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o Stability in Quantum Statistical Mechanics

© An interacting KMS state for pAQFT

© Stability Properties of w?"



o Stability in Quantum Statistical Mechanics



Let (A, a¢,w?) be a C*-dynamical system with a KMS state w”.

v
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Let (A, a¢,w?) be a C*-dynamical system with a KMS state w”.

KMS states for perturbed Hamiltonians H = Hy + P, P = P* € A ([Araki '73]):
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Interacting KMS states in QSM

Let (A, a¢,w?) be a C*-dynamical system with a KMS state w”.

KMS states for perturbed Hamiltonians H=Hy + P, P=P* € A ( ):
If §(A) is the generator of a;(A), then dp(A) = §(A) + i[P, A] generates the
perturbed dynamics

ap (A) = ar(A) + Z'/ dT [o, (P), [ [ (P), ax (A)]] -
n>1 tS,
This equation is obtained by an intertwining relation
ay (A) = Up(t)ae(A) Up(t)",

where Up(t) € A is a one-parameter family of unitaries which satisfy the co-cycle
relation

Up(t +s) = Up(t)at (Up(s)) -
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Interacting KMS states in QSM

Let (A, a¢,w?) be a C*-dynamical system with a KMS state w”.
KMS states for perturbed Hamiltonians H=Hy + P, P=P* € A ( ):

If §(A) is the generator of a;(A), then dp(A) = §(A) + i[P, A] generates the
perturbed dynamics

ap (A) = ar(A) + Z'/ dT [o, (P), [ [ (P), ax (A)]] -
n>1 tS,
This equation is obtained by an intertwining relation

ay (A) = Up(t)ae(A) Up(t)",

where Up(t) € A is a one-parameter family of unitaries which satisfy the co-cycle
relation

Up(t+s) = Up(t)a: (Up(s))-

Remark

Up(t) can be expanded as a series expansion. In the C*-algebraic context all the
series are norm convergent.
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An interacting KMS state in Quantum Statistical Mechanics

Theorem (Araki)

Let w® be a pure (3,a)-KMS state. Considering the perturbed dynamics o for a
self-adjoint perturbation P € A and taking an analytic extension, then

WAP(a) = @ (AUR(iB))
A = S5 0-(5))

is an extremal (3,a")-KMS state.

It can be shown that the Araki state can be written in term of the connected
functions:

w?P(A) = w’(A) + Z(—l)"/ dUw"< (A ® ® a;,,k(P))
S

n>1 BSn k=1
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[Haag, Kastler, Trych-Pohlmeyer - Robinson - Bratteli, Kishimoto, Robinson]

Jim W (af(A) =™ 7(A) and lim W (a(4)) = (4)
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[Haag, Kastler, Trych-Pohlmeyer - Robinson - Bratteli, Kishimoto, Robinson]
lim w?(af(A) = w?P(A) and lim wPP(a:(A)) = WP (A)
t— 00 t—0o0

If wP satisfies the Strong Clustering Condition

Jim_w” (Aax(B)) = (A)"(B)
then the stability property holds.
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The proof is realized by equating the two series term-by-term. At first order:

-
w(of (A)) =wﬂ(A)+i/o dtw? ([ar(P), ar(A)])
WAP(A) = WP (A) - /,6 duw?c (A® ay,(P)).
0
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Sketch of the proof for the first order stability

The proof is realized by equating the two series term-by-term. At first order:

T
WP (P (A) = wh(A) +i /O dtw? ([ar(P), at(A)])

WPP(A) = WP (A) — /ﬁ duw?€ (A an(P)).
0

Manipulating the first term

T T
i/ dtw? (Jar(P), at(A)]) = i/ dtwP (Jae(P), A]) =
0 0

;/OT dt (0 (Aaeria(P)) — P (Aae(P))) = /05 du (0 (Aar4ia(P)) — ¥ (Acis(P)))

Where in * we used the Cauchy theorem.
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Sketch of the proof for the first order stability

The proof is realized by equating the two series term-by-term. At first order:

i
WP (P (A) = WP (A) + i /O dt o ([ar(P), ae(A)])
WAP(A) = WP (A) - /0/3 duw? € (A® aj,(P)).

Manipulating the first term

T T
i/ dtw? (Jar(P), at(A)]) = i/ dtwP (Jae(P), A]) =
0 0

;/OT dt (0 (Aaeria(P)) — P (Aae(P))) = /05 du (0 (Aar4ia(P)) — ¥ (Acis(P)))

Where in * we used the Cauchy theorem.

Using the strongly clustering condition
B B
im [ duw? (Aariw(P)) = / duwB (A (P).
0

T—oo Jo
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© An interacting KMS state for pAQFT



The Massive Klein-Gordon Theory

Klein-Gordon massive self-interacting model on Minkowski IM (—, +, +, +)

Po+AVD(p)=0  P=-O+m’ V(p)= /w"(X)g(X)d“& g € G°(M)
@ Observables are realized as functionals over the off-shell configurations
pe&=C®DR):

Fue ={F : £ = C|smooth, compactly supported and microcausal}
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The Massive Klein-Gordon Theory

Klein-Gordon massive self-interacting model on Minkowski IM (—, +, +, +)

Po+AV(p)=0  P=-O+m’ V(p)= /w”(X)g(X)d4x, g € G°(M)

o Observables are realized as functionals over the off-shell configurations
¢p €& =C®(M,R):

Fue ={F : £ = C|smooth, compactly supported and microcausal}

@ F is smooth and compactly supported if all its functional derivatives are well
defined as compactly supported distributions.
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The Massive Klein-Gordon Theory
Klein-Gordon massive self-interacting model on Minkowski IM (—, +, +, +)
Po+AVD(p)=0  P=-O+m’ V(p)= /w"(X)g(X)d“& g € G°(M)

@ Observables are realized as functionals over the off-shell configurations
p €& =C®M,R):

Fue ={F : £ = C|smooth, compactly supported and microcausal}

@ F is Microcausal if it is smooth, compactly supported and satisfies
WF(F(”)) N (IM" X (VTZUW)) =0

where (Vi) C T;M is the closed past/future lightcone
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The Massive Klein-Gordon Theory

Klein-Gordon massive self-interacting model on Minkowski IM (—, +, +, +)
Po+AVD(p)=0  P=-O+m’ V(p)= /w"(X)g(X)d“& g € G°(M)

@ Observables are realized as functionals over the off-shell configurations
pe&=C®DR):

Fue ={F : £ = C|smooth, compactly supported and microcausal}

e Linear Functional F¢(¢) = [ fodp for f € C§°(IM, C)
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The Massive Klein-Gordon Theory

Klein-Gordon massive self-interacting model on Minkowski IM (—, +, +, +)
Po+AVD(p)=0  P=-O+m’ V(p)= /w"(X)g(X)d“& g € G°(M)

@ Observables are realized as functionals over the off-shell configurations
pe&=C®DR):

Fue ={F : £ = C|smooth, compactly supported and microcausal}

e Linear Functional F¢(¢) = [ fodp for f € C§°(IM, C)
@ Local Functional o C &, such that for all n € IN

spt (F(")(gb)) C diag" diag" = {(x1,...,xn) EM" | X1 = x2 = ... = X}
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The quantisation is obtained by Formal Deformation of the pointwise product to a

*-product constructed with the Hadamard bi-distribution of the free KMS state
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Formal Deformation Quantization

The quantisation is obtained by Formal Deformation of the pointwise product to a
*-product constructed with the Hadamard bi-distribution of the free KMS state

Definition (Hadamard bi-distribution (Radzikowski '96) )

An Hadamard bi-distribution w is the 2-point function of an Hadamard state:
e Microcausal Wavefront Set €EZD
° w(x,y) —w(y,x) = 3A(x,y)
@ Solution of the equations of motion ( mod C>°)
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(F *B G)(¢

The quantisation is obtained by Formal Deformation of the pointwise product to a

*-product constructed with the Hadamard bi-distribution of the free KMS state

55 ) F($) (s F.G € Fe
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Formal Deformation Quantization

The quantisation is obtained by Formal Deformation of the pointwise product to a
*-product constructed with the Hadamard bi-distribution of the free KMS state

(Frs G)(0) = & 555 ) F(0)G(0) oy F.G € Fpe

The first order term corresponds to the Wick-ordered fields w.r.t. to the KMS
state w?
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Formal Deformation Quantization

The quantisation is obtained by Formal Deformation of the pointwise product to a
*-product constructed with the Hadamard bi-distribution of the free KMS state

(Frs G)(0) = & 555 ) F(0)G(0) oy F.G € Fpe

The first order term corresponds to the Wick-ordered fields w.r.t. to the KMS
state w?

For linear functionals Fr(¢) = [ ¢(x)f(x)dx, Fg(¢') = [ ¢'(x)

Frxon Fy = Fr- Fy+ éhw'@(f,g)
[Fr, Fel,_, = inA(f,g)
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Formal Deformation Quantization

The quantisation is obtained by Formal Deformation of the pointwise product to a
*-product constructed with the Hadamard bi-distribution of the free KMS state

(Frs G)(0) = & 555 ) F(0)G(0) oy F.G € Fpe

The first order term corresponds to the Wick-ordered fields w.r.t. to the KMS
state w”

For linear functionals Fr(¢) = [ ¢(x)f(x)dx, Fg(¢') = [ ¢'(x)

Frxys Fg = Fr- Fg + éhw’@(f,g)
[FﬁFg]*wﬁ = ihA(f, g)

Algebras obtained with different Hadamard bi-distributions are *-isomorphic
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Let T: %2 — . such that (causal factorisation) !

TAB)=T Y AT YB) ifA=B T(AB) =T BT (A ifB>A

Construction of interacting field as time-ordered exponential of F € %, (formal
power series in the coupling constant) [Renormalization ambiguities]

S =Y (,-2")" T (T—l(F)®")

1[Brunetti, Diitsch, Fredenhagen, Hollands, Rejzner, Wald] <o » «&» «=» «=»

D0
"~ Faldino (DIMA-Genova) @ Stabilityof KMSstates @~ MITP Mainz 7 /22



Time-Order Product
Let T : .22, — . such that (causal factorisation) !
T(AB)=T YATYB) ifA=B T(AB)=T YB)x«T*A) ifB>A

Construction of interacting field as time-ordered exponential of F € %, (formal
power series in the coupling constant) [ ]

SR =Y (i’;\n)n T (TR

Interacting observables are represented in the free algebra via the Bogoliubov Map:

Ry(F) = 2S(V) % S(V + AF)lrg

We call .#; C .Z,,c the algebra generated by elements of the form Ry/(F)

1
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Time-Order Product
Let T : .22, — . such that (causal factorisation) !
T(AB)=T YATYB) ifA=B T(AB)=T YB)x«T*A) ifB>A

Construction of interacting field as time-ordered exponential of F € %, (formal

power series in the coupling constant) [ ]
. ix)" _ n
S(F) :Z(hn) T (TR

Interacting observables are represented in the free algebra via the Bogoliubov Map:
. d
Rv(F) = JS(V) *S(V 4+ AF)|a=0

We call .#; C .Z,,c the algebra generated by elements of the form Ry/(F)
Linear functionals are off-shell solutions of the interacting equation of motion:

Ry (Fpr) + ARy (V) = Fpr

1
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[Fredenhagen, Lindner "14]: time-slice axiom:

M=M_UX. UM, X.=(-¢¢)xR>
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[Fredenhagen, Lindner "14]: time-slice axiom:

M=M_UY. UM, X.=(—c¢)xR3

For every A € %, there exists B € .%;(X.) such that, for every state w

w(A) = w(B).
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An interacting KMS State for pAQFT: Support properties

. time-slice axiom:

M=M_UX. UM, X.=(-¢¢)xR3

Remark
By the causal factorisation property of the S-matrix, the algebras build
considering two support functions g, g’ are unitarily equivalent
o ifspt(g —g') N JT(O) =0, then Ry, (F) = Ry, (F) for all F
e ifspt(g —g’)NJT(O)NJ(O) =0, then there exists a unitary co-cycle
W(g,g’) such that

Rv,(F) = W(g,g') xRy, (F)» W(g,g')" W(g.g'")=Sv, (Ve — Vi)
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An interacting KMS State for pAQFT: Support properties

: time-slice axiom:
M=M_UX. UM, X.=(-c¢)xR3
Changing the cutoff for the potential V,(¢) = [ ¢"g dyu:
Ve(¢) = Vyng(¢) = adiabatic limit g — 1

{h € C°(R3) {spt(x) C Yo
h(x)=1ifxe O CXL, x(t)=1if t € (—e,¢)
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An interacting KMS State for pAQFT: Support properties

. time-slice axiom:
M=M_UY. UM, ¥ =(-¢¢)xR3
Changing the cutoff for the potential V,(¢) = [ ¢"g dp:

Vg (¢) = Viyng(¢) = adiabatic limit g — 1

{h e Cooo(]R“") {spt(X) C Yo,
h(x)=1ifxe O CXL. x(t)=1if t € (—¢,¢)

This allows us to construct the interacting dynamics:

a/ (Rv(F)) = Ry (acF) YF € Fpue

Faldino (DIMA - Genova) Stability of KMS states MITP Mainz
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An interacting KMS State for pAQFT: Interacting dynamics

In an interacting time-evolution was defined using a
co-cycle (Araki construction):

) (A) = Un(t)ae(A) Up(t)
e t 51 th—1
t)ilJrZi”/o dtl/o dtz.../o dtn o (Kp) % - - - % oy (K)
n=1

where the generator is obtained as

Ky = /¢ (x)x(t)h(x)d*x spt(x) C (—2¢, —¢)
Definition of the interacting KMS state in the adiabatic limit:

(A) — lim B(A*Uh(lﬁ))

h—)lW’ AER\/(Fl)* *R\/( )Eﬁ[
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© Stability Properties of w?"



Given A, B € #/(O) and an interacting potential V, p, it holds that

lim w? (Ax a¢(B)) = w?(A)w?(B)
t—00
in the sense of formal power series in the coupling constant.
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Given A, B € #/(O) and an interacting potential V, p, it holds that

tirgowﬂ (Ax a(B)) = wP(A)WP(B)

in the sense of formal power series in the coupling constant.
Sketch of the proof

support is compact

@ A, B are sums of x-products of the form Ry (F1) x...* Ry(Fpn), F; € F1oc, hence their
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Given A, B € #/(O) and an interacting potential V, p, it holds that

lim w? (Ax a¢(B)) = w?(A)w?(B)
t—00
in the sense of formal power series in the coupling constant.
Sketch of the proof

support is compact

@ A, B are sums of x-products of the form Ry (F1) x...* Ry(Fpn), F; € F1oc, hence their

® Wi (Axai(B)) — (AP (B) = X g £ (AD,wf (ar(B))™)

«O>» <Fr «=>» «E>» DA



Clustering Condition for a;; - Spatial Compact Support

Proposition
Given A, B € #(O) and an interacting potential V, p, it holds that

lim w? (Ax a:(B)) = w?(A)w?(B)

t—o00

in the sense of formal power series in the coupling constant.

Sketch of the proof

@ A, B are sums of x-products of the form Ry/(F1) * ... * Ry(Fpn), Fi € Fioc, hence their
support is compact

0 WA (Axax(B)) — wP(A)WP(B) = 3,5y (AN, wf (ar(B))™)

@ For sufficiently large t, there are no null geodesics connecting intersecting both the supports
of A and (a:(B))(", hence we find a compact set in which wf is a smooth function
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Clustering Condition for a;; - Spatial Compact Support

Proposition
Given A, B € #(O) and an interacting potential V, p, it holds that

lim w? (Ax a:(B)) = w?(A)w?(B)

t—o00

in the sense of formal power series in the coupling constant.

Sketch of the proof

@ A, B are sums of x-products of the form Ry/(F1) * ... * Ry(Fpn), Fi € Fioc, hence their
support is compact

0 WA (Axax(B)) — wP(A)WP(B) = 3,5y (AN, wf (ar(B))™)

@ For sufficiently large t, there are no null geodesics connecting intersecting both the supports
of A and (a:(B))(", hence we find a compact set in which wf is a smooth function

° D(a)wg(x; yo+ty)| < t§72 for a multi-index «
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formal power series for w?V :

The clustering condition for w® implies the return to equilibrium in the sense of

- WP (a1 (A)* Un(iB)) _
—oo WP (Un(iB))

1 B,V =
i ¥ or ) =

w’(A)
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formal power series for w?V :

The clustering condition for w® implies the return to equilibrium in the sense of

W (ar(A) x Un(iB)) _
00 wh (Un(iB))

lim w®VY(ar(A) = |
Am e er(A) =
Sketch of the proof

w’(A)
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formal power series for w?V :

The clustering condition for w® implies the return to equilibrium in the sense of

im

w? (ar(A)*x Un(iB)) 4
i — oy YW
Sketch of the proof

1 B,V =
i )=

@ The first equality follows by definition of w?V
pas

@ Kj, the generator of Up(t), is of compact support and spt(K}) is contained in the past of
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formal power series for w?V :

The clustering condition for w® implies the return to equilibrium in the sense of

. , . WP (ar(A) % Un(iB))
Tllm WPV (ar(A) = Tllm o7 (U(P)) = wh(A)
Sketch of the proof

@ The first equality follows by definition of w?V
pas

@ Application of the clustering condition

«O>» <Fr «=>» «E>» DA

@ Kj, the generator of Up(t), is of compact support and spt(K}) is contained in the past of



Let w? be the pure free KMS state with respect to the evolution a;. Then the
state is stable under a spatially compact perturbation V, ,, namely

lim w(a¥(A)) =w?Y(A
lim P (a¥(A)) = "V (A),
up to the first order in perturbation theory.
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Let w? be the pure free KMS state with respect to the evolution a;. Then the
state is stable under a spatially compact perturbation V, ,, namely

lim w?(a¥(A)) = w*V(A),
T—o0
up to the first order in perturbation theory.

The proof is analogous to the C*-algebraic case
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The clustering condition for oY
t—oo

lim [w? (Axaf(B)) —w?(A)w’ (af (B))] =0 VA Be Z/(0)

holds in the sense of formal power series in the coupling constant whenever the
interacting potential V, j has spatial compact support.
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We check that w”€ (A® ay (B)) = w” (Axay(B)) — w?(A)w? (o (B))
vanishes for large or negative times t. Expanding o
wh (A ay(B) = i"/

n>0 L

. dT W (A® [ag (Kp), - -, [ae, (Kn), ax(B)]]) -
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Clustering Condition for o) - Sketch of the proof

We check that w”€ (A® ay (B)) = w” (Axay(B)) — w?(A)w? (o (B))
vanishes for large or negative times t. Expanding o)

W (Aga/(B)) =) i" /ts AT WP (A@ [ag, (Kn), .. o (Kn). cx(B)]])

n>0

n = 0 is proved thanks to the clustering condition for a;.
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Clustering Condition for o) - Sketch of the proof

We check that w”€ (A® ay (B)) = w” (Axay(B)) — w?(A)w? (o (B))
vanishes for large or negative times t. Expandlng ay

W (Aza/(B) =) i / dT W< (A@ [, (Kp), . o, (Kn). cx(B)]]) .

n>0

n = 0 is proved thanks to the clustering condition for a;.
For generic n we notice that the integrand can be expanded as a sum over
connected graphs where the lines are w5

[A,Bl, =m (P2 —eP2) A B

for D = <w§76¢5¢>and mAL®...QA,) =Ar-...- Ay
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Clustering Condition for o) - Sketch of the proof

We check that w”€ (A® ay (B)) = w” (Axay(B)) — w?(A)w? (o (B))
vanishes for large or negative times t. Expanding o)

W (Aga/(B)) =) i" /ts AT WP (A@ [ag, (Kn), .. o (Kn). cx(B)]])

n>0

n = 0 is proved thanks to the clustering condition for a;.
For generic n we notice that the integrand can be expanded as a sum over
connected graphs where the lines are w5

[A,Bl, =m (P2 —eP2) A B

for Dj = (wf, 5255-) and m(AL @ ... @ A,) = Ar-...- A,
The integral can be performed and vanishes in the limit thanks to the decay

properties of wg in the limit t — oo.
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The free KMS state w? is invariant under spatially compactly supported
perturbations V,, ,, namely

Jim w? (a¥(A)) =w?V(A) VAe F/(0)
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The free KMS state w? is invariant under spatially compactly supported
perturbations V,, ,, namely

Jim w? (a¥(A)) =w?V(A) VAe F/(0)

The proof is achieved with a formal computation using:
e Inverse co-cycle a_7(Ux(T)) = Un(T)7*

o Co-cycle relation U(t +s) = U(t)a: (U(s))
o Clustering property for Y

«O>» <Fr «=>» «E>» DA



We studied the stability of the state

1 (7
Vit Ay — i BV
wy T (A) = /|7|m1 T/o w?(a) (A))dT
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Stability in pAQFT - Adiabatic Limit

We studied the stability of the state

Theorem (Adiabatic Limit)

Suppose that 2

;é 0. If the adiabatic limit is considered, the clustering

condition fails at first order in perturbation theory also when the ergodic mean is
considered, i.e.

im lim (;/0 dt wﬁ(A*at(Kh))—wﬁ(A)wﬁ(Kh)> #0

for A= Ry(F¢) * Ry(F;) where F¢ and F, are linear functionals.
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At the first order a contribution of this form appears:

X1 X2

y
which corresponds to a contribution of the form

W (A aa(K)) = (W) (K) = A [ W2 (F. )k (g X0 + Ohly)dy®dy + O(?)
Taking the adiabatic limit

im [ W5(F. )2 (£ 0)X0° + DhY)dy + O) = (Fif & )

«0>» «4F>r «=)r «=)» = Q>



The 2-point function for the free KMS state is

iwi(x®=y) —iwk(x®~y) .
B L dk | ba(k gy bo(k) S T ) o—ik(x—y)
G0 =g | <+( ) b e

where by (k) = (1 — e Ak)~1, b_(k) = e P«kb, (k) and we = VkZ + m2.
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The 2-point function for the free KMS state is
iw (x°=y°) —iw(x®=y°) .
B L dk | ba(k e ) bo(k) S T ) o—iklx—y)
G000 = gz [ ok (BT b S e
where by (k) = (1 — e Ak)~1, b_(k) = e P«kb, (k) and we = VkZ + m2.

Fe(x1,x2) = /dydyok(yo +t)

&'k (o =y°) e—iwkj(xjp—yo) ]
H/dk by(kj) S + b (k) | e~

1
(2m)°

Zwkj
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The 2-point function for the free KMS state is

iwi(x=y®) —iw(x°=y°) .
B L dk | ba(k gy bo(k) S T ) o—ik(x—y)
F0y) = o [ ( O S ) e

where by (k) = (1 — e Ak)~1, b_(k) = e P«kb, (k) and we = VkZ + m2.

Fe(x1,x2) = /dydyok(yo +t)

&'k (o =y°) e—iwkj(xjp—yo) ]
/dk b (k; )7 + b (k) ————— | e7 i)
j

Zwkj

1
(2m)°

The integral in dy forces ki 4+ k2 = 0, hence in the product of the modes there is a contribution
which remains unaffected by the t translation, which is

w(xi,x2) = ﬁ/zdkz 1+ (k)b (k) cos (wi(x — X)) ekba—x2),

The other contributions vanish by Riemann-Lebesgue lemma.
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The state wY " is ill-defined due to some infra-red divergences.

The contribution

T ta
AP =7 [ dtra-- [t (o (... 00 (K. (A ]

to the ergodic mean w¥’+(A) does not converge for n > 3 in the sense of

perturbation theory for large T, if the adiabatic limit is taken in advance.

«O>» «F»r «=»r 4 Q>
"~ Faldino (DIMA-Genova) @ Stabilityof KMSstates @ MITP Mainz 19 /22
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wh(A) = lim lim =

T
B,V Y
T—00 h—1 T/o WPV (o, (A))dr

«0>» «Fr «E>» «E>» o




oW i 7 [ e

@ The functional w*, defined in the sense of formal power series, is a state for

the free algebra .7,,.. Furthermore, wt is invariant under the free evolution
.

@ wt does not satisfy the KMS condition with respect to

40> «F»r «=)» <«

DA

it
-
[y



@ Stability/return to equilibrium property for compactly-supported perturbation
@ Failure of the stability/return to equilibrium in the adiabatic limit
theory

@ Definition of a non-equilibrium steady state for the massive free Klein-Gordon
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Conclusions

@ Stability/return to equilibrium property for compactly-supported perturbation
@ Failure of the stability/return to equilibrium in the adiabatic limit
theory

@ Definition of a non-equilibrium steady state for the massive free Klein-Gordon

o Study of the properties of w* (e.g. is it unique?)
o Comparison with the result of [Bros, Buchholz|

([Jaksic, Pillet])

@ Definition of Entropy Production and its relationship with the relative entropy
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We define the relative entropy of w®V w.r.t. w® as

Sh(w? Y |wP) = —BwP (Ky) + log w? (Un(iB)) .
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@ The definition is well-posed in the sense of power series
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We define the relative entropy of w®V w.r.t. w® as

Sh(w? Y |wP) = —BwP (Ky) + log w? (Un(iB)) .

@ The definition is well-posed in the sense of power series

@ This definition is well-behaved in the adiabatic limit (taking densities)
@ Is positive definite (in the sense of formal power series)

Sh (w™V]ef) =Y (1) /5 dU @< (aiy (Kh) ® - ® i, (Kp))
n=2 ,8 n

«Or <Fr «=r <= DA




WF(w) = {(x, ki X', K') € TM2| (x, k) ~ (<, K), k € (V) }
where (x, k) ~ (x’, k') means that there exists a null geodesic connecting x and
x', to which k is cotangent and k' is the parallel transport of k.
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Non-Equilibrium Steady State

In the framework of perturbation theory it is possible to give a definition of a
non-equilibrium steady state (NESS)

Definition (Non-Equilibrium Steady States)

Given a stationary state w on (A, ;) and a self-adjoint perturbation P € A, we
call non-equilibrium steady states the weak* limit points of the set

1 T
7/0 woafdt’T>0 .

The set of NESS is a non-empty, compact subset of the state space whose
elements are a”-invariant.
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