Background Independence in Gauge Theories

Mojtaba Taslimitehrani

Max-Planck-Institut für Mathematik in den Naturwissenschaften-Leipzig

May 30, 2017

Foundational and structural aspects of gauge theories Mainz institiur fo theoretical physics

Joint work with Jochen Zahn (Universität Leipzig)

Overview

• Yang-Mills gauge theory is the dynamical theory of a G-connection \mathcal{A} on a principal bundle with curvature F and the Yang-Mills action:

$$S_{\rm YM} = -\frac{1}{2} \int_M F \wedge *F.$$

• For perturbative quantization, one splits

$$\mathcal{A} = \bar{\mathcal{A}} + A,$$

into a background connection $\bar{\mathcal{A}}$ (is kept classical, is a c-number) and a dynamical g-valued 1-form A (is quantized perturbatively around $\bar{\mathcal{A}}$)

- For quantum gravity $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ [yesterday talk by M. Reuter].
- $S_{\rm YM}$ is obviously independent of the split, i.e. it is background independent (but this is more subtle for the gauge-fixed theory).
- In QFT, $\bar{\mathcal{A}}$ enters the propagators, while A is treated as a quantum field.
- In which mathematically precise sense one can define background-independence at the quantum level?
- Are there obstructions to the background independence of renormalized quantum YM and perturbative QG?

A toy model: scalar field theory I

- Let $\Phi \in C^{\infty}(M)$ be a scalar field on a globally hyperbolic manifold (M, g).
- We split Φ

$$\Phi = \bar{\phi} + \phi, \tag{1}$$

into a background $\bar{\phi}$ which is assumed to be on-shell, i.e. satisfying

$$(\Box - m^2)\bar{\phi} + \frac{1}{3!}\lambda\bar{\phi}^3 = 0.$$
 (2)

and a dynamical perturbation ϕ whose dynamics is governed by

$$S[\bar{\phi} + \phi] = \int_{M} \frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi + (m^{2} + \frac{\lambda}{2} \bar{\phi}^{2}) \phi^{2} + \frac{\lambda}{3!} \bar{\phi} \phi^{3} + \frac{\lambda}{4!} \phi^{4}.$$
 (3)

• $S[\bar{\phi} + \phi]$ is independent of the split, i.e. it has *split or shift symmetry*. Infinitesimally

$$\left(\frac{\delta}{\delta\bar{\phi}} - \frac{\delta}{\delta\phi}\right)S = 0. \tag{4}$$

• We define shift-invariant or background independent observables as those local \mathcal{O} which infinitesimally satisfy

$$\left(\frac{\delta}{\delta\bar{\phi}} - \frac{\delta}{\delta\phi}\right)\mathcal{O} = 0. \tag{5}$$

The question of background independence:

Is the shift symmetry preserved at the quantum level?

A toy model: scalar field theory II

• In the framework locally covariant field theory [Hollands-Wald '01], [Brunetti-Fredenhagen-Verch '03], we construct QFT as a covariant assignment of local algebra of observables to backgrounds $(M, g, \bar{\phi})$ under

$$\psi: (M', g', \bar{\phi}') \to (M, g, \bar{\phi}).$$
(6)

• ψ is an embedding with $\psi^* g = g'$ preserving the causal str., and $\psi^* \bar{\phi} = \bar{\phi}'$.

Algebra of observables $\mathbf{W}_{\bar{\phi}}$ at a background $\bar{\phi}$

- The space of Wick powers w.r.t. a Hadamard 2-point function $\omega_{\bar{\phi}}(x,y)$ which is a bi-solution of $P_{\bar{\phi}} = \Box_g m^2 \frac{1}{2}\lambda\bar{\phi}^2$,
- equipped with a product $\star_{\bar{\phi}}$ s.t.

$$[\phi(x), \phi(y)]_{\star_{\bar{\phi}}} = i\hbar\Delta_{\bar{\phi}}(x, y), \tag{7}$$

- Locally covariant time-ordered products $T_{\bar{\phi},n}(\mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_n) \in D'(M^n; \mathbf{W}_{\bar{\phi}})$,
- $T_{\bar{\phi},n}$ exist and are unique up to "renormalization ambiguity",
- Renormalized interacting fields $\mathcal{O}_{\bar{\phi}}$ are defined by

$$\mathcal{O}_{\bar{\phi}}(x) := T_{\bar{\phi}}(e_{\otimes}^{iS^{\mathrm{int}}/\hbar})^{-1} \star T_{\bar{\phi}}(\mathcal{O}(x) \otimes e_{\otimes}^{iS^{\mathrm{int}}/\hbar}) \in \mathbf{W}_{\bar{\phi}}[[\lambda]], \tag{8}$$
$$\left[\mathcal{O}_{\bar{\phi}}(x), \mathcal{O}_{\bar{\phi}}(y)\right]_{\star_{\bar{\tau}}} = 0, \quad \text{if } x, y \text{ are causally separated} \tag{9}$$

A toy model: scalar field theory III

- Given an observables $\mathcal{O}_{\bar{\phi}}$ at a given background $\bar{\phi}$, can we uniquely extend this to all other backgrounds?
- Inspired by Fedosov quantization for finite dimensional symplectic manifolds [Fedosov '94] and its generalization to pert. QFT [Collini,2016], [Hollands, unpublished], we set up a geometric setting to formulate background independence:

Geometrical definition of background-independence

- Let S be the "manifold" of on-shell background field configurations, i.e. solutions to the non-linear equation $(\Box m^2)\bar{\phi} + \frac{1}{2!}\lambda\bar{\phi}^3 = 0.$
- We patch all the algebras together to obtain the algebra bundle $\mathbf{W} = \bigsqcup_{\bar{\phi}} \mathbf{W}_{\bar{\phi}} \to \mathcal{S}$.
- Interacting fields $\mathcal{O}_{\bar{\phi}}$ are viewed as smooth sections of **W**.
- $T_{\bar{\phi}}S$ is the linear space of solutions to linearized equation $(\Box m^2 \frac{1}{2}\lambda\bar{\phi}^2)\delta\bar{\phi}(x) = 0.$
- One then constructs a flat connection ∇^ħ_{δφ̄} on W → S which implements variation of sections O_{φ̄} in the direction of δφ̄.
- Background-independent observables are defined as flat sections w.r.t. $\nabla_{\delta \bar{\phi}}^{\bar{h}}$:

$$\nabla^{\hbar}_{\delta\bar{\phi}}\mathcal{O}_{\bar{\phi}} = 0. \tag{10}$$

• Flatness of $\nabla^{\hbar}_{\delta\bar{\phi}}$ is necessary to extent $\mathcal{O}_{\bar{\phi}}$ via the parallel transport of $\nabla^{\hbar}_{\delta\bar{\phi}}$ to all other backgrounds in a unique and consistent way.

A toy model: scalar field theory IV

- How to construct such a flat connection $\nabla^{\hbar}_{\delta\bar{\phi}}$?
- Classical background-independent observables \mathcal{O} satisfy $\left(\frac{\delta}{\delta\phi} \frac{\delta}{\delta\phi}\right)\mathcal{O} = 0.$
- However, the naive variation " $\frac{\delta}{\delta \phi}$ " does not make sense in QFT, since variations w.r.t. $\bar{\phi}$ requires algebras $\mathbf{W}_{\bar{\phi}}$ and $\mathbf{W}_{\bar{\phi}'}$ at backgrounds $\bar{\phi}$ and $\bar{\phi}'$ to be identified.
- This identification is achieved for $\bar{\phi}' = \bar{\phi} + \delta \bar{\phi}$ via the retarded variation

$$\delta^R_{\deltaar\phi}: \mathbf{W}_{ar\phi} o \mathbf{W}_{ar\phi'}$$

• For scalar fields in 4-d, $\delta^R_{\delta\bar{\phi}}$ can be consistently implemented on $\mathcal{O}_{\bar{\phi}}$ (principle of perturbative agreement [Hollands-Wald '02])

• Therefore,

$$\nabla^{h}_{\delta\bar{\phi}} := \delta^{R}_{\delta\bar{\phi}} - \langle \delta\bar{\phi}, \frac{\delta}{\delta\phi} \rangle \tag{11}$$

defines the desired flat connection:

$$\nabla^{h}_{\delta\bar{\phi}}\mathcal{O}_{\bar{\phi}} = \left(\langle\delta\bar{\phi}, (\frac{\delta}{\delta\phi} - \frac{\delta}{\delta\phi})\mathcal{O}\rangle\right)_{\bar{\phi}},\tag{12}$$

$$([\nabla^{h}_{\delta\bar{\phi}},\nabla^{h}_{\delta\bar{\phi}'}] - \nabla^{h}_{[\delta\bar{\phi},\delta\bar{\phi}']})\mathcal{O}_{\bar{\phi}} = 0.$$
(13)

Thus, classical and quantum background-independent observables are in 1-1 correspondence $6\ /\ 13$

• In the Yang-Mills theory more complications arise because of gauge-fixing. We split

$$\mathcal{A} = \bar{\mathcal{A}} + A$$

into a background connection $\bar{\mathcal{A}}$ and a dynamical \mathfrak{g} -valued 1-form A.

- Obviously, $S_{\rm YM} = S_{\rm YM}[\bar{\mathcal{A}} + A]$ is independent of the split (shift symmetry).
- However, for perturbative quantization one has to fix the gauge (only for A), and the gauge-fixed action is not shift-symmetric.
- Nevertheless, in the BRST formalism, it turns out that this violation is not physical.

BV-BRST formalism [Becchi-Rouet-Stora, '74, Tyutin'75], [Batalin, Vilkovisky, '81]

- BRST symmetry is the fermionic symmetry of the gauge-fixed YM action.
- Its action on enlarged field configuration (including ghosts) $\Phi = (A_{\mu}, C, \overline{C}, B)$ is given by a nilpotent differential s with $s^2 = 0$.
- $\bullet\,$ Gauge-inv. observables of the original theory are recovered as the s -cohomology.
- Anti-fields $\Phi^{\ddagger} = (A^{\ddagger}_{\mu}, C^{\ddagger}, \overline{C}^{\ddagger}, B^{\ddagger})$ are added as a source for $s\Phi$.

Background convariant gauge-fixing

- Gauge fixing is done via adding a BRST-exact term $s\psi$ to $S_{\rm YM}$.
- We choose the so-called "background covariant (Feynman) gauge"

$$\psi = \int \text{Tr}\bar{C}(\bar{\nabla}^{\mu}A_{\mu} - \frac{1}{2}B), \qquad (14)$$

where $\bar{\nabla}^{\mu}$ is the covariant derivative w.r.t. the background connection $\bar{\mathcal{A}}$.

• The full action $S = S_{\rm YM} + s\psi + s\Phi\cdot\Phi^{\ddagger}$ satisfies

$$sS = 0, \quad (S,S) = 0,$$
 (15)

where (-, -) is the anti-bracket with $(\Phi(x), \Phi^{\ddagger}(y)) = \delta(x, y)$ and satisfies

$$s(\mathcal{O}_1, \mathcal{O}_2) = (s\mathcal{O}_1, \mathcal{O}_2) \pm (\mathcal{O}_1, s\mathcal{O}_2).$$
(16)

• S is not shift-invariant anymore, but the violation of shift symmetry is s-exact

$$(\frac{\delta}{\delta\bar{\mathcal{A}}} - \frac{\delta}{\delta A})S = s(\delta\psi),\tag{17}$$

• Therefore, the gauge-fixed YM is also background-independent.

Realization of BRST symmetry at quantum level

- The BV-BRST formalism can be cast to the locally covariant and algebraic approach to pQFT [Hollands, '07], [Fredenhagen, Rejzner, '11] [today talk by K.Rejzner].
- In the presence of the background connection $\bar{\mathcal{A}}$, QFT is constructed to be covariant under *background gauge transformations* [Zahn, '12].
- In particular our gauge-fixing behaves covariantly under such transformations.
- At the quantum level, the BRST symmetry (when preserved) is implemented by the renormalized BRST charge $Q_{\bar{A}}$

$$[Q_{\bar{\mathcal{A}}}, \mathcal{O}_{\bar{\mathcal{A}}}] = i\hbar(\hat{q}\mathcal{O})_{\bar{\mathcal{A}}},\tag{18}$$

$$[Q_{\bar{\mathcal{A}}}, T_{\bar{\mathcal{A}}}(\mathcal{O}_1 \otimes \mathcal{O}_2)] = i\hbar T_{\bar{\mathcal{A}}} (\hat{q}\mathcal{O}_1 \otimes \mathcal{O}_2 + \mathcal{O}_1 \otimes \hat{q}\mathcal{O}_2) + \hbar^2 ((\mathcal{O}_1, \mathcal{O}_2)_{\hbar})_{\bar{\mathcal{A}}}.$$
 (19)

New algebraic structures at quantum level [Rejzner '13], [M. TT '17]

• quantum BRST operator

$$\hat{q}\mathcal{O} := \hat{s}\mathcal{O} + \hat{A}_1(\mathcal{O}), \quad \text{with } \hat{q}^2 = 0.$$
 (20)

• quantum anti-bracket $(\mathcal{O}_1, \mathcal{O}_2)_{\hbar} := (\mathcal{O}_1, \mathcal{O}_2) + \hat{A}_2(\mathcal{O}_1 \otimes \mathcal{O}_2)$ with

$$\hat{q}(\mathcal{O}_1, \mathcal{O}_2)_{\hbar} = (\hat{q}\mathcal{O}_1, \mathcal{O}_2)_{\hbar} \pm (\mathcal{O}_1, \hat{q}\mathcal{O}_2)_{\hbar}.$$
(21)

 $\hat{A}_1(\mathcal{O}), \hat{A}_2(\mathcal{O}_1 \otimes \mathcal{O}_2)$ are of order $O(\hbar)$ (quantum corrections).

• For each $\bar{\mathcal{A}}$, the following algebra admits a Hilbet space representation:

 $\mathcal{F}_{\bar{\mathcal{A}}} \equiv \{ \text{algebra of physical, gauge-invariant observables} \} = \frac{\ker [Q_{\bar{\mathcal{A}}}, -]}{\operatorname{im} [Q_{\bar{\mathcal{A}}}, -]}.$ (22)

Geometrical definition of background-independence

- Let S be the manifold of on-shell background field configurations, i.e. solutions to the non-linear equation $\bar{\nabla}^{\mu}\bar{F}_{\mu\nu} = 0$.
- We consider the algebra bundle $\mathcal{F} = \bigsqcup_{\bar{\mathcal{A}}} \mathcal{F}_{\bar{\mathcal{A}}} \to \mathcal{S}$.
- Interacting fields $\mathcal{O}_{\bar{\mathcal{A}}}$ are viewed as smooth sections of \mathcal{F} .
- $\delta \bar{A} \in T_{\bar{\mathcal{A}}} \mathcal{S}$ is a g-valued 1-form which is a solutions to linearized field equation.
- One then constructs a connection ∇^ħ_{δĀ} on F → S which must be
 well-defined on [Q_Ā, -]-cohomology, i.e.

$$\nabla^{\hbar}_{\delta\bar{A}} \circ [Q_{\bar{\mathcal{A}}}, -] - [Q_{\bar{\mathcal{A}}}, -] \circ \nabla^{\hbar}_{\delta\bar{A}} = 0.$$
⁽²³⁾

2 flat up to a $[Q_{\bar{\mathcal{A}}}, -]$ -exact term:

$$([\nabla^{\hbar}_{\delta\bar{A}}, \nabla^{\hbar}_{\delta\bar{A}'}] - \nabla^{\hbar}_{[\delta\bar{A}, \delta\bar{A}']})\mathcal{O}_{\bar{A}} \in \operatorname{im} [Q_{\bar{\mathcal{A}}}, -].$$

$$(24)$$

• Background-independent observables are flat sections of $\nabla^{\hbar}_{\delta\bar{A}} \mod [Q_{\bar{A}}, -]$ -exact

$$\nabla^{\hbar}_{\delta\bar{A}}\mathcal{O}_{\bar{\mathcal{A}}} \in \text{im } [Q_{\bar{\mathcal{A}}}, -].$$

$$10 (25)$$

Possible obstructions of background independence

• Recall that the gauge-fixed S is not shift-invariant $\langle \delta \bar{A}, (\frac{\delta}{\delta \bar{A}} - \frac{\delta}{\delta A}) S \rangle = s(\delta_{\delta \bar{A}} \psi)$

 $\delta_{\delta\bar{A}}\psi = \langle \delta\bar{A}_{I}^{\mu}, [A_{\mu}, \bar{C}]^{I} \rangle, \quad \text{with ghost number } -1.$ (26) • Define $\nabla_{\delta\bar{A}}^{\hbar} := \delta_{\delta\bar{A}}^{R} - \langle \delta\bar{A}, \frac{\delta}{\delta\bar{A}} \rangle$

Necessary conditions for background independence of observables

• If $\hat{A}_1(\delta_{\delta\bar{A}}\psi) = 0$, then we can write

$$\nabla^{\hbar}_{\delta\bar{A}}\mathcal{O}_{\bar{\mathcal{A}}} = (D_{\delta\bar{A}}\mathcal{O})_{\bar{\mathcal{A}}} + [Q_{\bar{\mathcal{A}}}, \mathcal{O}'_{\bar{\mathcal{A}}}], \quad \text{for some } \mathcal{O}'.$$
(27)

where
$$D_{\delta\bar{A}}\mathcal{O} := \langle \delta\bar{A}, (\frac{\delta}{\delta\bar{A}} - \frac{\delta}{\delta\bar{A}})\mathcal{O} \rangle - (\mathcal{O}, \delta_{\delta\bar{A}}\psi)_{\hbar}.$$
 (28)

• If $\hat{A}_2(Q \otimes \delta_{\delta \bar{A}} \psi) = 0$, then

$$D_{\delta\bar{A}} \circ \hat{q} - \hat{q} \circ D_{\delta\bar{A}} = 0, \tag{29}$$

thus $\nabla^{\hbar}_{\delta \bar{A}}$ is well-defined on $[Q_{\bar{A}}, -]$ -cohomology.

• If $\hat{A}_2(\delta_{\delta\bar{A}}\psi\otimes\delta_{\delta\bar{A}'}\psi)=0$, then

$$[D_{\delta\bar{A}}, D_{\delta\bar{A}'}] - D_{[\delta\bar{A}, \delta\bar{A}']} = 0, \qquad (30)$$

thus $\nabla^{\hbar}_{\delta\bar{A}}$ is flat up to im $[Q_{\bar{A}}, \mathcal{O}'_{\bar{A}}]$.

The anomaly of retarded variation (e.g. chiral gauge or gravitational anomaly),
 The anomaly of Ward identity A(e^{S^{int}}_⊗) (gauge anomaly).

- The first two anomalies can be shown to be absent in 4 dimensions for pure YM.
- Other anomalies appear because of $\langle \delta \bar{A}, (\frac{\delta}{\delta \bar{A}} \frac{\delta}{\delta \bar{A}})S \rangle = s(\delta_{\delta \bar{A}}\psi)$

$$\delta_{\delta\bar{A}}\psi = \langle \delta\bar{A}, \frac{\delta}{\delta\bar{\mathcal{A}}}\Psi \rangle = \langle \delta\bar{A}_{I}^{\mu}, [A_{\mu}, \bar{C}]^{I} \rangle, \quad \text{with ghost number } -1.$$
(31)

- (3) $\hat{A}_1(\delta_{\delta\bar{A}}\psi) = \langle \delta\bar{A}_I^{\mu}, a_{\mu}^I \rangle$, where $a_{\mu}^I(x)$ has ghost nr. 0, dim 3 and satisfies $sa_{\mu}^I = 0$. Thus, it only transforms covariantly under background gauge transformations. Hence, it is only made out of background configurations, i.e. it is a c-number.
- (4) $\hat{A}_2(Q \otimes \delta_{\delta \bar{A}} \psi) = \langle \delta \bar{A}_I^{\mu}, a_{\mu\nu}^I \rangle$. $a_{\mu\nu}^I(x)$ has ghost nr. +1, and $sa_{\mu\nu}^I = 0$. Since $H_1(s)$ is trivial, it only contains backgrounds but there is no background with gh. nr. 1.
- (5) $\hat{A}_2(\delta_{\delta\bar{A}}\psi \otimes \delta_{\delta\bar{A}'}\psi) = \langle \delta\bar{A}_I^{\mu}\delta\bar{A}_J'^{\nu}, a_{\mu\nu}^{IJ} \rangle$. $a_{\mu\nu}^{IJ}(x)$ has ghost nr. 0 and $sa_{\mu\nu}^{IJ} = 0$. Similarly, there is no candidate for this term.

Potential obstructions in non-renormalizable theories

- In power-counting non-renormalizable theories, e.g. YM in higher dimensions, there is no dimension constraint for $a^{I}_{\mu}(x)$.
- An example for an obstruction term in a non-renormalizable setting would be

$$a^{I}_{\mu} = \bar{F}^{I}_{\mu\nu} \bar{\nabla}^{\nu} (F^{J}_{\rho\sigma} F^{\rho\sigma}_{J}).$$
(32)

Perturbative quantum gravity in 4 dim

- One splits the metric $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$, into a background \bar{g} and a perturbation h.
- The construction of $\nabla^{\hbar}_{\delta \bar{g}}$ can be carried out similar to the YM case.
- The potential anomaly comes from $\delta_{\delta \bar{g}} \psi = \langle \delta \bar{g}^{\mu\nu}, \frac{\delta}{\delta \bar{g}^{\mu\nu}} \psi \rangle$.
- $\hat{A}_1(\delta_{\delta \bar{g}}\psi) = \langle \delta \bar{g}^{\mu\nu}, a_{\mu\nu} \rangle$, where $a_{\mu\nu}(x)$ has ghost nr.=0, and $sa_{\mu\nu} = 0$.
- Let $\mathcal{O}[g]$ be any local and gauge-invariant scalar observable [Brunetti, Fredenhagen, Rejzner '13], [Khavkine '15]
- A potential anomaly candidate would be

$$a_{\mu\nu} = \bar{g}_{\mu\nu}\mathcal{O}.\tag{33}$$

• There are indeed infinitely many of them!