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Overview

Yang-Mills gauge theory is the dynamical theory of a G-connection A on a
principal bundle with curvature F and the Yang-Mills action:

SYM = −1

2

∫
M

F ∧ ∗F.

For perturbative quantization, one splits

A = Ā+A,

into a background connection Ā (is kept classical, is a c-number)
and a dynamical g-valued 1-form A (is quantized perturbatively around Ā)

For quantum gravity gµν = ḡµν + hµν [yesterday talk by M. Reuter].

SYM is obviously independent of the split, i.e. it is background independent (but
this is more subtle for the gauge-fixed theory).

In QFT, Ā enters the propagators, while A is treated as a quantum field.

In which mathematically precise sense one can define background-independence
at the quantum level?

Are there obstructions to the background independence of renormalized
quantum YM and perturbative QG?
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A toy model: scalar field theory I

Let Φ ∈ C∞(M) be a scalar field on a globally hyperbolic manifold (M, g).

We split Φ
Φ = φ̄+ φ, (1)

into a background φ̄ which is assumed to be on-shell, i.e. satisfying

(�−m2)φ̄+ 1
3!
λφ̄3 = 0. (2)

and a dynamical perturbation φ whose dynamics is governed by

S[φ̄+ φ] =

∫
M

1

2
∇µφ∇µφ+ (m2 +

λ

2
φ̄2)φ2 +

λ

3!
φ̄φ3 +

λ

4!
φ4. (3)

S[φ̄+ φ] is independent of the split, i.e. it has split or shift symmetry. Infinitesimally

(
δ

δφ̄
−

δ

δφ
)S = 0. (4)

We define shift-invariant or background independent observables as those local O which
infinitesimally satisfy

(
δ

δφ̄
−

δ

δφ
)O = 0. (5)

The question of background independence:

Is the shift symmetry preserved at the quantum level?
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A toy model: scalar field theory II

In the framework locally covariant field theory [Hollands-Wald ’01],

[Brunetti-Fredenhagen-Verch ’03], we construct QFT as a covariant assignment of local
algebra of observables to backgrounds (M, g, φ̄) under

ψ : (M ′, g′, φ̄′)→ (M, g, φ̄). (6)

ψ is an embedding with ψ∗g = g′ preserving the causal str., and ψ∗φ̄ = φ̄′.

Algebra of observables Wφ̄ at a background φ̄

The space of Wick powers w.r.t. a Hadamard 2-point function ωφ̄(x, y) which is
a bi-solution of Pφ̄ = �g −m2 − 1

2
λφ̄2,

equipped with a product ?φ̄ s.t.

[φ(x), φ(y)]?φ̄ = i~∆φ̄(x, y), (7)

Locally covariant time-ordered products Tφ̄,n(O1 ⊗ · · · ⊗ On) ∈ D′(Mn;Wφ̄),

Tφ̄,n exist and are unique up to “renormalization ambiguity”,

Renormalized interacting fields Oφ̄ are defined by

Oφ̄(x) := Tφ̄(e
iSint/~
⊗ )−1 ? Tφ̄(O(x)⊗ eiS

int/~
⊗ ) ∈Wφ̄[[λ]], (8)[

Oφ̄(x),Oφ̄(y)
]
?φ̄

= 0, if x, y are causally separated (9)
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A toy model: scalar field theory III

Given an observables Oφ̄ at a given background φ̄, can we uniquely extend this
to all other backgrounds?
Inspired by Fedosov quantization for finite dimensional symplectic manifolds
[Fedosov ’94] and its generalization to pert. QFT [Collini,2016], [Hollands, unpublished], we
set up a geometric setting to formulate background independence:

Geometrical definition of background-independence

Let S be the “manifold” of on-shell background field configurations, i.e. solutions to the
non-linear equation (�−m2)φ̄+ 1

3!
λφ̄3 = 0.

We patch all the algebras together to obtain the algebra bundle W =
⊔
φ̄Wφ̄ → S.

Interacting fields Oφ̄ are viewed as smooth sections of W.

Tφ̄S is the linear space of solutions to linearized equation
(
�−m2 − 1

2
λφ̄2

)
δφ̄(x) = 0.

One then constructs a flat connection ∇~
δφ̄

on W→ S which implements variation of

sections Oφ̄ in the direction of δφ̄.

Background-independent observables are defined as flat sections w.r.t. ∇~
δφ̄

:

∇~
δφ̄
Oφ̄ = 0. (10)

Flatness of ∇~
δφ̄

is necessary to extent Oφ̄ via the parallel transport of ∇~
δφ̄

to all other

backgrounds in a unique and consistent way.
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A toy model: scalar field theory IV

How to construct such a flat connection ∇~
δφ̄?

Classical background-independent observables O satisfy ( δ
δφ̄
− δ

δφ
)O = 0.

However, the naive variation “ δ
δφ̄

” does not make sense in QFT, since variations

w.r.t. φ̄ requires algebras Wφ̄ and Wφ̄′ at backgrounds φ̄ and φ̄′ to be identified.

This identification is achieved for φ̄′ = φ̄+ δφ̄ via the retarded variation

δRδφ̄ : Wφ̄ →Wφ̄′ .

For scalar fields in 4-d, δRδφ̄ can be consistently implemented on Oφ̄ (principle of
perturbative agreement [Hollands-Wald ’02])

Therefore,

∇~
δφ̄ := δRδφ̄ − 〈δφ̄,

δ

δφ
〉 (11)

defines the desired flat connection:

∇~
δφ̄Oφ̄ =

(
〈δφ̄, ( δ

δφ̄
− δ

δφ
)O〉

)
φ̄
, (12)

([∇~
δφ̄,∇

~
δφ̄′ ]−∇~

[δφ̄,δφ̄′])Oφ̄ = 0. (13)

Thus, classical and quantum background-independent observables are in 1-1 correspondence
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Yang-Mills Theory with local gauge symmetry

In the Yang-Mills theory more complications arise because of gauge-fixing. We
split

A = Ā+A

into a background connection Ā and a dynamical g-valued 1-form A.

Obviously, SYM = SYM[Ā+A] is independent of the split (shift symmetry).

However, for perturbative quantization one has to fix the gauge (only for A),
and the gauge-fixed action is not shift-symmetric.

Nevertheless, in the BRST formalism, it turns out that this violation is not
physical.

BV-BRST formalism [Becchi-Rouet-Stora, ‘74, Tyutin‘75], [Batalin, Vilkovisky, ‘81]

BRST symmetry is the fermionic symmetry of the gauge-fixed YM action.

Its action on enlarged field configuration (including ghosts) Φ = (Aµ, C, C̄, B) is
given by a nilpotent differential s with s2 = 0.

Gauge-inv. observables of the original theory are recovered as the s -cohomology.

Anti-fields Φ‡ = (A‡µ, C
‡, C̄‡, B‡) are added as a source for sΦ.

7 / 13



Background convariant gauge-fixing

Gauge fixing is done via adding a BRST-exact term sψ to SYM.

We choose the so-called “background covariant (Feynman) gauge”

ψ =

∫
TrC̄(∇̄µAµ − 1

2
B), (14)

where ∇̄µ is the covariant derivative w.r.t. the background connection Ā.

The full action S = SYM + sψ + sΦ · Φ‡ satisfies

sS = 0, (S, S) = 0, (15)

where (−,−) is the anti-bracket with (Φ(x),Φ‡(y)) = δ(x, y) and satisfies

s(O1,O2) = (sO1,O2)± (O1, sO2). (16)

S is not shift-invariant anymore, but the violation of shift symmetry is s-exact

(
δ

δĀ
− δ

δA
)S = s(δψ), (17)

Therefore, the gauge-fixed YM is also background-independent.
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Realization of BRST symmetry at quantum level

The BV-BRST formalism can be cast to the locally covariant and algebraic
approach to pQFT [Hollands, ’07], [Fredenhagen, Rejzner, ’11] [today talk by K.Rejzner].
In the presence of the background connection Ā, QFT is constructed to be
covariant under background gauge transformations [Zahn, ’12].
In particular our gauge-fixing behaves covariantly under such transformations.
At the quantum level, the BRST symmetry (when preserved) is implemented by
the renormalized BRST charge QĀ

[QĀ,OĀ] = i~(q̂O)Ā, (18)

[QĀ, TĀ(O1 ⊗O2)] = i~TĀ
(
q̂O1 ⊗O2 +O1 ⊗ q̂O2

)
+ ~2((O1,O2)~

)
Ā. (19)

New algebraic structures at quantum level [Rejzner ’13], [M. TT ’17]

quantum BRST operator

q̂O := ŝO + Â1(O), with q̂2 = 0. (20)

quantum anti-bracket (O1,O2)~ := (O1,O2) + Â2(O1 ⊗O2) with

q̂(O1,O2)~ = (q̂O1,O2)~ ± (O1, q̂O2)~. (21)

Â1(O), Â2(O1 ⊗O2) are of order O(~) (quantum corrections).
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Background-independent observables

For each Ā, the following algebra admits a Hilbet space representation:

FĀ ≡ {algebra of physical, gauge-invariant observables} =
ker [QĀ,−]

im [QĀ,−]
. (22)

Geometrical definition of background-independence

Let S be the manifold of on-shell background field configurations, i.e. solutions
to the non-linear equation ∇̄µF̄µν = 0.

We consider the algebra bundle F =
⊔
Ā FĀ → S.

Interacting fields OĀ are viewed as smooth sections of F .

δĀ ∈ TĀS is a g-valued 1-form which is a solutions to linearized field equation.

One then constructs a connection ∇~
δĀ on F → S which must be

1 well-defined on [QĀ,−]-cohomology, i.e.

∇~
δĀ
◦ [QĀ,−]− [QĀ,−] ◦ ∇~

δĀ
= 0. (23)

2 flat up to a [QĀ,−]-exact term:

([∇~
δĀ
,∇~

δĀ′ ]−∇~
[δĀ,δĀ′])OĀ ∈ im [QĀ,−]. (24)

Background-independent observables are flat sections of ∇~
δĀ mod [QĀ,−]-exact

∇~
δĀOĀ ∈ im [QĀ,−]. (25)10 / 13



Possible obstructions of background independence

Recall that the gauge-fixed S is not shift-invariant 〈δĀ, ( δ
δĀ −

δ
δA

)S〉 = s(δδĀψ)

δδĀψ = 〈δĀµI , [Aµ, C̄]I〉, with ghost number − 1. (26)

Define ∇~
δĀ := δRδĀ − 〈δĀ,

δ
δA
〉

Necessary conditions for background independence of observables

If Â1(δδĀψ) = 0, then we can write

∇~
δĀOĀ = (DδĀO)Ā + [QĀ,O

′
Ā], for some O′. (27)

where DδĀO := 〈δĀ, ( δ
δĀ −

δ
δĀ

)O〉 − (O, δδĀψ)~. (28)

If Â2(Q⊗ δδĀψ) = 0, then

DδĀ ◦ q̂ − q̂ ◦DδĀ = 0, (29)

thus ∇~
δĀ is well-defined on [QĀ,−]-cohomology.

If Â2(δδĀψ ⊗ δδĀ′ψ) = 0, then

[DδĀ, DδĀ′ ]−D[δĀ,δĀ′] = 0, (30)

thus ∇~
δĀ is flat up to im [QĀ,O′Ā].
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Absence of obstructions for pure YM

(1) The anomaly of retarded variation (e.g. chiral gauge or gravitational anomaly),

(2) The anomaly of Ward identity A(eS
int

⊗ ) (gauge anomaly).

The first two anomalies can be shown to be absent in 4 dimensions for pure YM.

Other anomalies appear because of 〈δĀ, ( δ
δĀ −

δ
δA

)S〉 = s(δδĀψ)

δδĀψ = 〈δĀ, δ
δĀ

Ψ〉 = 〈δĀµI , [Aµ, C̄]I〉, with ghost number − 1. (31)

(3) Â1(δδĀψ) = 〈δĀµI , a
I
µ〉, where aIµ(x) has ghost nr. 0, dim 3 and satisfies saIµ = 0.

Thus, it only transforms covariantly under background gauge transformations.
Hence, it is only made out of background configurations, i.e. it is a c-number.

(4) Â2(Q⊗ δδĀψ) = 〈δĀµI , a
I
µν〉. aIµν(x) has ghost nr. +1, and saIµν = 0. Since H1(s)

is trivial, it only contains backgrounds but there is no background with gh. nr. 1.

(5) Â2(δδĀψ ⊗ δδĀ′ψ) = 〈δĀµI δĀ
′ν
J , a

IJ
µν〉 . aIJµν(x) has ghost nr. 0 and saIJµν = 0.

Similarly, there is no candidate for this term.
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Potential obstructions in non-renormalizable theories

In power-counting non-renormalizable theories, e.g. YM in higher dimensions,
there is no dimension constraint for aIµ(x).

An example for an obstruction term in a non-renormalizable setting would be

aIµ = F̄ Iµν∇̄ν(F JρσF
ρσ
J ). (32)

Perturbative quantum gravity in 4 dim

One splits the metric gµν = ḡµν +hµν , into a background ḡ and a perturbation h.

The construction of ∇~
δḡ can be carried out similar to the YM case.

The potential anomaly comes from δδḡψ = 〈δḡµν , δ
δḡµν ψ〉.

Â1(δδḡψ) = 〈δḡµν , aµν〉, where aµν(x) has ghost nr.=0, and saµν = 0.

Let O[g] be any local and gauge-invariant scalar observable [Brunetti, Fredenhagen,

Rejzner ’13], [Khavkine ’15]

A potential anomaly candidate would be

aµν = ḡµνO. (33)

There are indeed infinitely many of them!
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