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Yang-Mills gauge theory is the dynamical theory of a G-connection A on a
principal bundle with curvature F' and the Yang-Mills action:

1
Sy M :—7/ F A xF.
2 /M
For perturbative quantization, one splits

A=A+ A,

into a background connection A (is kept classical, is a c-number) -
and a dynamical g-valued 1-form A (is quantized perturbatively around .A)
For quantum gravity gu, = guv + huv [yesterday talk by M. Reuter].

@ Sywm is obviously independent of the split, i.e. it is background independent (but

this is more subtle for the gauge-fixed theory).
In QFT, A enters the propagators, while A is treated as a quantum field.

In which mathematically precise sense one can define background-independence
at the quantum level?

Are there obstructions to the background independence of renormalized
quantum YM and perturbative QG?
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A toy model: scalar field theory I

@ Let @ € C°°(M) be a scalar field on a globally hyperbolic manifold (M, g).
o We split &

P=¢+9, (1)
into a background ¢ which is assumed to be on-shell, i.e. satisfying
(O—m)é+ 1A =0. ()
and a dynamical perturbation ¢ whose dynamics is governed by
_ 1 P A - A
S5+ ¢l = [ 3Vu0Vo+ (m® 4 S8 + 5600+ 2ot 3)
a2 2 3! 41
@ S[¢ + @] is independent of the split, i.e. it has split or shift symmetry. Infinitesimally
1) 1)
— — —)S=0. 4
(55~ 3 o)

@ We define shift-invariant or background independent observables as those local O which
infinitesimally satisfy

§ §
(G5~ 550=0 (5)

The question of background independence:

Is the shift symmetry preserved at the quantum level?
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A toy model: scalar field theory II

o In the framework locally covariant field theory monands-waid o1],
[Brunetti-Fredenhagen-Verch *03], we construct QF'T as a covariant assignment of local
algebra of observables to backgrounds (M, g, ¢) under

¢ (Mg, ¢") = (M, g,9). (6)
e 1 is an embedding with ¢*g = ¢’ preserving the causal str., and "¢ = ¢'.

Algebra of observables W 5 at a background ¢

e The space of Wick powers w. r t. a Hadamard 2-point function wg(z,y) which is
a bi-solution of Pz = [, — m?— 1 /\ng ,

e equipped with a product *g s.t.

Locally covariant time-ordered products T ,(O1 ® --- ® Oy) € D' (M™; W 3),

T, exist and are unique up to “renormalization ambiguity”,

o Renormalized interacting fields Oy are defined by

O5(x) = Ty(eS™ /™)« T3 (O(z) @ €5 /™) € W[N], (8)

[05(z), O(Z;(y)]*d; =0, ifz, y are causally separated 4 /(192




A toy model: scalar field theory III

e Given an observables Oj at a given background ¢, can we uniquely extend this
to all other backgrounds?

o Inspired by Fedosov quantization for finite dimensional symplectic manifolds
[Fedosov '94] and its generalization to pert. QFT [collini,2016], [Hollands, unpublished], We
set up a geometric setting to formulate background independence:

Geometrical definition of background-independence

o Let S be the “manifold” of on-shell background field configurations, i.e. solutions to the
non-linear equation (00 — m?)¢ + %A(ﬁ?’ =0.

o We patch all the algebras together to obtain the algebra bundle W = |_|d; Wz — S.

o Interacting fields Oz are viewed as smooth sections of W.
° T¢S is the linear space of solutions to linearized equation (D m2— 1 )\¢2)5¢>(x) =0.

o One then constructs a flat connection V54_5 on W — S which implements variation of

sections O in the direction of 5.

o Background-independent observables are defined as flat sections w.r.t. VZ 3
h _
Vs (5(94) =0, (10)

o Flatness of Vg‘- is necessary to extent O¢ via the parallel transport of Vh to all other

backgrounds in a unique and consistent way. c /12
) v




A toy model: scalar field theory IV

o How to construct such a flat connection ng;?

e Classical background-independent observables O satisfy (5% - %)(’) =0.

o However, the naive variation “5%” does not make sense in QFT, since variations
w.r.t. ¢ requires algebras W3 and Wy, at backgrounds ¢ and ¢’ to be identified.

o This identification is achieved for ¢’ = ¢ + d¢ via the retarded variation

5(% :qu —>Wq§/.

e For scalar fields in 4-d, 5(% can be consistently implemented on Oy (principle of
perturbative agreement [Hollands-wald *02])
@ Therefore,
)
ho._ sR
Vig 1= 055 — (60, %> (11)
defines the desired flat connection:
V53505 = (68, (55 — 5)0)) 55 (12)
(Vs> Vig] — Visg,561)05 = 0. (13)

Thus, classical and quantum background-independent observables are in 1-1 correspondence
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Yang-Mills Theory with local gauge symmetry

o In the Yang-Mills theory more complications arise because of gauge-fixing. We
split ~
A=A+ A
into a background connection A and a dynamical g-valued 1-form A.
o Obviously, Sym = Sym[A + A] is independent of the split (shift symmetry).

e However, for perturbative quantization one has to fix the gauge (only for A),
and the gauge-fixed action is not shift-symmetric.

o Nevertheless, in the BRST formalism, it turns out that this violation is not
physical.

BV—BRST formalism [Becchi-Rouet-Stora, ‘74, Tyutin‘75], [Batalin, Vilkovisky, ‘81]

e BRST symmetry is the fermionic symmetry of the gauge-fixed YM action.

o Its action on enlarged field configuration (including ghosts) ® = (A,, C, C, B) is
given by a nilpotent differential s with s = 0.

o Gauge-inv. observables of the original theory are recovered as the s -cohomology.
Anti-fields % = (Ai, C*,C*, BY) are added as a source for s®.
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Background convariant gauge-fixing

Gauge fixing is done via adding a BRST-exact term sy to Sym.

We choose the so-called “background covariant (Feynman) gauge”

w= / TrC(V" A, — 1B),

where V* is the covariant derivative w.r.t. the background connection A.

The full action S = Sym + s¢ + sP - &F satisfies
sS=0, (S,59)=0,
where (—, —) is the anti-bracket with (®(z), ®*(y)) = §(x,y) and satisfies

S(Ol, (92) = (801, 02) + (01, 8(92).

(14)

(15)

(16)

S is not shift-invariant anymore, but the violation of shift symmetry is s-exact

o
A A
Therefore, the gauge-fixed YM is also background-independent.

)S = s(6¢),

(17)
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Realization of BRST symmetry at quantum level

o The BV-BRST formalism can be cast to the locally covariant and algebraic
approach to pQFT [Hollands, 07], [Fredenhagen, Rejzner, '11] [today talk by K.Rejzner].

o In the presence of the background connection A, QFT is constructed to be
covariant under background gauge transformations [zann, '12].

o In particular our gauge-fixing behaves covariantly under such transformations.

o At the quantum level, the BRST symmetry (when preserved) is implemented by
the renormalized BRST charge @ 4

[Q4, O] =1ih(GO) 4, (18)
[Q4, T4(01 ® 0s)] = ihT5(§O1 ® Oz + 01 ® GO3) + h*((01,02)5) ;. (19)

New algebraic structures at quantum level (rejzner *13], M. TT 17]
O

o quantum BRST operator
GO := 30 4+ A,(0),  with ¢° = 0. (20)
o quantum anti-bracket (O1,02)n := (O1, 02) + A2(O1 @ O2) with
4(01,02),, = (401, 02),, £ (01, 40z),,. (21)

A1(0), A3 (01 ® O2) are of order O(h) (quantum corrections).




Background-independent observables

e For each A, the following algebra admits a Hilbet space representation:

k I
F i = {algebra of physical, gauge-invariant observables} = %. (22)
As T

Geometrical definition of background-independence

o Let S be the manifold of on-shell background field configurations, i.e. solutions
to the non-linear equation V¥ F),, = 0.

We consider the algebra bundle F = | | ; Fz — S.

Interacting fields O ;1 are viewed as smooth sections of F.

o A € T4S is a g-valued 1-form which is a solutions to linearized field equation.

One then constructs a connection V? 4 on F — S which must be
@ well-defined on [Q 7, —]-cohomology, i.e.

VizolQa -1 Q4 —loViz=0. (23)
@ flat up to a [Q g, —]-exact term:
(V54 Voarl - VF&A,M/])OA €im [Q4, -] (24)

Background-independent observables are flat sections of V} ; mod [Q 4, —|-exact

V04 €im [Q 4, -] 10 (25 |




Possible obstructions of background independence

o Recall that the gauge-fixed S is not shift-invariant (5 A4, (a%i — 2)8) = s(6540)

5A
6540 = (64 [A,,C)"),  with ghost number — 1. (26)
o Define V} ; := 054 — (64, &)

Necessary conditions for background independence of observables

o If A(8541) = 0, then we can write
V5404 = (Ds50) 4 +[Q4, 0%,  for some O'. (27)
where D0 := (JA, (— — 2)0) — (0,65 5¢)n. (28)
o If A2(Q ® 8541) = 0, then
Dsz0q—GoDss =0, (29)

thus V} ; is well-defined on [Q z, —]-cohomology.
o If Ay(8541 ® 854:1) = 0, then

[Dsa, Dsar]l — Disasan =0, (30)

thus V} ; is flat up to im [Q 5, O'].




Absence of obstructions for pure YM

The anomaly of retarded variation (e.g. chiral gauge or gravitational anomaly),
The anomaly of Ward identity A(egnt) (gauge anomaly). J

The first two anomalies can be shown to be absent in 4 dimensions for pure YM.
Other anomalies appear because of (54, (5%1 = 2)8) = s(d5.41)
8540 = (6 A, &W) = (0A% [A,,C)"),  with ghost number — 1. (31)

Ay (6540) = (6A%,a,), where a},(z) has ghost nr. 0, dim 3 and satisfies saj, = 0.
Thus, it only transforms covariantly under background gauge transformations.
Hence, it is only made out of background configurations, i.e. it is a c-number.

Ay (Q®3540) = (8A%,al,). al, (z) has ghost nr. +1, and sa’, = 0. Since Hi(s)
is trivial, it only contains backgrounds but there is no background with gh. nr. 1.
Ay (8529 ® 0510) = (6AHSAY ,a a/}) . ai)(x) has ghost nr. 0 and sa,;] = 0.
Similarly, there is no candidate for this term.
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Potential obstructions in non-renormalizable theories

@ In power-counting non-renormalizable theories, e.g. YM in higher dimensions,
there is no dimension constraint for a/,(x).

o An example for an obstruction term in a non-renormalizable setting would be

ay, = FL, V" (FLFY). (32)

Perturbative quantum gravity in 4 dim

One splits the metric g, = Guv + by, into a background g and a perturbation h.

e The construction of vf;g can be carried out similar to the YM case.

The potential anomaly comes from 0551 = (6g"", @%w)

A1(6550) = (65", au), where a,, () has ghost nr.=0, and sa,, = 0.

Let OJg] be any local and gauge-invariant scalar observable [Brunetti, Fredenhagen,

Rejzner ’'13], [Khavkine '15]

A potential anomaly candidate would be
Auv = guuo~ (33)

o There are indeed infinitely many of them!
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