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Motivation

I The fundamental symmetries in General Relativity (GR) are
diffeomorphisms.

I Two (Lorentzian) spacetime geometries (M,g) and (M,g′) may
appear to be very different but still be related by a diffeomorphism.
The geometries are isometric.

I A lot of effort can go into deciding whether two geometries belong
to the same (local) isometry class.

Definition (locally isometric)
(M,g) is locally isometric to (N,h) if ∀x ∈ M ∃y ∈ N such that a
neighborhood of x is isometric to a neighborhood of y . All such (M,g)
constitute the local isometry class of (N,h).
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IDEAL Characterization
I Q: Given a model geometry (N,h), is it possible to verify when

(M,g) belongs to its local isometry class by checking a list of
equations

Ta[g] = 0 (a = 1,2, · · · ,A),

where each Ta[g] is a tensor covariantly constructed from g
and its derivatives?

I If Yes, we call this an IDEAL (Intrinsic, Deductive, Explicit,
ALgorithmic) characterization of the local isometry class of (N,h).
Sometimes, also called Rainich-like.

I Generalizes to (M,g,Φ), including matter (tensor) fields, if we use
covariant tensor equations of the form Ta[g,Φ] = 0.

I An alternative to the Cartan-Karlhede moving-frame-based
characterization.

I Also, the linearizations Ta[g + εp] = Ta[g] + εṪa[g; p] + O(ε2)
constitute a complete list of local gauge invariant observables
Ta[h;−] for linearized GR on (N,h).
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Examples:
I Very few examples of IDEAL characterizations are actually

known. Most are classic or due to the work of Ferrando & Sáez
(València).

I Examples:
I Constant curvature (1800s): R = R[g] — Riemann tensor,

Rijkh = K (gik gjh − gjk gih)

I Schwarzschild of mass M (1998): W = W [g] — Weyl tensor,

Rij = 0, SijlmSlm
kh + 3ρSijkh = 0,

Pab = 0, ρ/α3/2 −M = 0,

where
ρ = −( 1

12 tr W 3)1/3, Sijkh = Wijkh − 1
6 (gik gjh − gjk gih),

α = 1
9 (∇ ln ρ)2 − 2ρ, Pij = (∗W )i

k
j
h∇kρ∇hρ.

I Reissner-Nordström (2002), Kerr (2009), few more (2010, 2017)
I Now, also FLRW and inflationary spacetimes.
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FLRW and Inflationary Spacetimes
Let dim M = m + 1.

I (M,g) is (locally) FLRW when around every point of M there exist
local coordinates (t , x1, . . . , xm), such that
(a) gij (t , x1, . . . , xm) = −(dt)2

ij + f 2(t)hij (x1, . . . , xm) (warped product),
(b) hij is of constant curvature (homogeneous and isotropic), e.g.

hij =
1

(1− αr2)
(dr)2

ij + r2dΩ2
ij .

I (M,g, φ) is (locally) inflationary when it is locally FLRW and the
local coordinates (t , x1, . . . , xm) can be chosen so that the scalar
φ = φ(t), while also satisfying the Einstein-Klein-Gordon
equations

Rij −
1
2
Rgij = κ

(
∇iφ∇jφ−

1
2

gij [(∇φ)2 + V (φ)]

)
with some potential V (φ).
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Warped Products
Without constant spatial curvature, an FLRW geometry is called a
Generalized Robertson Walker (GRW) geometry.

Theorem (Sánchez, 1998)
(M,g) is locally GRW iff ∃U — unit timelike vector field satisfying

Pjk := U[j∇k ]
∇iUi

m
= 0, Dij := ∇iUj −

∇kUk

m
(gij + UiUj) = 0.

Theorem (Chen, 2014)
(M,g) is locally GRW iff ∃v , µ — timelike vector field and scalar
satisfying ∇ivj = µgij .

In coordinates, U i = (∂t )
i and v i = f (t)U i , meaning U = v/

√
−v2.

In GRW pre-history, Sánchez’s conditions were know and stated as
follows: U is unit, geodesic, shear-free, twist-free and
spatially-constant expansion (Ehlers, 1961), (Easley, 1991).
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Constant Spatial Curvature
I Convenient to define the Kulkarni-Nomizu product:

(A� B)ijkh = AikBjh − AjkBih − AihBjk + AjhBik .

I Given Sánchez’s U i , define ξ := ∇i Ui
m , η := −U i∇iξ.

I Spatial Zero Curvature Deviation (ZCD):

Zijkh := Rijkh −
(

g �
[
ξ2

2
g − ηUU

])
ijkh

, ζ :=
Zi

i
k

k

m(m − 1)
.

I Spatial Constant Curvature Deviation (CCD):

Cijkh := Rijkh −
(

g �
[

(ξ2 + ζ)

2
g − (η − ζ)UU

])
ijkh

.

I Zijkh = 0 =⇒ flat FLRW.
Cijkh = 0, U[i∇j]ζ = 0 =⇒ generic FLRW.
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FLRW Scale Factor
I Scale factor invariants: ξ = f ′

f , η = f ′′
f −

f ′2
f 2 , ζ = α

f 2 .
I Perfect fluid interpretation: p — pressure, ρ — energy density,

Rij −
1
2
Rgij + Λgij = κ(ρ+ p)UiUj + κpgij ,

reduces to the Friedmann and acceleration equations

ξ2 + ζ =
2

m(m − 1)
κρ, η − ζ = − 1

m − 1
κ(ρ+ p).

I Flat FLRW with ζ = 0, (f ′/f )′ 6= 0: can find P(u) such that

η +
m
2
ξ2 = −κP(ξ2).

I Generic FLRW with f ′/f 6= 0: can find E(u) such that

ξ2 + ζ = κE(ζ).

I ODEs in f (with parameter α) fix scale factor up to
(f (t), α) 7→ (Af (t + t0),Aα), exhausting isometric (f (t), α) pairs.
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Flowchart: FLRW Characterization
(M, g), dim M = m + 1

(∇R)2 < 0

(∇B)2 < 0 R − k
2 (g � g) = 0

CCm
K

U := UBU := UR

Wijkh = 0
R j

i (Rjk − (m − 1)Kgjk ) = 0
R − m(m − 1)K = 0

∇iRjk = 0

ζ = 0

not
FLRW

ESUm
K

not
FLRW

Pij = 0, Dij = 0
Zijkh = 0

∇iUj − ∇iζ
2ζ Uj = ξgij

Cijkh = 0

η + m
2 ξ

2 = −κP(ξ2)
ξ ∈ J

κP(u) = (m+1)
2 (u − K )

ξ2 + ζ = κE(ζ)
ζ ∈ J

κE(u) = K + Ω|u|
m+1

2

FLRW m,0
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Inflationary Scale Factor
I Scale factor invariants: ξ = f ′

f , η = f ′′
f −

f ′2

f 2 , ζ = α
f 2 .

I Einstein-Klein-Gordon equations reduce to

ξ2 + ζ = κ
φ′2 + V (φ)

m(m − 1)
, η − ζ = −κ φ′2

(m − 1)
.

I Flat inflationary with ζ = 0, φ′ 6= 0: can find Ξ(u) such that

(“Hamilton-Jacobi” eq.) (∂uΞ(u))2 − κmΞ2(u)

(m − 1)
+ κ2 V (u)

(m − 1)2 = 0,

φ′ = − (m − 1)

κ
∂φΞ(φ), ξ = Ξ(φ).

I Generic inflationary with φ′ 6= 0: can find Ξ(u), Π(u) such that

(new?)
Π

(
∂uΞ + κ

Π

(m − 1)

)
−

(
κ

Π2 + V
m(m − 1)

− Ξ2
)

= 0,

∂u

(
κ

Π2 + V
m(m − 1)

− Ξ2
)

+ 2
Ξ

Π

(
κ

Π2 + V
m(m − 1)

− Ξ2
)

= 0,

φ′ = Π(φ), ξ = Ξ(φ).

I ODEs in (f , φ) fix scale factor and inflaton up to
(f (t), φ(t)) 7→ (Af (t + t0), φ(t + t0)), exhausting isometric (f (t), φ(t)) pairs.
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Flowchart: Inflationary Characterization
(M, g, φ), dim M = m + 1 > 2

(∇φ)2 < 0 R− Λ
m(m−1)

(g� g) = 0
φ = Φ

CCm
K CSΦnot inflationaryU := Uφ

∇iUj = 0 K := 2κρ
m(m−1)
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(∇φ)2 = −2 ρ

m
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m(m−1)
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V = 2Λ
κ

ζ = 0

ζ = 0

∇iUj − ∇iφ
′

mφ′ Uj − ξgij = 0
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φ′ = −
√

Ω|ζ|
m
2 , φ ∈ J

ξ2 + ζ = 2Λ+κΩ|ζ|m
m(m−1)
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′
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ξ2 = κφ′2+2Λ
m(m−1)

, φ′ ∈ J
η + mξ2 = 2Λ

(m−1)
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Discussion

I An IDEAL characterization of the (local) isometry class of a
physically interesting spacetime is a natural problem of
geometric interest.

I It is also a non-linear version of a complete set of local gauge
invariant observables in linearized GR.

I FLRW and inflationary spacetimes are now on the (currently
short) list of IDEAL-ly characterized geometries.

I Next step: Bianchi (homogeneous) cosmologies?
I A different complete set of local gauge invariant observables for

linearized inflationary geometries has recently been obtained
(Hack-Higuchi-Fröb, 2017). Direct comparison in progress!

Thank you for your attention!

Igor Khavkine (Milan) IDEAL characterization 29/05/2017 11 / 11



Discussion

I An IDEAL characterization of the (local) isometry class of a
physically interesting spacetime is a natural problem of
geometric interest.

I It is also a non-linear version of a complete set of local gauge
invariant observables in linearized GR.

I FLRW and inflationary spacetimes are now on the (currently
short) list of IDEAL-ly characterized geometries.

I Next step: Bianchi (homogeneous) cosmologies?
I A different complete set of local gauge invariant observables for

linearized inflationary geometries has recently been obtained
(Hack-Higuchi-Fröb, 2017). Direct comparison in progress!

Thank you for your attention!

Igor Khavkine (Milan) IDEAL characterization 29/05/2017 11 / 11


