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Introduction

Introduction
Generally accepted view: continuous description of spacetime should
break down at distance of the order of the Planck length
λP =

√
~G/c3 ' 1.610−33 cm

analysis of [Doplicher, Fredenhagen, Roberts ’95]: QM + GR⇒
accuracies ∆qµ on spacetime coordinates of an event in
Minkowski satisfy Spacetime Uncertainty Relations (STUR),
implemented by commutation relations between the qµ’s
Minkowski spacetime replaced by a Quantum (noncommutative)
Spacetime E (C*-algebra generated by qµ’s)
QFT on QST has remarkable properties [Bahns, Doplicher,
Fredenhagen, Piacitelli ’01,’03,’04,...]
it can also serve as a (partial) substitute of inflation [Doplicher, M.,
Pinamonti ’13]

This talk:
Look for physical effects that can be explained only by QST
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Quantum spacetime and QFT

Operational limitations to localizability of events
QM: need energy E ' 1/L to prepare a quantum state localized in a
small region of size L
GR: large energy E creates a trapped surface (event horizon) of
Schwarzschild radius r ' E around localization region

⇓

localization has operational meaning only if L ≥ r i.e. L & 1 = λP (in
natural units)

Principle of gravitational stability against localization
The gravitational field generated by the concentration of energy
required by the Heisenberg Uncertainty Principle to localize an event in
spacetime should not be so strong to hide the event itself to any distant
observer
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Quantum spacetime and QFT

Spacetime Uncertainty Relations
If only one coordinate is localized with high precision, TS will not form:
transferred energy density goes to zero
[DFR] analysis:

quantum state localized in region supp f of sizes ∆qµ, µ = 0, . . . ,3

ωf (A) = 〈eiφ(f )Ω,Aeiφ(f )Ω〉

energy E ' 1/minµ{∆qµ} =⇒ energy density ρ
solution of linearized Einstein equations with source ρ given by
retarded potential
condition of non formation of TS: g00 > 0

Spacetime Uncertainty Relations (STURs)

∆q0
3∑

j=1

∆qj ≥ λ2
P ,

3∑
i<j=1

∆qi∆qj ≥ λ2
P

Necessary conditions imposed by the principle of gravitational stability
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Quantum spacetime and QFT

Quantum Spacetime
STURs can be realized by assuming that ∆qµ’s are standard
deviations of quantum operators qµ satisfying suitable commutation
relations, as for Heisenberg uncertainty relations

Quantum Conditions

[qµ,qν ] = iλ2
PQµν , [qρ,Qµν ] = 0,

QµνQµν = 0,
(

1
4

Qµν(∗Q)µν

)2

= 1

Noncommutative C*-algebra E of Quantum Spacetime (QST)
generated by qµ’s replaces algebra of functions on Minkowski
It is equipped with action of the Poincaré group qµ → Λµνqν + aν

E has nontrivial center Z (E) = functions on a manifold
Σ ' TS2 × Z2 and E ' C0(Σ,K), K = compact operators
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Quantum spacetime and QFT

Optimal localization on QST

In an irreducible representation qµ is a Lorentz transform of
Schroedinger’s (x1, x2,p1,p2)

⇓

There exists states of optimal localization ω on E, minimizing∑
µ

(∆qµ)2 = (∆x1)2 + (∆x2)2 + (∆p1)2 + (∆p2)2

given by translates of the harmonic oscillator ground states
They are the best approximation of points on QST
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Quantum spacetime and QFT

Free quantum fields on QST

φ free (scalar) field on Minkowski can be defined on QST through
Weyl-von Neumann-Moyal quantizazion

φ(q) =

∫
d4k φ̌(k)⊗ eikq

(formal) element of F⊗ E, F field algebra
it satisfies Klein-Gordon equation (derivatives on E defined by
∂µφ(q) := ∂

∂xµφ(q + x1) )
ωx , ωy optimally localized states around x , y =⇒
[id⊗ ωx (φ(q)), id⊗ ωy (φ(q))] falls off as a Gaussian of width λP for
large spacelike x − y

Locality is lost at distances small w.r.t. λP , but recovered as λP → 0
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Quantum spacetime and QFT

(Perturbative) interacting fields on QST
Several (inequivalent) possibilities of defining perturbative interacting
fields

Hamiltonian approach (interaction picture) with interaction
Lagrangian defined by : φ(q)n : [DFR]
Yang-Feldman equation and quasi-planar Wick products [Bahns,
Doplicher, Fredenhagen, Piacitelli ’02 & ’04]
Hamiltonian approach with interaction defined by quantum Wick
product : φn(q) :Q, which yields UV-finite (IR-cutoff) theory to all
orders [Bahns, Doplicher, Fredenhagen, Piacitelli ’03]

: φn(q) :Q defined by generalizing point-splitting to QST:
e.g., for n = 2

: φ2 : (x) := lim
y→x

φ(x)φ(y)− 〈Ω, φ(x)φ(y)Ω〉

limit y → x has to be performed in a way compatible with the STURs
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Quantum spacetime and QFT

Quantum Wick product
Introduce quantum coordinates of independent events

qµ1 := qµ ⊗ 1, qµ2 := 1⊗ qµ

tensor product of Z -moduli =⇒ [qµ1 ,q
ν
1 ] = iλ2

PQµν = [qµ2 ,q
ν
2 ]

introduce center of mass and relative coordinates

q̄µ :=
1
2

(qµ1 + qµ2 ), ξµ :=
1
λP

(qµ1 − qµ2 )

identification of commutators =⇒ [q̄µ, ξν ] = 0
evaluating optimally localized state on ξµ yields a map
E (2) : E⊗Z E→ E ' C∗(q̄µ)

Quantum Wick product

: φ2(q̄) :Q := E (2)(: φ(q1)φ(q2) :)

=

∫
d4k1d4k2 : φ̌(k1)φ̌(k2) : e−

λ2
P
4 |k1−k2|2ei(k1+k2)q̄
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U(1) gauge theory on quantum spacetime

U(1) gauge theory on quantum spacetime 1/3

gauge group of U(1) gauge theory on commutative spacetime:
U(Cb(R4))

on QST replaced by G := U(M(E))

it has a nontrivial action on a real scalar field ϕ(q):

ϕ(q)→ Uϕ(q)U∗, U ∈ G

physicist’s recipe to write down an invariant Lagrangian: replace
∂µ with a covariant derivative Dµ, i.e., derivation on E transforming
under G as

Dµϕ(q)→ UDµϕ(q)U∗
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U(1) gauge theory on quantum spacetime

U(1) gauge theory on quantum spacetime 2/3
Solution:

Dµϕ(q) = ∂µϕ(q)− ie[Aµ(q), ϕ(q)]

where Aµ is a field transforming under G as

Aµ(q)→ UAµ(q)U∗ +
i
e

U∂µU∗

writing U = eiΛ and going to commutatitve spacetime the
trasformation law of Aµ becomes

Aµ(x)→ Aµ(x) +
1
e
∂µΛ(x)

⇒ Aµ(q) is identified with the electromagnetic potential on QST
coupling constant e is the electron charge, since Aµ has to interact
also with electron field ψ transforming as ψ → Uψ
Problem: how to accommodate quark fields? Discussed by
[Schupp, Wess, ... ' ’00] using (perturbative) Seiberg-Witten map
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U(1) gauge theory on quantum spacetime

U(1) gauge theory on quantum spacetime 3/3
Gauge invariant lagrangian for ϕ:

L =
1
2

Dµϕ(q)Dµϕ(q)− 1
2

m2ϕ(q)2

=
1
2
∂µϕ(q)∂µϕ(q)− 1

2
m2ϕ(q)2

− ie
2
{[Aµ(q), ϕ(q)], ∂µϕ(q)} − e2

2
[Aµ(q), ϕ(q)][Aµ(q), ϕ(q)]︸ ︷︷ ︸

LI

commutators⇒ LI = 0 on commutative spacetime, effective coupling
eλ2

P
For A(q) = (0, 1

2B ∧ q) (uniform external magnetic field) and neglecting
A2, LI is the energy of interaction with a magnetic moment density

Mj =
eλ2

P
2

[
1
2

({∂lϕ, ∂
lϕ}δjk − {∂jϕ, ∂

kϕ})mk − εjkh{∂0ϕ, ∂
hϕ}ek

]
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U(1) gauge theory on quantum spacetime

Possibly observable consequences? 1/3

lightest stable dark matter particle should be neutral, but on QST it
could actually emit (very weak) em radiation with no background
in order to obtain observable signal one would need very large
magnetic moment
one could conceive a compact “star” of dark matter in rapid
rotation around a very massive companion, akin to binary black
hole (gravitational waves)
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U(1) gauge theory on quantum spacetime

Possibly observable consequences? 2/3
Order of magnitude estimate of this effect obtained as follows:

magnetic moment of a ϕ particle with sharp momentum k in a
frame where m = e

µk = eλ2
P

{
2k ∧ e +

|k |2

ωm(k)

[
e − k · e

|k |2
k
]}

magnetic moment of a mass M star of classical particles with such
magnetic moment in orbit of radius R and angular frequency ω

MS(t) = eλ2
PM

[
Rω cos(ωt)M1 + Rω sin(ωt)M2 + O(R2ω2)

]
M i O(1) fixed vectors
classical electromagnetic power radiated by such a variable
moment

dE
dt
' e2λ4

PM2R2ω6 = e2
(τP

T

)6
(

R
λP

)2

M2
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U(1) gauge theory on quantum spacetime

Possibly observable consequences? 3/3

Planck time τP ' 10−44s
T ' 10−2s, R ' 103km, M ' 1056GeV (same order of the
GW150914 binary black hole parameters)

results in a fraction of energy radiated per unit time

1
E

dE
dt
' 10−89s−1

really very small... (for GW150914 it was ' 10−2)
But obtained in the unrealistic approximation of Minkowski spacetime
Question: could the effect be enhanced by taking into account the
highly curved background typical of such situation?
This is suggested by the results of [Doplicher, M., Pinamonti ’13]
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Localizability in a spherically symmetric spacetime

Localizability in a spherically symmetric spacetime
Aim: produce a rigorous version of DFR argument on curved
spacetime
Strategy:

1 consider a (scalar massless) free quantum field φ on a
background (M,gµν) in a (Hadamard) state such that

2φ = 0, Gµν = 8πω(Tµν)

2 prepare a localized state: for f ∈ C∞c (M)

ωf (A) :=
ω(φ(f )Aφ(f ))

ω(φ(f )φ(f ))
, A ∈ A

3 evaluate change to expectation value of Tµν after localization
4 estimate backreaction on metric and formation of TS by

Raychauduri equation (no linearization of gravity)
5 impose principle of gravitational stability

Step 4 (and 5) only under assumption of spherical symmetry of
background metric
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Localizability in a spherically symmetric spacetime

Spherical symmetry
To evaluate backreaction, we should solve

Gµν = 8π ωf (Tµν)

It is very difficult. Assume spherical symmetry
Spacetime is I × R+ × S2, retarded coordinates:
spanned by future null geodesic emanated from
the center of the sphere

I u proper time on the worldline γ of center
I s retarded distance: affine parameter along the

null geodesics with s(0) = 0 and ṡ(0) = 1

The general spherically symmetric metric is

ds2 := −A(u, s)du2 − 2ds du + r(u, s)2dΩ2

Fix u, the family of null geodesics forms a cone
Cu
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Localizability in a spherically symmetric spacetime

Backreaction and trapped surfaces
Theorem ([Doplicher, M., Pinamonti ’13])
For a large class of spherically symmetric (M,gµν) and ω (including
cosmological ones), and for f ∈ C∞c (M) as in figure with

s1 < s2 <
3
2

s1, (s2)2 < s2 , s2 :=
1

6 C

the future of C0 contains a trapped sur-
face.

C0

O ⊃ supp f

s1

s2
supp ∆(f ) ∩ J−(O)

For a flat Friedmann-Robertson-Walker spacetime with metric

ds2 = −dt2 + a(t)2[dr2 + r2dΩ2]

the limitation becomes r & λP
a(t) ⇒ effective Planck length diverges near

the singularity, as argued by [Doplicher, ’01]
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Radiation on QST and curvature

Oppenheimer-Snyder solution
Consider a compact dark matter object rotating as before around a
collapsing star of dust of mass M0 and initial radius R0 ≥ 2GM0

outside the collapsing star, the metric is Schwarzschild, not FRW
inside the collapsing star, the metric is closed FRW

ds2 = −dt2 + a(t)2(dχ2 + sin2 χdΩ2)

with a(t) given by the Oppenheimer-Snyder solution

a(t) =
1
2

√
R3

0
2GM0

(1 + cos η)

t =
1
2

√
R3

0
2GM0

(η + sin η)

η ∈ [0, π] is the conformal time, ηcoll = arccos(4GM0
R0
− 1) at

collapse (R(tcoll) = 2GM0)
the two solutions are matched continuously
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Radiation on QST and curvature

Radiation from dark matter around a collapsing object

We take the results of [Doplicher, M., Pinamonti ’13] and the
Oppenheimer-Snyder solution as a justification of the ansatz

dE
dt

= e2
(
λPa(0)

a(t)

)4

M2R2ω6

for the em power radiated by our dark matter object on QST. As
M0 → 0 the old formula is recovered
On the other hand em energy is emitted at the cost of kinetic and
potential energy of the object. Considering only the orbital kinetic
energy

E ' 1
2

MR2[ω2
0 − ω2

coll]

because after the collapse the emitted radiation is trapped inside the
horizon.
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Radiation on QST and curvature

Radiation from dark matter around a collapsing object
ωcoll can be computed. Two regimes:

if M0 → 0 then

E ' 1
2

MR2

[
ω2

0 −
G3/2M3/2

0

eλ2
PMR2

0

]
' 1

2
MR2ω2

0

but the result could be sensibly altered taking into account the
red-shift of the radiation emitted near the horizon and anyway for
realistic matter collpase stops much before becasue of pressure
if M0 finite then

E ' e2λ4
PM2R2ω6

0

(
R3

0
2GM0

)1/2

F (ηcoll)

and for M0 ' 1056GeV , R0 ' 10−1km⇒ E ' 10−40GeV
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Conclusions

Conclusions
Summary:

On QST a U(1) gauge theory becomes nonabelian, and neutral
matter can develop a magnetic moment
Compact rotating object of neutral matter with a variable magnetic
moment emit em radiation of order O(e2λ4

P)

Order of magnitude esitmates, taking also into account the
divergence of the effective λP near singularities, indicate that the
effect is by far too small to be presently detected

Remarks:
Difficult to accommodate non-integer electric charges in this
framework. Investigate actions of G on a E-module
The effect should be compared with graviton mediated dark
matter-photon interaction and with Hawking radiation
Could be interesting to analyze self-gravitating Bose-Einstein
condensates of dark matter
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