Potential

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)
© Recall that U = ™) with f,(q) = [ d®y (g — y)f(y).

@ Then A'(x) = UAL(Xx)U* + Vf(x) = AL(x) + VF(x) and

3 N .
= 3 [t a0 R0 alk ) + he)

A=1,2

d3k 1 ikx
)\21:2/ 27 3/2\/2|>k )(e 3(ka)\)+h.c.)
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Example: regularized axial gauge. Magnetic field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)

Q Recall that U = (@) with £,(q) = [ d®y ¢(q — y)f(y).
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Example: regularized axial gauge. Magnetic field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)
Q Recall that U = (@) with £,(q) = [ d®y ¢(q — y)f(y).

@ Then B/(x) = UB(x)U* = U(V x AL(x))U* = B(x).
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Example: regularized axial gauge. Electric field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

00 = () [ dUm(n) o n- AL ().

Q Recall that U = (@) with £,(q) = [ d®y ¢(q — y)f(y).

QED in different gauges
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Example: regularized axial gauge. Electric field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

00 = () [ dUm(n) o n- AL ().

Q Recall that U = (@) with £,(q) = [ d®y ¢(q — y)f(y).

@ Then E'(x) = UE(x)U* # E(x).

QED in different gauges
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Example: regularized axial gauge. Electric field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

F(x) = () / 49 n)h(n) (n- AL(x)).

(n-Vy)
© Recall that U = ™) with f,(q) = [ d®y (g — y)f(y).

@ Then E'(x) = UE(x)U* # E(x). In fact:
AE;j(x) = E{(x) — Ei(x) = ie[f,(q), ELi(x)]
/e/d3y<p qg—y /dQ “Ii[ALj(y), ELi(X)]
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Example: regularized axial gauge. Electric field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

00 = () [ dUm(n) o n- AL ().
© Recall that U = e with £,(q) = [ d®y o(q — y)f(y).
@ Then E'(x) = UE(x)U* # E(x). In fact:
AEi(x) = E/(x) — Ei(x) = ie[f,(q), ELi(x)]
/e/d3y<p qg—y /dQ “Ii[ALj(y), ELi(X)]
Q [AL() ELi(¥)]=—ist(y—x)=—i [ & (2 B L e*k=x)(5;; — kik;).
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Example: regularized axial gauge. Electric field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

00 = () [ dUm(n) o n- AL ().

© Recall that U = ™) with f,(q) = [ d®y (g — y)f(y).

@ Then E'(x) = UE(x)U* # E(x). In fact:

AE,-(x):e(27r)_3/2/d3k¢}(k)e’kq x) |1k|(/2 g(k));

O [AL;(y), ELi(x)] = —idii(y —x)=—i [ (g;’)(s e =2)(5; i — ki)

QED in different gauges
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Example: regularized axial gauge. Electric field

For a function h on 52 s.t. [ dQ(n)h(n) =1, we set

00 = () [ dUm(n) o n- AL ().

© Recall that U = ™) with f,(q) = [ d®y (g — y)f(y).

@ Then E'(x) = UE(x)U* # E(x). In fact:

AE,-(x):e(27r)_3/2/d3k¢}(k)e’kq x) |1k|(k g(k));

© Change of the flux:

AD(R) := lim r2d- AE(fr) = —2e(2m)~3/?(1 — c%,)% 40

r—o0

for /i = (0,0,1), (k) = e Ik
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Non-equivalence of different gauges

Q@ H',E'(f), B'(f) are well-defined self-adjoint operators for
fe Cgo(R?’)R
@ For ¢(0) # O, there is no unitary V : H — H s.t.

V(i+H)'Vv* = (i+H),
V(i+ E(f))"tV* = (i + E'(f))
)

-1
V(i+ B(f))"tv* = (i+ B'(f))*.

@ For ¢(0) = 0 such a unitary exists.
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Non-equivalence of different gauges

Q@ H',E'(f), B'(f) are well-defined self-adjoint operators for
fe Cgo(R?’)R
@ For ¢(0) # O, there is no unitary V : H — H s.t.

V(i+H)'Vv* = (i+H),
V(i+ E(f))"tV* = (i + E'(f))
)

-1
V(i+ B(f))"tv* = (i+ B'(f))*.

@ For ¢(0) = 0 such a unitary exists.

Supporting argument for part 2: Up to domain questions

Vi - E(Ar)V* = r?f - E'(fir)
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Non-equivalence of different gauges

Q@ H',E'(f), B'(f) are well-defined self-adjoint operators for
fe Cgo(R?’)R
@ For ¢(0) # O, there is no unitary V : H — H s.t.

V(i+H)'Vv* = (i+H),
V(i+ E(f))"tV* = (i + E'(f))
)

-1
V(i+ B(f))"tv* = (i+ B'(f))*.

@ For ¢(0) = 0 such a unitary exists.

Supporting argument for part 2: Up to domain questions

Vi - E(Ar)V* = r?hi - E'(fir) — 2e(27r)*3/2c$/%
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Non-equivalence of different gauges

Q@ H',E'(f), B'(f) are well-defined self-adjoint operators for
fe Cgo(R?’)R
@ For ¢(0) # O, there is no unitary V : H — H s.t.

V(i+H)'Vv* = (i+H),
V(i+ E(f))"tV* = (i + E'(f))
)

-1
V(i+ B(f))"tv* = (i+ B'(f))*.

@ For ¢(0) = 0 such a unitary exists.

Supporting argument for part 2: Up to domain questions

2e(2)32L V25 . E(Ar)V* = 2R - E'(fr) — 2e(21) 322 T
4 Y4
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Non-equivalence of different gauges

Q@ H',E'(f), B'(f) are well-defined self-adjoint operators for
fe Cgo(R?’)R
@ For ¢(0) # O, there is no unitary V : H — H s.t.

V(i+H)'Vv* = (i+H),
V(i+ E(f))"tV* = (i + E'(f))
)

-1
V(i+ B(f))"tv* = (i+ B'(f))*.

@ For ¢(0) = 0 such a unitary exists.

Supporting argument for part 2: Up to domain questions
2e(27r)*3/2§ < VP2 E(Ar)V* = i E'(fir) — 2e(27r)*3/2c$%

and obtain a contradiction.
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