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Introduction

I The universal C∗-algebras Uem of the e.m. quantum field is model
independent tool for the analysis of fundamental properties of the e.m.
quantum field. In particular is represented in any theory of the e.m.
quantum field.

I Main result: appearance of a new kind of topological charges.
We describe regular representations of Uem in which topological charges
are not trivial also in presence of an electric current.
The e.m. field in these representations fails to be linear on test functions
but satisfies a weak, but physically reasonable, form of linearity: the
spacelike linearity.

I Such topological charges appears also in non-Abelian gauge theories: the
field in this case is linear. This will be discussed by an example.



n-Forms on Minkowski spacetime

I Minkowski spacetime: R4 with signature (+,−,−,−). ⊥ spacelike
separation.

I Dk set smooth k-forms with compact support in the Minkowski spacetime.
f , h are spacelike separated, f ⊥ h, whenever

supp(f ) ⊥ supp(h) .

I d : Dk → Dk+1 , d2 = 0 differential operator

I ? : Dk → D4−k , ?? = (−)k+1 idk Hodge dual

I δ : Dk+1 → Dk , δ := − ? d? co-differential (gen. divergence)

δ2 = 0 , � = δd + dδ



I Of particular importance: Ck set of co-closed k-forms (divergence-free):

C1 := {f ∈ D1 | δf = 0}

Example: smearing loops, f ∈ D0 a scalar function, γ a closed curve

f µγ :=

∫ 1

0

f (x − γ(t)) γ̇(t) dt

then δfγ = f∂γ = 0 ⇒ fγ ∈ C1 and supp(fχ) ⊆ supp(f ) + χ
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The e.m. quantum field and the intrinsic vector potential

To deduce defining relations of the universal C∗-algebras of em field, we recall
the properties of the linear em quantum field.

Since the properties of vector potential depends on the gauge where it is
quantized, we start by the em field strength: it is observable so it is covariant
and local! Afterwards we reconstruct the vector potential.

The e.m. quantum field F linear mapping F : D2 3 h→ F (h) ∈ A to some
∗-algebra A

(i) Locality: h1 ⊥ h2 ⇒ [F (h1),F (h2)] = 0 ,

(ii) 1st Maxwell equation: dF (τ) := F (δτ) = 0 , τ ∈ D3.

We get

I Covariance: F (h) 7→ F (hP) with P ∈ P↑+
I 2nd Maxwell equation

J(f ) := δF (f ) = F (df ) , f ∈ D1

J is a conserved current: δJ = δ2F = 0.
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Aim: Reconstruct the vector potential.

Cohomological Problem: F is local and covariant closed 2-form, dF = 0. Exists
a 1-form A (a vector potential) which is local, covariant and s.t.

F
?
= dA

Problem widely studied by Roberts in the context on non-Abelian cohomology.
The case closed 1-forms solved by Pohlmeyer 1972.
Observation: The above relation defines A on δ(D2) ⊆ C1

F (h) = dA(h) = A(δh) , h ∈ D2

Local Poincaré lemma: for any f ∈ C1 and any double cone O containing the
support of f , there exists a co-primitive f̂ ∈ D2 (i.e. δf̂ = f ) whose support is
contained in O i.e.

δ(D2) = C1

So restricting to divergence-free 1-forms we may define

A(f ) := F (f̂ ) , f ∈ C1 ,

well defined: by 1st-Maxwell eq. independent of the choice of the co-primitive f̂
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Equivalent description of the em field in terms of A.

The intrinsic (gauge independent) vector potential is a linear mapping C1 3 f 7→
A(f ) ∈ A s.t.

(i) Locality
f1 on f2 ⇒ [A(f1),A(f2)] = 0

where f1 on f2 means that the supports of f1 and f2 are contained,
respectively, in two contractible and spacelike separated regions O1 and O2

(for instance double cones). We shall refer to on as strong spacelike
separation.

. Covariance: as C1 3 f → fP ∈ C1 we have an action A(f ) 7→ A(fP) for any
P ∈ P↑+.

. The e.m. field F = dA

. The 1st Maxwell equation dF = d2A = 0

. The conserved current: J = δdA = δF ⇒ δJ = 0.



The intrinsic vector potential A is a linear mapping C1 3 f 7→ A(f ) ∈ A s.t.

(i) Locality
f1 on f2 ⇒ [A(f1),A(f2)] = 0

F (h) := A(δh)
��

A(f ) := F (f̂ )

KS

The em field strength F linear mapping F : D2 3 h→ F (h) ∈ A s.t.

(i) Locality: h1 ⊥ h2 ⇒ [F (h1),F (h2)] = 0 ,

(ii) 1st Maxwell equation: dF (τ) := F (δτ) = 0 , τ ∈ D3.



Basic question: we have seen that A is local wrt the strong spacelike separation

f1 on f2 ⇒ [A(f1),A(f2)] = 0 .

but
f1 ⊥ f2 ⇒ [A(f1),A(f2)] = ? .

I Clearly f1 on f2 ⇒ f1 ⊥ f2

I The converse does not hold in general:

Figure: Spacelike separated linked curves at the subspace t = 0



Causal Poincaré Lemma and centrality

Causal Poincaré Lemma: given a double cone O and f ∈ C1 with supp(f ) ⊥ O,

there is f̂ ∈ D2 with δf̂ = f and supp(f̂ ) ⊥ O.

⇒ Translation invariance

f1 ⊥ f2 ⇒ [A(f1,x),A(f2,x)] = [A(f1),A(f2)] , ∀x ∈ R4

⇒ Dilation invariance

f1 ⊥ f2 ⇒ [A(τλ(f1)),A(τλ(f2))] = λ−6 [A(f1),A(f2)] , ∀λ > 0

By translation invariance

Thm. Centrality-topological charges

f1 ⊥ f2 ⇒ [[A(f1),A(f2)] , A(f )] = 0 , ∀f ∈ C1
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The universal C*-algebra of the e.m. quantum field

Heuristic idea: proceed to abstract unitary operators

U(a, f ) ” = ” e iaA(f ) a ∈ R, f ∈ C1

Let U be the group generated by U : R× C1 3 (a, f )→ U(a, f ) s.t.

(i) U(a, f )∗ = U(−a, f ) , U(0, f ) = 1 , U(a, f )U(b, f ) = U(a + b, f );

(ii) f1 on f2 ⇒ U(a1, f1)U(a2, f2) = U(1, a1f1 + a2f2);

(iii) f1 ⊥ f2 ⇒ bU(a, f ), bU(a1, f1),U(a2, f2)cc = 1

where b, c is the group commutator.

Action of the Poincaré group: PU(a, f ) := U(a, fP) for any P ∈ P↑+.

The universal C*-algebra of the e.m. field Uem is the full group C∗-algebra of U .
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States and representations: recovering the intrisic vector potential

A regular vacuum state of the algebra U is a pure and Poincaré invariant state
ω s.t.

I strong regularity: a1, . . . , an 7→ ω(U(a1, f1) · · ·U(an, fn)) are smooth with
tempered derivatives at 0

I P↑+ 3 P → ω(AαP(B)) continuous ;

I spectrum condition R4 3 p →
∫
e ipxω(Aαx(B)) d4x ∈ V+

Consequences:
ω is a regular vacuum state; (Ω, π,H) be the GNS of ω.

. By spectrum condition the functional

C1 3 f → ω(U(1, f )) ,

is a generating functional i.e. determines the value of ω on all U.

. By strong regularity exist selfadjoint operators Aπ(f ) with common stable
core D ⊆ H such that

π(U(a, f )) = e iaAπ(f ) .

Aπ satisfies all the properties defining the intrisic vector potential excepts
linearity on test functions.
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If a regular vacuum state ω satisfies condition L i.e.

d

dt
ω(VU(t, f1)U(t, f2)U(−t, f1 + f2)W )|t=0 = 0

then
a1Aπ(f1) + a2Aπ(f2) = Aπ(a1f1 + a2f2) on D

i.e. C1 3 f 7→ Aπ(f ) is the intrisic vector potential and satisfies all the
Wightaman axioms



Meaningful states.

I Zero current J = 0. ω0 reg. vacuum state with proprty L and s.t.

Jπ(f ) = Aπ(δdf ) = 0 , ∀f ∈ C1 .

then
ω0(U(1, f )) = e−W (f ,f )/2 , f ∈ C1

where W (f , f ) is the 2-point function of the free electromagnetic field i.e.
Aπ free electromagnetic field in Fock representation

I Classical current (central current). ω reg. vacuum state with proprty L
and s.t.

[Jπ(g),Aπ(f )] = 0 , g ∈ D1, f ∈ C1
then

ω(U(1, f )) = e iJπ(G0(f ))ω0(U(1, f ))

where G0 Green’s function of � (we recover the results by Streater [RJMP
14])



Questions

I Does exists regular vacuum states of the universal C∗-algebra Uem

describing the intrinsic vector potential with a quantum current i.e. J is
not central ?

I Does there exists representations carrying non-trivial topological charges ?
More precisely, we have seen that

f1 ⊥ f2 ⇒ bU(1, f1),U(1, f2)c is central

Does exists regular vacuum states of the universal C∗-algebra Uem s.t. the
above commutator is non-trivially represented ?

I Positive answer if the intrinsic vector potential Aπ in the representation
defined by a regular vacuum state ω is not linear on test functions
(violate property L) but satisfies a weak form of linearity, i.e. spacelike
linearity: it is homogeneous and

f1 on f2 ⇒ Aπ(f1) + Aπ(f2) = Aπ(f1 + f2)
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Non existence of topological charges in case of linearity

Let ω be the regular vacuum state with property L of the algebra Uem. The
corresponding intrinsic vector potential Aπ is a Wightman field (linear on test
functions in particular)

Thm. Let γ1, γ2 be simple closed curves and O1,O2 double cones such that

O1 + γ1 ⊥ O2 + γ2

∀ f1, f2 ∈ C1 with supp(f1) ⊂ O1 + γ1 and supp(f2) ⊂ O2 + γ2 we have

[Aπ(f1),Aπ(f2)] = [Aπ(f2),Aπ(f1)] ⇒ [Aπ(f1),Aπ(f2)] = 0



Thopological charges and spacelike linearity: the zero current case

Let ω0 be the regular vacuum state with property L of the algebra Uem with
zero conserved current:

ω0(U(1, g)) = e iA0(g) , g ∈ C1

A0 the free e.m. intrinsic potential in the Fock space.

Basic idea: define a new potential by exchanging magnetic with the electric
component of a test function: Note

γ1, γ2 spacelike separated and nontrivially linked closed curves.
f ∈ D0 with

∫
f d4x 6= 0 and support small enough that the

smearing loops fγi for i = 1, 2 verifies fγ1 ⊥ fγ2 . Roberts [78]

[F0(f̂γ1), ?F0(f̂γ2)] = [A0(fγ1),A0(δ?f̂γ2)] =

(∫
f d4x

)2

c1 , c 6= 0

the Hodge ? exchange the magnetic with the electric component.
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To select magnetic and electric functions we use the invariant: given f ∈ C1
and a co-primitive f̂ ∈ D2, δf̂ = f

λ2
f := λµνf λf ,µν , λµνf :=

∫
f̂ µν(x)d4x ,

λ2
f independent of the co-primitive f̂ of f ; Poincaré invariant.

I f of Electric type if λ2
f > 0;

I f is ofMagnetic type if of λ2
f < 0;

I f is of Null type. if λ2
f = 0.

Def . Given f ∈ C1 with connected support, let f̂ be any co-primitive of f :

AT (f ) := θ+(λ2
f )A0(δf̂ ) + θ−(λ2

f )A0(δ ? f̂ )

θ+ step function and θ−(t) = θ+(−t).

θ+ select electric type 1-forms, θ− select magnetic type 1-forms and ? change
magnetic → electric:

AT (f ) =


A0(δf̂ ) , λ2

f > 0;
0 , λ2

f = 0;

A0(δ ? f̂ ) , λ2
f < 0
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I The definition is well posed: AT does not depend on the co-primitive f̂ :
δf̂ = f . By local Poincaré lemma ∃τ ∈ D3 , δτ = f̃ − f̂ . Since J0 = 0 we
have

A0(δ ∗ f̂ ) = A0(δ ∗ f̃ )− A0(δ ∗ δτ) = A0(δ ∗ f̃ ) + A0(δd ? τ)

= A0(δ ∗ f̃ ) + J0(?τ) = A0(δ ∗ f̃ )

I AT is covariant and local

f1 on f2 ⇒ [AT (f1),AT (f2)] = 0

with zero conserved current

JT (f ) := δdAT (f ) = AT (δdf ) = 0 , f ∈ D1 .



Topological charges:

I f1 ⊥ f2 then

[AT (f1),AT (f2)] =
(
θ+(λ2

f1)θ−(λ2
f2)− θ−(λ2

f1)θ+(λ2
f2)
)

[A0(f1),A0(δ ? f̂2)]

I The red term is the same appearing in Roberts calculation. The blue term
vanishes for 1-forms of the same type.

I The 1-forms used in Roberts calculation are all of electric type, so the
above commutator in that case vanishes. However, there are 1-forms f1, f2,
obtained by a perturbation of the Roberts example such that

f1 ⊥ f2 ⇒ [AT (f1),AT (f2)] = c · 1 , c 6= 0

so this representation describes nontrivial topological charges.

However AT , because of θ functions, is homogeneous but not additive!. This is
why we restrict at the beginning to 1-forms with a connected support.
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The support of a generic f ∈ C1 has in general infinite countable connected
components. It turns out that f decomposes into a sum

f = f e + f 0 + f m , f e , f m, f 0 ∈ C1

where f e , f m and f 0 have disjoint supports and are of electric, magnetic and
null type respectively.

Using this decomposition the intrinsic vector potential is defined by

AT (f ) := A0(δf̂ ]) , f ∈ C1

where f̂ ] := f̂ e + ?f̂ m and f̂ e and f̂ m are any two co-primitives of of f e and f m.
AT is not linear but spacelike linear

f1 on f2 ⇒ AT (f1 + f2) = AT (f1) + AT (f2)

Thm. The functional

ωT (U(a, f )) := ω0(e iaAT (f )) = ω0(e iaA0(δf̂
])) , a ∈ R, f ∈ C1

defines a regular vacuum state of the algebra Uem and topological charges appear
in this representation.
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Topological charges and spacelike linearity: the quantum current case

Aim: For a given conserved current J find a regular vacuum state of Uem s.t.
the intrinsic potential A verifies δdA = J.

Let J be a local, covariant conserved current

δJ(g) = J(dg) = 0 , g ∈ D0

which is a Wightman field on a Hilbert space HJ , covariant wrt UJ a unitary
rep of the Poincaré group, with a vacuum vector ΩJ(for instance, the conserved
current associated with the free Dirac field.)

Basic idea: use the pre-image of the operator

δd : D1 → C1

Using the pre-image of δd leads to non linearity. So we start by considering
divergence-free 1-forms.
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Def . For any f ∈ C1 with connected support we let

AJ(f ) :=

{
J(f ◦) , if ∃f ◦ ∈ D1, δdf

◦ = f
0 , otherwise

I Well posedness: local Poincaré Lemma and conservation law of J

f̃ ∈ D1 , δdf̃ = f ⇒ J(f ◦) = J(f̃ )

I Well localized: supp(f ◦) ⊂ V+(supp(f )) ∩ V−(supp(f )) in particular for
any double cone O with supp(f ) ⊂ O, then

supp(f ◦) ⊂ O

I With the above definition AJ is homogenous but not additive on 1-forms,
(reason why we restrict to 1-forms with a connected support).
However, similarly to the previous case (but technically more hard), AJ

canonically extends to all divergence free 1-forms.



Summing up the intrinsic vector potential AJ satisfies the following properties

I Covariance: UJ(P)AJ(f )U∗J (P) = AJ(fP)

I Locality: f1 on f2 ⇒ [AJ(f1),AJ(f2)] = 0

I The conserved current is J:

δdAJ(f ) = AJ(δdf ) = J(f ) f ∈ C1

I AJ is not linear but spacelike linear and

f1 ⊥ f2 ⇒ [AJ(f1),AJ(f2)] = 0 No topological charges

Thm. The functional

ωJ(U(a, f )) := (Ωj , e
iaAJ (f )Ωj) , f ∈ C1

is a regular vacuum state of Uem with conserved current J but there are no
topological charges.



Finally: take ωT and ωJ the states with topological charges and quantum
current defined before.

Thm. The functional

ωTJ(U(a, f )) := ωT (U(a, f )) · ωJ(U(a, f ))

defines a regular vacuum state of Uem with nontrivial topological charges and
quantum conserved current J.
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The non-Abelian example and linearity

We consider the space of test functions C1 ⊕ C1: ~f =

(
f u

f d

)
with f u, f d ∈ C1

For any −1 < ζ < 1 there corresponds a sesquilinear form :〈
~f1, ~f2

〉
ζ

:=
〈
f u1 , f

u
2

〉
0

+
〈
f d1 , f

d
2

〉
0

+ ζ
〈
f u1 , δ ? f̂

d
2

〉
0
− ζ
〈
f d1 , δ ? f̂

u
2

〉
0

where 〈, 〉0 denotes the standard scalar product of the free electromagnetic field

〈
f , g
〉
0

:=

∫
V+

d3p

p
f̂ µ(p)∗ ĝµ(p) , f , g ∈ C1

This is a positive semi-definite scalar product: the relations〈
f , δ ? ĝ

〉
0

=
〈
g , δ ? f̂

〉
0

and
〈
δ ? f̂ , δ ? f̂

〉
0

=
〈
f , f
〉
0
, for any f , g ∈ C1 imply〈

~f , ~f
〉
ζ
≥
〈
f u, f u

〉
0

+
〈
f d , f d

〉
0
− |ζ|

√〈
f u, f u

〉
0
·
〈
f d , f d

〉
0
≥ 0

Invariant under the Poincaré group and SO(2) (global gauge group)

R(θ) :=

(
cos θ sin θ
− sin θ cos θ

)
, ~f 7→ R(θ)~f =

(
cos θf u + sin θf d

− sin θf u + cos θf d

)



Using this scalar product we define the Weyl algebra

Uζ(~f1)Uζ(~f2) = e
i
2
=〈~f1,~f2〉ζ · Uζ(~f1 + ~f2)

and a Poincaré invariant Fock state

ωζ(Uζ(~f )) = e
− 1

2 〈~f ,~f 〉ζ

defining a Fock representation of the algebra and a representation of SO(2)
and a Poincaré representation satisfying the spectrum condition (i.e. ωζ is a
vacuum state).

The generator Aζ i.e. πζ(U(~f )) = exp(iAζ(~f )) is a Wightman field satisfying
the commutation relations

[Aζ(~f1),Aζ(~f2)] =
(〈
~f1, ~f2

〉
ζ
−
〈
~f2, ~f1

〉
ζ

)
· 1

In particular

~f1 ⊥ ~f2 ⇒ [Aζ(~f1),Aζ(~f2)] = 2ζ · =
(〈

f u1 , δ ? f̂
d
2

〉
0
−
〈
f d1 , δ ? f̂

u
2

〉
0

)
· 1
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The last terms are the same appearing in the Roberts calculations: so if we take

fγ1 and fγ2 as before and set ~f1 =

(
fγ1
0

)
and ~f2 =

(
0
fγ2

)
we have that

f1 ⊥ f2 ⇒ [Aζ(~f1),Aζ(~f1)] = 2ζ · =
(〈

fγ1 , δ ? f̂γ2
〉
0

)
· 1 = c1 , c 6= 0

So the model describes toplogical charges.

Note: this model describes a pair of free e.m. fields

Au(f ) := Aζ

(
f
0

)
, Ad(f ) := Aζ

(
0
f

)
, f ∈ C1

satisfying the usual commutation relations:

[Au(f ),Au(g)] = 2=
〈
~f , ~g
〉
0

= [Ad(f ),Ad(g)]

Topological charges appear as a nontrivial coupling between these two fields.
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Conclusions

1. Topological charges appears, also in the presence of the electric current, in
a theory describing the quantum electromagnetic field provided that the
field is not linear but spacelike linear.
• This is a limitation from the mathematical point of view but not from
the physical point of view: only spacelike linearity can be tested in an
hypothetical experiment.
• Testing toplogical charges:coherent photons, traversing a loop in the
complement of another electromagnetic loop, would exhibit interference
patterns, akin to the AharonovBohm effect.

2. Topological charges arise in a model with a non-Abelian gauge group
without the restriction of spacelike linearity. These kind of models appears
in asymptotically free gauge theories.
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