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Interacting KMS states in QSM

Let (A, αt , ω
β) be a C∗-dynamical system with a KMS state ωβ .

KMS states for perturbed Hamiltonians H = H0 + P, P = P∗ ∈ A ([Araki ’73]):
If δ(A) is the generator of αt(A), then δP(A) = δ(A) + i [P,A] generates the
perturbed dynamics

αP
t (A)

.
= αt(A) +

∑
n≥1

in
∫
tSn

dT [αtn(P), [. . . , [αt1(P), αt(A)]]] .

This equation is obtained by an intertwining relation

αP
t (A) = UP(t)αt(A)UP(t)∗,

where UP(t) ∈ A is a one-parameter family of unitaries which satisfy the co-cycle
relation

UP(t + s) = UP(t)αt (UP(s)) .

Remark
UP(t) can be expanded as a series expansion. In the C∗-algebraic context all the
series are norm convergent.
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An interacting KMS state in Quantum Statistical Mechanics

Theorem (Araki)
Let ωβ be a pure (β, α)-KMS state. Considering the perturbed dynamics αP for a
self-adjoint perturbation P ∈ A and taking an analytic extension, then

ωβ,P(A)
.

=
ωβ(AUP(iβ))

ωβ(UP(iβ))

is an extremal (β, αP)-KMS state.

It can be shown that the Araki state can be written in term of the connected
functions:

ωβ,P(A) = ωβ(A) +
∑
n≥1

(−1)n
∫
βSn

dU ωβ,c

(
A⊗

n⊗
k=1

αiuk (P)

)

Faldino (DIMA - Genova) Stability of KMS states MITP Mainz 2 / 22



Stability Properties of the Interacting KMS state

[Haag, Kastler, Trych-Pohlmeyer - Robinson - Bratteli, Kishimoto, Robinson]

Stability/Return to Equilibrium

lim
t→∞

ωβ(αP
t (A)) = ωβ,P(A) and lim

t→∞
ωβ,P(αt(A)) = ωβ(A)

Theorem
If ωβ satisfies the Strong Clustering Condition

lim
t→±∞

ωβ (Aαt(B)) = ωβ(A)ωβ(B)

then the stability property holds.
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Sketch of the proof for the first order stability

The proof is realized by equating the two series term-by-term. At first order:

ωβ(αP
t (A)) = ωβ(A) + i

∫ T

0
dt ωβ ([αT (P), αt(A)])

ωβ,P(A) = ωβ(A)−
∫ β

0
du ωβ,c (A⊗ αiu(P)) .

Manipulating the first term

i

∫ T

0
dt ωβ ([αT (P), αt(A)]) = i

∫ T

0
dt ωβ ([αt(P),A]) =

i

∫ T

0
dt
(
ωβ(Aαt+iβ(P))− ωβ(Aαt(P))

)
∗
=

∫ β

0
du
(
ωβ(AαT+iu(P))− ωβ(Aαiu(P))

)
Where in ∗ we used the Cauchy theorem.

Using the strongly clustering condition

lim
T→∞

∫ β

0
du ωβ (AαT+iu(P)) =

∫ β

0
du ωβ(A)ωβ(P).
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The Massive Klein-Gordon Theory

Klein-Gordon massive self-interacting model on Minkowski M (−,+,+,+)

Pϕ+ λV (1)(ϕ) = 0 P
.

= −� + m2, V (ϕ) =

∫
ϕn(x)g(x)d4x , g ∈ C∞0 (M)

Observables are realized as functionals over the off-shell configurations
φ ∈ E .

= C∞(M,R):

Fµc
.

= {F : E → C | smooth, compactly supported and microcausal}

Linear Functional Ff (φ)
.

=
∫
f φdµ for f ∈ C∞0 (M,C)

Local Functional Floc ⊂ Fµc such that for all n ∈ N

spt
(
F (n)(φ)

)
⊆ diagn diagn .

= {(x1, . . . , xn) ∈Mn | x1 = x2 = . . . = xn}
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Formal Deformation Quantization

The quantisation is obtained by Formal Deformation of the pointwise product to a
?-product constructed with the Hadamard bi-distribution of the free KMS state

(F ?ωβ G )(φ)
.

= e
~
〈
ωβ , δ2

δφδφ′

〉
F (φ)G (φ′)|φ′=φ F ,G ∈ Fµc

The first order term corresponds to the Wick-ordered fields w.r.t. to the KMS
state ωβ

For linear functionals Ff (φ) =
∫
φ(x)f (x)dx , Fg (φ′) =

∫
φ′(x)g(x)dx

Ff ?ωβ Fg = Ff · Fg +
i

2
~ωβ(f , g)

[Ff ,Fg ]?
ωβ

= i~∆(f , g)

Algebras obtained with different Hadamard bi-distributions are ∗-isomorphic
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Time-Order Product

Let T : F⊗
n

loc → Fµc such that (causal factorisation) 1

T (A,B) = T−1(A)?T−1(B) if A � B T (A,B) = T−1(B)?T−1(A) if B � A

Construction of interacting field as time-ordered exponential of F ∈ Floc (formal
power series in the coupling constant) [Renormalization ambiguities]

S(F )
.

=
∑
n

(iλ)n

~n
T
(
T−1(F )⊗

n
)

Interacting observables are represented in the free algebra via the Bogoliubov Map:

RV (F )
.

=
d

dλ
S(V ) ? S(V + λF )|λ=0

We call FI ⊂ Fµc the algebra generated by elements of the form RV (F )
Linear functionals are off-shell solutions of the interacting equation of motion:

RV (FPf ) + λRV (V (1)) = FPf

1[Brunetti, Dütsch, Fredenhagen, Hollands, Rejzner, Wald]
Faldino (DIMA - Genova) Stability of KMS states MITP Mainz 7 / 22
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An interacting KMS State for pAQFT: Support properties

[Fredenhagen, Lindner ’14]: time-slice axiom:

M = M− ∪ Σε ∪M+ Σε
.

= (−ε, ε)×R3

Changing the cutoff for the potential Vg (φ) =
∫
φng dµ:

Vg (φ)→ Vχhg (φ)⇒ adiabatic limit g → 1{
h ∈ C∞0 (R3)
h(x) ≡ 1 if x ∈ O ⊂ Σε

{
spt(χ) ⊂ Σ2ε
χ(t) = 1 if t ∈ (−ε, ε)

This allows us to construct the interacting dynamics:

αV
t (RV (F )) = RV (αtF ) ∀F ∈ Fµc

Faldino (DIMA - Genova) Stability of KMS states MITP Mainz 8 / 22
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.

= (−ε, ε)×R3

Time-slice Axiom [Fredenhagen, Chilian]
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An interacting KMS State for pAQFT: Support properties

[Fredenhagen, Lindner ’14]: time-slice axiom:

M = M− ∪ Σε ∪M+ Σε
.

= (−ε, ε)×R3

Remark
By the causal factorisation property of the S-matrix, the algebras build
considering two support functions g , g ′ are unitarily equivalent

if spt(g − g ′) ∩ J+(O) = ∅, then RVg (F ) = RVg′ (F ) for all F

if spt(g − g ′) ∩ J+(O) ∩ J−(O) = ∅, then there exists a unitary co-cycle
W (g , g ′) such that

RVg (F ) = W (g , g ′) ? RVg′ (F ) ?W (g , g ′)−1 W (g , g ′) ≡ SVg (Vg − Vg ′)

Changing the cutoff for the potential Vg (φ) =
∫
φng dµ:

Vg (φ)→ Vχhg (φ)⇒ adiabatic limit g → 1{
h ∈ C∞0 (R3)
h(x) ≡ 1 if x ∈ O ⊂ Σε

{
spt(χ) ⊂ Σ2ε
χ(t) = 1 if t ∈ (−ε, ε)

This allows us to construct the interacting dynamics:

αV
t (RV (F )) = RV (αtF ) ∀F ∈ Fµc
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An interacting KMS State for pAQFT: Interacting dynamics

In [Fredenhagen, Lindner ’14] an interacting time-evolution was defined using a
co-cycle (Araki construction):

αV
t (A) = Uh(t)αt(A)Uh(t)−1

Uh(t)
.

= 1 +
∞∑
n=1

in
∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtn αtn(Kh) ? · · · ? αt1(Kh)

where the generator is obtained as

Kh
.

= RV (V̇ ), V̇
.

=

∫
φn(x)χ̇(t)h(x)d4x spt(χ̇) ⊂ (−2ε,−ε)

Definition of the interacting KMS state in the adiabatic limit:

ωβ,V (A) = lim
h→1

ωβ(A ? Uh(iβ))

ωβ(Uh(iβ))
, A ≡ RV (F1) ? · · · ? RV (Fn) ∈ FI
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1 Stability in Quantum Statistical Mechanics

2 An interacting KMS state for pAQFT

3 Stability Properties of ωβ,V



Clustering Condition for αt - Spatial Compact Support

Proposition
Given A,B ∈ FI (O) and an interacting potential Vχ,h, it holds that

lim
t→∞

ωβ (A ? αt(B)) = ωβ(A)ωβ(B)

in the sense of formal power series in the coupling constant.

Sketch of the proof

A,B are sums of ?-products of the form RV (F1) ? . . . ? RV (Fn), Fi ∈ Floc, hence their
support is compact

ωβ(A ? αt(B))− ωβ(A)ωβ(B) =
∑

n≥1
1
n!
〈A(n), ωβ

n

2 (αt(B))(n)〉
For sufficiently large t, there are no null geodesics connecting intersecting both the supports
of A(n) and (αt(B))(n), hence we find a compact set in which ωβ

n

2 is a smooth function∣∣∣D(α)ωβ2 (x ; y0 + t, y)
∣∣∣ ≤ Cα

t3/2
for a multi-index α
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Return to equilibrium for ωβ,V

Proposition
The clustering condition for ωβ implies the return to equilibrium in the sense of
formal power series for ωβ,V :

lim
T→∞

ωβ,V (αT (A)) = lim
T→∞

ωβ (αT (A) ? Uh(iβ))

ωβ (Uh(iβ))
= ωβ(A)

Sketch of the proof

The first equality follows by definition of ωβ,V

Kh, the generator of Uh(t), is of compact support and spt(Kh) is contained in the past of
Σε

Application of the clustering condition
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First order stability

Theorem
Let ωβ be the pure free KMS state with respect to the evolution αt . Then the
state is stable under a spatially compact perturbation Vχ,h, namely

lim
T→∞

ωβ(αV
T (A)) = ωβ,V (A),

up to the first order in perturbation theory.

The proof is analogous to the C∗-algebraic case
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Clustering Condition for αV
t

Proposition
The clustering condition for αV

t

lim
t→∞

[
ωβ
(
A ? αV

t (B)
)
− ωβ(A)ωβ

(
αV
t (B)

)]
= 0 ∀A,B ∈ FI (O)

holds in the sense of formal power series in the coupling constant whenever the
interacting potential Vχ,h has spatial compact support.
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Clustering Condition for αV
t - Sketch of the proof

We check that ωβ,c
(
A⊗ αV

t (B)
)

= ωβ
(
A ? αV

t (B)
)
− ωβ(A)ωβ

(
αV
t (B)

)
vanishes for large or negative times t. Expanding αV

t

ωβ,c
(
A⊗ αV

t (B)
)

=
∑
n≥0

in
∫
tSn

dT ωβ,c (A⊗ [αt1(Kh), . . . , [αtn(Kh), αt(B)]]) .

n = 0 is proved thanks to the clustering condition for αt .
For generic n we notice that the integrand can be expanded as a sum over
connected graphs where the lines are ωβ2 :

[A,B]? = m
(
eD12 − eD21

)
A⊗ B

for Dij
.

= 〈ωβ2 , δ2

δφiδφj
〉 and m(A1 ⊗ . . .⊗ An) = A1 · . . . · An.

The integral can be performed and vanishes in the limit thanks to the decay
properties of ωβ2 in the limit t →∞.
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Stability in pAQFT - Compact spatial support

Theorem
The free KMS state ωβ is invariant under spatially compactly supported
perturbations Vχ,h, namely

lim
T→∞

ωβ
(
αV
T (A)

)
= ωβ,V (A) ∀A ∈ FI (O)

The proof is achieved with a formal computation using:
Inverse co-cycle α−T (Uh(T )) = Uh(T )−1

Co-cycle relation U(t + s) = U(t)αt (U(s))

Clustering property for αV
t
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Stability in pAQFT - Adiabatic Limit

We studied the stability of the state

ωV ,+
T (A) := lim

h→1

1
T

∫ T

0
ωβ(αV

τ (A))dτ

Theorem (Adiabatic Limit)

Suppose that δ2Vχ,h
δφδφ

∣∣∣
φ=0
6= 0. If the adiabatic limit is considered, the clustering

condition fails at first order in perturbation theory also when the ergodic mean is
considered, i.e.

lim
T→∞

lim
h→1

(
1
T

∫ T

0
dt ωβ(A ? αt(Kh))− ωβ(A)ωβ(Kh)

)
6= 0

for A = RV (Ff ) ? RV (Fg ) where Ff and Fg are linear functionals.
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Stability in the adiabatic limit - Sketch of the proof

At the first order a contribution of this form appears:

y

x1 x2

which corresponds to a contribution of the form

ωβ (A ?ωβ αt(K))− ωβ (A)ωβ(K) = λ

∫
ωβ2 (f , y)ωβ2 (g , y)χ̇(y0 + t)h(y)dy0dy + O(λ2)

Taking the adiabatic limit

lim
h→1

∫
ωβ2 (f , y)ωβ2 (g , y)χ̇(y0 + t)h(y)dy + O(λ2) ≡ 〈Ft , f ⊗ g〉
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The 2-point function for the free KMS state is

ωβ2 (x , y) =
1

(2π)3

∫
dk

(
b+(k)

e iωk(x0−y0)

2ωk
+ b−(k)

e−iωk(x0−y0)

2ωk

)
e−ik(x−y)

where b+(k) = (1− e−βωk )−1, b−(k) = e−βωkb+(k) and ωk =
√

k2 + m2.

Ft(x1, x2) =
1

(2π)6

∫
dydy0χ̇(y0 + t)

2∏
j=1

∫
dkj

b+(kj )
e
iωkj

(x0
j −y0)

2ωkj
+ b−(kj )

e
−iωkj

(x0
j −y0)

2ωkj

 e−ikj (xj−y)

The integral in dy forces k1 + k2 = 0, hence in the product of the modes there is a contribution
which remains unaffected by the t translation, which is

w(x1, x2) ≡
1

(2π)3

∫
dk
2ω2

k

b+(k)b−(k) cos
(
ωk(x0

1 − x0
2 )
)
e ik(x1−x2).

The other contributions vanish by Riemann-Lebesgue lemma.
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Some infrared divergences...

The state ωV ,+
T is ill-defined due to some infra-red divergences.

Proposition
The contribution

Q
(n)
T (A) =

1
T

∫ T

0
dtn+1· · ·

∫ t2

0
dt1ω

β([αt1(K ), . . . , [αtn(K ), αtn+1(A)]] . . . ])

to the ergodic mean ωV ,+
T (A) does not converge for n ≥ 3 in the sense of

perturbation theory for large T , if the adiabatic limit is taken in advance.
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A NESS for Quantum Field Theory

Definition (NESS Def )

ω+(A) := lim
T→∞

lim
h→1

1
T

∫ T

0
ωβ,V (ατ (A))dτ

Theorem
The functional ω+, defined in the sense of formal power series, is a state for
the free algebra Fµc. Furthermore, ω+ is invariant under the free evolution
αt .
ω+ does not satisfy the KMS condition with respect to αt .
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Conclusions

What was done...
Stability/return to equilibrium property for compactly-supported perturbation
Failure of the stability/return to equilibrium in the adiabatic limit
Definition of a non-equilibrium steady state for the massive free Klein-Gordon
theory

... and what is still to do
Study of the properties of ω+ (e.g. is it unique?)
Comparison with the result of [Bros, Buchholz]
Definition of Entropy Production and its relationship with the relative entropy
([Jakšić, Pillet])
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What’s Next? - Spoiler alert!

Definition
We define the relative entropy of ωβ,V w.r.t. ωβ as

Sh(ωβ,V |ωβ)
.

= −βωβ (Kh) + logωβ (Uh(iβ)) .

The definition is well-posed in the sense of power series
This definition is well-behaved in the adiabatic limit (taking densities)
Is positive definite (in the sense of formal power series)

Explicit expression

Sh
(
ωβ,V |ωβ

)
=
∞∑
n=2

(−1)n
∫
βSn

dU ωβ,c (αiu1 (Kh)⊗ · · · ⊗ αiun (Kh))
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The Microcausal Wavefront Set

WF(ω) =
{

(x , k; x ′, k ′) ∈ Ṫ ∗M2 | (x , k) ∼ (x ′, k ′), k ∈
(
V+

)
x

}
where (x , k) ∼ (x ′, k ′) means that there exists a null geodesic connecting x and
x ′, to which k is cotangent and k ′ is the parallel transport of k . back
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Non-Equilibrium Steady State

In the framework of perturbation theory it is possible to give a definition of a
non-equilibrium steady state (NESS) [Ruelle ’00]

Definition (Non-Equilibrium Steady States)
Given a stationary state ω on (A, αt) and a self-adjoint perturbation P ∈ A, we
call non-equilibrium steady states the weak∗ limit points of the set{

1
T

∫ T

0
ω ◦ αP

t dt
∣∣∣T > 0

}
.

The set of NESS is a non-empty, compact subset of the state space whose
elements are αP -invariant.

back
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