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Differential operators

Differential operators between vector
bundles

πj : Ej →M = smooth (real or complex) vector bundles of rank Dj over the
d-dim. smooth manifold M , j ∈ Z (all our manifolds are assumed to be
Hausdorff, paracompact, second countable and oriented). We denote by πC

j the
complexification of πj .

Γ(πj) = C∞(M )-module of smooth sections of πj .

A (linear) differential operator of type π1 → π2 and order k ∈ Z is a (real or
complex) linear map P : Γ(π1)→ Γ(π2) such that:

k < 0: P = 0;

k ≥ 0: for all f ∈ C∞(M ), φ ∈ Γ(π1), [P, f ]φ = P (fφ)− f(Pφ) defines a
differential operator [P, f ] of type π1 → π2 and order k − 1.

⇒ any differential operator of type π1 → π2 and order k ∈ Z decreases supports:
supp(Pφ) ⊂ suppφ, for all φ ∈ Γ(π1).

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 3 / 22



Differential operators

Differential operators between vector
bundles

πj : Ej →M = smooth (real or complex) vector bundles of rank Dj over the
d-dim. smooth manifold M , j ∈ Z (all our manifolds are assumed to be
Hausdorff, paracompact, second countable and oriented). We denote by πC

j the
complexification of πj .

Γ(πj) = C∞(M )-module of smooth sections of πj .

A (linear) differential operator of type π1 → π2 and order k ∈ Z is a (real or
complex) linear map P : Γ(π1)→ Γ(π2) such that:

k < 0: P = 0;

k ≥ 0: for all f ∈ C∞(M ), φ ∈ Γ(π1), [P, f ]φ = P (fφ)− f(Pφ) defines a
differential operator [P, f ] of type π1 → π2 and order k − 1.

⇒ any differential operator of type π1 → π2 and order k ∈ Z decreases supports:
supp(Pφ) ⊂ suppφ, for all φ ∈ Γ(π1).

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 3 / 22



Differential operators

Differential operators between vector
bundles

πj : Ej →M = smooth (real or complex) vector bundles of rank Dj over the
d-dim. smooth manifold M , j ∈ Z (all our manifolds are assumed to be
Hausdorff, paracompact, second countable and oriented). We denote by πC

j the
complexification of πj .

Γ(πj) = C∞(M )-module of smooth sections of πj .

A (linear) differential operator of type π1 → π2 and order k ∈ Z is a (real or
complex) linear map P : Γ(π1)→ Γ(π2) such that:

k < 0: P = 0;

k ≥ 0: for all f ∈ C∞(M ), φ ∈ Γ(π1), [P, f ]φ = P (fφ)− f(Pφ) defines a
differential operator [P, f ] of type π1 → π2 and order k − 1.

⇒ any differential operator of type π1 → π2 and order k ∈ Z decreases supports:
supp(Pφ) ⊂ suppφ, for all φ ∈ Γ(π1).

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 3 / 22



Differential operators

Differential operators between vector
bundles

πj : Ej →M = smooth (real or complex) vector bundles of rank Dj over the
d-dim. smooth manifold M , j ∈ Z (all our manifolds are assumed to be
Hausdorff, paracompact, second countable and oriented). We denote by πC

j the
complexification of πj .

Γ(πj) = C∞(M )-module of smooth sections of πj .

A (linear) differential operator of type π1 → π2 and order k ∈ Z is a (real or
complex) linear map P : Γ(π1)→ Γ(π2) such that:

k < 0: P = 0;

k ≥ 0: for all f ∈ C∞(M ), φ ∈ Γ(π1), [P, f ]φ = P (fφ)− f(Pφ) defines a
differential operator [P, f ] of type π1 → π2 and order k − 1.

⇒ any differential operator of type π1 → π2 and order k ∈ Z decreases supports:
supp(Pφ) ⊂ suppφ, for all φ ∈ Γ(π1).

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 3 / 22



Differential operators

Differential operators between vector
bundles

πj : Ej →M = smooth (real or complex) vector bundles of rank Dj over the
d-dim. smooth manifold M , j ∈ Z (all our manifolds are assumed to be
Hausdorff, paracompact, second countable and oriented). We denote by πC

j the
complexification of πj .

Γ(πj) = C∞(M )-module of smooth sections of πj .

A (linear) differential operator of type π1 → π2 and order k ∈ Z is a (real or
complex) linear map P : Γ(π1)→ Γ(π2) such that:

k < 0: P = 0;

k ≥ 0: for all f ∈ C∞(M ), φ ∈ Γ(π1), [P, f ]φ = P (fφ)− f(Pφ) defines a
differential operator [P, f ] of type π1 → π2 and order k − 1.

⇒ any differential operator of type π1 → π2 and order k ∈ Z decreases supports:
supp(Pφ) ⊂ suppφ, for all φ ∈ Γ(π1).

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 3 / 22



Differential operators

Differential operators between vector
bundles

πj : Ej →M = smooth (real or complex) vector bundles of rank Dj over the
d-dim. smooth manifold M , j ∈ Z (all our manifolds are assumed to be
Hausdorff, paracompact, second countable and oriented). We denote by πC

j the
complexification of πj .

Γ(πj) = C∞(M )-module of smooth sections of πj .

A (linear) differential operator of type π1 → π2 and order k ∈ Z is a (real or
complex) linear map P : Γ(π1)→ Γ(π2) such that:

k < 0: P = 0;

k ≥ 0: for all f ∈ C∞(M ), φ ∈ Γ(π1), [P, f ]φ = P (fφ)− f(Pφ) defines a
differential operator [P, f ] of type π1 → π2 and order k − 1.

⇒ any differential operator of type π1 → π2 and order k ∈ Z decreases supports:
supp(Pφ) ⊂ suppφ, for all φ ∈ Γ(π1).

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 3 / 22



Differential operators

Conversely, Peetre’s theorem asserts that any (real or complex) linear map
P : Γ(π1)→ Γ(π2) which decreases supports is (locally) a differential operator of
type π1 → π2 and order k for some k. Moreover:

k ≤ 0: P is a C∞(M )-linear map from Γ(π1) into Γ(π2) = smooth section
ak of π′1 ⊗ π2 (π′j : E ∗j →M = dual bundle to πj). ak = 0 if k < 0;

k > 0: given a linear connection on π1 and a linear connection on
πTM : TM →M , both denoted by ∇, we can use Leibniz’s rule and extend
them to a linear connection ∇ on ⊕r≥0 ⊗r π′TM ⊗ π1 ⇒ there are
C∞(M )-linear maps ar = aP,∇,r from Γ(⊗rφ′TM ⊗ π1) into Γ(π2) =
smooth sections of ⊗rπTM ⊗ π′1 ⊗ π2, r = 0, 1, . . . , k such that for all
φ ∈ Γ(π1)

Pφ =

k∑
r=0

ar∇rφ , ∇0φ = φ , ∇rφ = ∇(∇r−1φ) .

The ar’s may (and shall) be uniquely chosen to be symmetric with respect to
their arguments in T ∗M , and extended to a smooth section of the
complexified bundle ⊗rπC

TM ⊗ π′C1 ⊗ πC
2 .
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Differential operators

⇒ ak does not depend on the choice of ∇. Indeed, given p ∈M , f ∈ C∞(M )
such that f(p) = 0, df(p) = ξ, we have that

ak(p, ξ)φ(p)
.
= ak(⊗kξ ⊗ φ(p)) =

1

k!
P (fkφ)(p)

⇒ (ak)p(ξ)
.
= ak(p, ξ) is a linear map from π−1

1 (p) into π−1
2 (p) depending

smoothly on (p, ξ) ∈ T ∗M , called the leading coefficient of P at (p, ξ).

(Remark: ak = i−k× the principal symbol of P ).

Let π1 = π2 = π : E →M , (p, ξ) ∈ T ∗M r 0. We say that P is

Elliptic at (p, ξ) – ak(p, ξ) is non-singular ⇒ (p, ξ) = non-characteristic
covector for P ;

Hyperbolic at (p, ξ) – (p, ξ) is non-characteristic for P and for all η ∈ T ∗pM ,
the roots of the polynomial q(λ)

.
= det ak(p, λξ + η) are all real.
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Complexes of differential operators

Complexes of differential operators

A complex of differential operators (or simply a differential complex) is a sequence
P = (Pj)j∈Z, where Pj is a differential operator of type πj → πj+1 and order
kj ∈ Z:

· · · //Γ(πj−1)
Pj−1 //Γ(πj)

Pj //Γ(πj+1) // · · ·

such that Pj ◦ Pj−1 = 0 for all j. At each (p, ξ) ∈ CT ∗M r 0, there is an
associated symbolic complex

· · · // (πC
j−1)−1(p)

σPj−1
(p,ξ)

// (πC
j )−1(p)

σPj
(p,ξ)

// (πC
j+1)−1(p) // · · ·

where σPj

.
= aj,kj is the leading coefficient of Pj . We say that (p, ξ) is a

non-characteristic covector for P if P’s symbolic complex at (p, ξ) is exact.
Otherwise, we say that (p, ξ) is characteristic. If every nonzero
covector in T ∗M is non-characteristic for P, we say that P is an
elliptic complex (Atiyah-Bott, Spencer).
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Complexes of differential operators

Differential complexes generalize differential operators in the following sense: if P
= differential operator of type π1 → π2, then

0 // Γ(π1)
P // Γ(π2) // 0

is clearly a differential complex (which we identify with P ). Moreover,
(p, ξ) ∈ T ∗M r 0 is a non-characteristic vector for P ⇔ it is for the above
differential complex.

More generally, we say that a differential operator P of type π1 → π2 is
underdetermined (resp. overdetermined) if there is a differential operator Q of
type π0 → π1 (resp. π2 → π3) such that PQ = 0 (resp. QP = 0). Intuitively,

Underdeterminacy = local symmetries φ 7→ φ+Qφ0 ⇒ uniqueness of
solutions to Pφ = ψ is spoiled;

Overdeterminacy = constraints ⇒ existence of solutions to Pφ = ψ is
spoiled, for a solution exists ⇒ Qψ = 0;

In what follows, we shall only work with complexes of first-order differential
operators P which are symbol surjective, i.e. (σP )j are fiberwise surjective
for all j, and assume that Pj = 0 if j < 0 or j > n for some n > 1.
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Complexes of differential operators

Consider the graded vector bundle π = ⊕nj=0πj : ⊕nj=1Ej →M , so that

P = ⊕nj=1Pj : Γ(π)→ Γ(π) satisfies P 2 = 0. Notice that the leading coefficient
of P at p ∈M

(σP )p : T ∗pM → End(π−1(p))

is the leading coefficient of P at p ∈M (hence, a graded linear map of degree 1)
⇒ we may extend (σP )p to a graded linear map (σP )p : ⊗jT ∗pM → End(π−1(p))
of degree j for each j > 0 by setting

(σP )p(ξ1 ⊗ · · · ⊗ ξj) = σP (p, ξ1) · · ·σP (p, ξj) .

Since we clearly have (σP )p(ξ)
2 = 0 for all (p, ξ) ∈ T ∗M as well, this map

descends further to a graded linear map of degree zero

(σP )p : ∧T ∗pM → End(π−1(p)) ,

thus making π−1(p) a module over the exterior algebra ∧T ∗pM and Γ(π) a
Γ(∧π′TM )-module, with product

(ω ∧ φ)(p)
.
= (σP )p(ω(p))φ(p) , ω ∈ Γ(∧π′TM ) , φ ∈ Γ(π) .
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Complexes of differential operators

Moreover, Γ(π) is even a differential Γ(∧π′TM )-module with respect to P , for we
have that for all ω ∈ Γ(∧rπ′TM ), φ ∈ Γ(π) (Guillemin)

P (ω ∧ φ) = dω ∧ φ+ (−1)rω ∧ Pφ ,

where d is the de Rham exterior differential. (Proof: for r = 0, it follows from the
definition of σP . The general case follows by induction on r)

Examples of (first-order) differential complexes

π1 = π2 = spinor bundle over the pseudo-Riemannian manifold (M , g),
P = /D (Dirac operator on (M , g));

de Rham complex: πj = bundle of j-forms on M , Pj = d;

Dolbeault complex (M assumed complex) at degree r: πj = bundle of
complex (r, j)-forms on M , Pj = ∂ (Cauchy-Riemann exterior differential).
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The Cauchy problem

The (non-characteristic) Cauchy problem

In this section we follow MacKichan 1975. Suppose that t ∈ C∞(M ) is such that
dt ∈ Γ(π′TM ) is a non-characteristic covector field for P. Set Σ = t−1(0), and

JΣ = smallest d-closed ideal of Γ(∧π′TM ) containing all smooth functions
vanishing on Σ = ideal generated by {t, dt};
JΣΓ(π) = {ω ∧ π | ω ∈JΣ , φ ∈ Γ(π)}.

It is clear that the submodule JΣΓ(π) of Γ(π) is P -closed (actually, it is the
smallest P -closed submodule containing all smooth sections of π vanishing on Σ).
We denote by JΣP the complex obtained by restricting P to JΣΓ(π).

Lemma (MacKichan 1975, Lemma 2.1)

Let φ ∈JΣΓ(π) ⇒ there exist φ′, φ′′ ∈ Γ(π) such that

φ = φ′ + Pφ′′ , φ′|Σ = 0 , φ′′|Σ = 0 . �

Moreover, if f ∈ C∞(M ) is constant on the level sets of t, we see that
P (fφ) = df ∧ φ+ fPφ, where df must be of the form adt for some
a ∈ C∞(M ) constant on the level sets of t. This means that P acts on
Γ(π)/JΣΓ(π) only in directions tangential to the level sets ot t.
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The Cauchy problem

We have a short exact sequence of differential complexes

0→JΣP →P →PΣ → 0 ,

detailed as follows (first vertical map = inclusion, second vertical map =
quotient):

0

��

0

��

0

��
· · · //JΣΓ(π)j−1

Pj−1 //

��

JΣΓ(π)j
Pj //

��

JΣΓ(π)j+1
//

��

· · ·

· · · // Γ(πj−1)
Pj−1 //

��

Γ(πj)
Pj //

��

Γ(πj+1) //

��

· · ·

· · · // Γ(πj−1)
JΣΓ(π)j−1

Pj−1 //

��

Γ(πj)
JΣΓ(π)j

Pj //

��

Γ(πj+1)
JΣΓ(π)j+1

//

��

· · ·

0 0 0
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The Cauchy problem

Using an auxiliary pseudo-Riemannian metric g on M such that g−1(dt, dt) 6= 0,
we can find a splitting of this exact sequence, so that the last row PΣ can be
seen as a differential complex over Σ = “spatial part” of P ⇒ tangential complex
associated to the pair (P,Σ) (the precise choice of t is immaterial).

Now we can state the Cauchy problem for P (at level j) with initial data on Σ:

Given ψ ∈ Γ(πj+1), φ0 ∈ Γ(πj |Σ), find φ ∈ Γ(πj) such that

Pjφ = ψ , φ|Σ = φ0 . (1)

It is clear that a necessary condition for existence of solutions of (1) is that
Pj+1ψ = 0, so that Pj+1 represents a constraint on admissible sources. Moreover,

if φ̃0 ∈ Γ(πj) extends φ0, then φ− φ̃0 vanishes on Σ, thus

P (φ− φ̃0) = ψ − Pφ̃0

belongs to JΣΓ(π)j+1, regardless of the choice of φ̃0.
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Given ψ ∈ Γ(πj+1), φ0 ∈ Γ(πj |Σ), find φ ∈ Γ(πj) such that

Pjφ = ψ , φ|Σ = φ0 . (1)

It is clear that a necessary condition for existence of solutions of (1) is that
Pj+1ψ = 0, so that Pj+1 represents a constraint on admissible sources. Moreover,

if φ̃0 ∈ Γ(πj) extends φ0, then φ− φ̃0 vanishes on Σ, thus

P (φ− φ̃0) = ψ − Pφ̃0

belongs to JΣΓ(π)j+1, regardless of the choice of φ̃0.

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 12 / 22



The Cauchy problem

Hence, our first reformulation of (1) is

Find φ ∈ Γ(πj) such that Pjφ = ψ and φ|Σ = φ0, where

Pj+1ψ = 0 , ψ − Pφ̃0 ∈JΣΓ(π) (2)

for all φ̃0 ∈ Γ(πj) extending φ0.

Actually, (2) is equivalent to the (apparently) special case

Find φ′ ∈ Γ(πj) such that Pjφ
′ = ψ′ and φ′|Σ = 0, where

ψ′ ∈JΣΓ(π)j+1 , Pj+1ψ
′ = 0 , (3)

since a solution φ′ of (3) with ψ′ = ψ − Pj φ̃0 yields the solution φ = φ′ + φ̃0 of
(2). Finally, we can reformulate (3) as

Find φ ∈JΣΓ(π)j such that Pjφ = ψ, where

ψ ∈JΣΓ(φ)j+1 , Pj+1ψ = 0 . (4)
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The Cauchy problem

Clearly, (3) is a special case of (4). Conversely, if φ solves (4), then by the above
Lemma there are φ′ ∈JΣΓ(π)j , φ

′′ ∈JΣΓ(π)j−1 such that φ = φ′ + Pj−1φ
′′

and φ′ is a solution of (3) ⇒ φ solves (3) “up to a gauge transformation”. This is
as close to uniqueness as we can get. In fact:

Theorem (MacKichan 1975, Theorem 3.1)

The Cauchy problem (4) at level j is solvable ⇔ the (j + 1)-th cohomology class
of ψ in the complex JΣP is zero. Moreover, the cohomology class of the
solution φ is unique ⇔ the j-th cohomology group of JΣP is zero.

In particular, the well-posedness of the Cauchy problem at all levels can be stated
as follows:

Solvability of (4) + uniqueness of cohomology class of solutions ⇔ exactness of
the complex JΣP ⇔ the cohomology groups of P and PΣ are isomorphic!
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The Cauchy problem

Remarks:

The second equivalence follows from the long exact sequence in cohomology
associated to 0→JΣP →P →PΣ → 0;

It is enough to assume only local existence of the “time function” t, for local
existence and uniqueness of solutions in the sense of cohomology lead to
global well-posedness in the same sense thanks to paracompactness of M
and a Mayer-Vietoris-type argument
(Andreotti-Denson Hill- Lojasiewicz-MacKichan 1976).

Differential complexes can be seen as “resolutions” of (possibly underdetermined
or overdetermined) linear differential operators (Cartan-Kuranishi, Spencer). The
quotes are due to the fact that (nontrivial) solutions of (4) are represented by
nontrivial cohomology classes. Hence, exact differential complexes have only
“pure gauge” solutions!
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Hyperbolicity and gauge fixing

Hyperbolicity and gauge fixing

In order to discuss hyperbolicity for differential complexes, we need a few more
tools. The (formal) transpose of a differential operator P of order k and type
π1 → π2 is the differential operator P ′ of order k and type π~

2 → π~
1

(π~
j : E ~

j = E ∗j ⊗∧dT ∗M →M = twisted dual of πj) defined by “integration by
parts”: ∫

M

(P ′α)(φ)
.
=

∫
M

α(Pφ) , α ∈ Σ(π~
2 ) , φ ∈ Γc(π1) ,

where Γc(πj) = space of smooth sections of πj with compact support. If
P = (Pj)j∈Z is a differential complex, the transposed complex is just the
complex P ′ = (P ′j)j∈Z.

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 16 / 22



Hyperbolicity and gauge fixing

Hyperbolicity and gauge fixing

In order to discuss hyperbolicity for differential complexes, we need a few more
tools. The (formal) transpose of a differential operator P of order k and type
π1 → π2 is the differential operator P ′ of order k and type π~

2 → π~
1

(π~
j : E ~

j = E ∗j ⊗∧dT ∗M →M = twisted dual of πj) defined by “integration by
parts”: ∫

M

(P ′α)(φ)
.
=

∫
M

α(Pφ) , α ∈ Σ(π~
2 ) , φ ∈ Γc(π1) ,

where Γc(πj) = space of smooth sections of πj with compact support. If
P = (Pj)j∈Z is a differential complex, the transposed complex is just the
complex P ′ = (P ′j)j∈Z.

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 16 / 22



Hyperbolicity and gauge fixing

Hyperbolicity and gauge fixing

In order to discuss hyperbolicity for differential complexes, we need a few more
tools. The (formal) transpose of a differential operator P of order k and type
π1 → π2 is the differential operator P ′ of order k and type π~

2 → π~
1

(π~
j : E ~

j = E ∗j ⊗∧dT ∗M →M = twisted dual of πj) defined by “integration by
parts”: ∫

M

(P ′α)(φ)
.
=

∫
M

α(Pφ) , α ∈ Σ(π~
2 ) , φ ∈ Γc(π1) ,

where Γc(πj) = space of smooth sections of πj with compact support. If
P = (Pj)j∈Z is a differential complex, the transposed complex is just the
complex P ′ = (P ′j)j∈Z.

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 16 / 22



Hyperbolicity and gauge fixing

Hyperbolicity and gauge fixing

In order to discuss hyperbolicity for differential complexes, we need a few more
tools. The (formal) transpose of a differential operator P of order k and type
π1 → π2 is the differential operator P ′ of order k and type π~

2 → π~
1

(π~
j : E ~

j = E ∗j ⊗∧dT ∗M →M = twisted dual of πj) defined by “integration by
parts”: ∫

M

(P ′α)(φ)
.
=

∫
M

α(Pφ) , α ∈ Σ(π~
2 ) , φ ∈ Γc(π1) ,

where Γc(πj) = space of smooth sections of πj with compact support. If
P = (Pj)j∈Z is a differential complex, the transposed complex is just the
complex P ′ = (P ′j)j∈Z.

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 16 / 22



Hyperbolicity and gauge fixing

Hyperbolicity and gauge fixing

In order to discuss hyperbolicity for differential complexes, we need a few more
tools. The (formal) transpose of a differential operator P of order k and type
π1 → π2 is the differential operator P ′ of order k and type π~

2 → π~
1

(π~
j : E ~

j = E ∗j ⊗∧dT ∗M →M = twisted dual of πj) defined by “integration by
parts”: ∫

M

(P ′α)(φ)
.
=

∫
M

α(Pφ) , α ∈ Σ(π~
2 ) , φ ∈ Γc(π1) ,

where Γc(πj) = space of smooth sections of πj with compact support. If
P = (Pj)j∈Z is a differential complex, the transposed complex is just the
complex P ′ = (P ′j)j∈Z.

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 16 / 22



Hyperbolicity and gauge fixing

Suppose now that πTM is endowed with a pseudo-Riemannian metric g and πj is
endowed with a pseudo-Riemannian (πj real) or pseudo-Hermitian (πj complex)
metric ej , j ∈ Z, all naturally lifted to the associated duals and tensor bundles.
These allow us to define bundle isomorphisms ∗ : π~

j → πj . The (formal) adjoint
complex to P (w.r.t. g, (ej)j∈Z) is the complex P∗ = (P ∗j )j∈Z, where

P ∗j = ∗P ′j∗−1 : πj+1 → πj .

It is not difficult to show that σP∗
j

(p, ξ) = σPj
(p, ξ)∗, the adjoint of the linear

map σPj (p, ξ) : π−1
j (p)→ π−1

j+1(p) with respect to the pair ej(p), ej+1(p)
(particularly, it does not depend on g).

Adjunction has the effect of exchanging the roles of overdeterminedness and
underdeterminedness. An useful byproduct is that if Pj−1 6= 0, then P ∗j−1 yields a
natural, Lorenz-type gauge-fixing condition for Pj :

P ∗j−1φ = 0 .
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Hyperbolicity and gauge fixing

A reasonable notion of hyperbolicity for (first-order, symbol surjective) differential
complexes ought to include the following examples:

(i) The Dirac operator /D associated to a Lorentzian manifold (M , g);

(ii) The Maxwell system d∗ : Γ(∧2π′TM )→ Γ(∧1π′TM ) when TM is endowed
with a Lorentz metric g, subject to the constraint dω = 0.

In example (i), the spinor bundle π1 is endowed with a pseudo-Hermitian metric
e1 of signature zero. It is easy to show (Forger-PLR-Vidal 2017, to appear) that
the g being Lorentz is equivalent to /D being symmetric hyperbolic (SH):

γp(ξ)
.
= σ /D(p, ξ) : π−1

1 (p)→ π−1
1 (p) is pseudo-Hermitian:

e1(ψ1, γp(ξ)ψ2) = e1(γp(ξ)ψ1, ψ2) ; (5)

At each p ∈M there is τ ∈ T ∗pM (e.g. timelike w.r.t. g) s.t.

eτ1
.
= e1(·, γp(τ)·) is positive definite. (6)
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with a Lorentz metric g, subject to the constraint dω = 0.

In example (i), the spinor bundle π1 is endowed with a pseudo-Hermitian metric
e1 of signature zero. It is easy to show (Forger-PLR-Vidal 2017, to appear) that
the g being Lorentz is equivalent to /D being symmetric hyperbolic (SH):

γp(ξ)
.
= σ /D(p, ξ) : π−1

1 (p)→ π−1
1 (p) is pseudo-Hermitian:

e1(ψ1, γp(ξ)ψ2) = e1(γp(ξ)ψ1, ψ2) ; (5)

At each p ∈M there is τ ∈ T ∗pM (e.g. timelike w.r.t. g) s.t.

eτ1
.
= e1(·, γp(τ)·) is positive definite. (6)
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Hyperbolicity and gauge fixing

As for example (ii), we cannot expect to have a condition similar to (6), we need
to restrict to a sub-bundle of ∧π′TM – such a restriction is sometimes called an
hyperbolization of P (Geroch). In order to do so, one needs to reformulate
Maxwell’s equations in terms of d + d∗ instead of d∗ (the Dirac-Hodge operator).
It has a structure similar to that of /D, but it is not symmetric hyperbolic, since for
all ω ∈ ∧T ∗pM , ξ ∈ T ∗pM , p ∈M

g(ω, ξ ∧ ω − ig](ξ)ω) = 0 .

It turns out, however, that Maxwell’s equations can be expressed in a way more
closely resembling Dirac’s equation.

From now on, we assume M to be 4-dim. and g with signature convention
(−+ ++). Let τ = dt with g−1(τ, τ) = −1, and define the electric and magnetic
parts of ω ∈ Γ(∧2π′TM ) respectively as (∗ = Hodge star operator associated to g)

E = ig](τ)ω , B = −ig](τ)ω ,

so that
ω = τ ∧ E + ∗(τ ∧B) , ∗ω = τ ∧B − ∗(τ ∧ E) .
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Hyperbolicity and gauge fixing

Maxwell’s equations (with electric current je and magnetic current jm)

d∗ω = 4πje , d∗(∗ω) = 4πjm

can then be written as a (complex) Dirac-type equation

d∗(τ ∧ ψ + i ∗ (τ ∧ ψ)) = 4π(je + ijm) ,

where ψ = E + iB. This complex form of Maxwell’s equations was proposed
independently by Majorana (1932) and Oppenheimer (1931) (see also Esposito
(1998)).

The restriction of d + d∗ to subbundles of ∧(π′TM )C of the form

∧k(π′TM )C − iτ ∧ (∧k(π′TM )C) , k > 0 ,

endowed with the complexification of g, is symmetric hyperbolic!

Remarks:

The above observation can be extended to k > 1, corresponding to Abelian
k-form gauge fields.

Likewise, back to example (i), if we rewrite /D as a differential complex,
the corresponding operator P becomes symmetric hyperbolic if we
restrict to the “diagonal” subbundle of π1 ⊕ π1.
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Coda

Coda

Differential complexes provide an unified way to deal with underdetermined
and overdetermined linear PDE systems. Adjunction with respect to a
suitable metric yields natural gauge-fixing conditions in the underdetermined
case and “gauges” constraints (à la Faddeev-Jackiw) in the overdetermined
case.

For nonlinear PDE systems, the presence of local gauge symmetries lead to
differential complexes “modulo the ideal generated by the equations of
motion” starting from the linearized system, and the operators in the
complex modelling such symmetries usually carry a Lie bracket (i.e. a
Lie-Rinehart pair structure) “modulo the ideal generated by the equations of
motion”, which is the algebraic incarnation of a Lie algebroid structure.

The ambiguity entailed by the quotient “modulo the equations of motion”
accounts for the possibility of “open gauge algebras”. “Closed gauge
algebras” should correspond to a suitable splitting in the category of
Lie-Rinehart pairs.

PLR (UFABC) Hyperbolic Differential Complexes 29.V 2017 21 / 22



Coda

Coda

Differential complexes provide an unified way to deal with underdetermined
and overdetermined linear PDE systems. Adjunction with respect to a
suitable metric yields natural gauge-fixing conditions in the underdetermined
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Coda

MacKichan 1975 used hyperbolicity together with a condition called
“δ-estimate” as a replacement for symmetric hyperbolicity, derived from the
Spencer complexes associated to the symbolic sequence of a differential
complex, and proved that the Maxwell system satisfies it. However, this does
not seem to be the case for the Dirac operator, due to the indefiniteness of
the bundle metric with respect to which symmetric hyperbolicity of /D holds.

Yang 1987 proposed a notion of involutive hyperbolic systems, which extend
the notion of strictly hyperbolic PDE’s and also include Maxwell’s equations,
but this notion does not include more general symmetric hyperbolic systems.

Therefore, how to encode the symmetric hyperbolicity of /D in its associated
complex? Can such a characterization (if it exists) be extended to more
general complexes, so as to cover cases such as the Maxwell equations,
Abelian k-form gauge fields and linearized Einstein gravity?

Thanks a lot for your attention!
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