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Why lattice gauge theories?

Gauge theories: connections on principal bundles up to equivalence.

Problems with quantisation of gauge theories:

Connections: infinitely many degrees of freedom.

Space of connections up to gauge equivalence. Singular quotient.

Wilson (1974): approximate the manifold M with a lattice.

Kogut and Susskind (1975): Hamiltonian formulation.
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Gauge theory on a graph (cf. Baez)

Let Λ = (Λ0,Λ1, s, t) be a directed graph:

Λ0 set of vertices;

Λ1 set of edges;

source and target maps:

s : Λ1 → Λ0, t : Λ1 → Λ0.

Look at Λ0 as a topological space w.r.t. the discrete topology.

Remark

Assumptions on the graph:

At most one edge between two points;

No single loops;

Connected.
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Gauge theory on a graph (cf. Baez)

Let P → Λ0 a principal bundle with compact structure group G .

The base Λ0 is discrete. ⇒ P ' GΛ0

For any e ∈ Λ1 we define parallel transporters:

Ae := {F : Ps(e) → Pt(e) smooth | F (x · g) = F (x) · g}.

Space of connections/gauge fields:∏
e∈Λ1

Ae ' GΛ1
:= K.

Canonical choice of probability measure: the Haar measure µ on GΛ1
.
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Gauge theory on a graph (cf. Baez)

Group of gauge transformations:

G :=
∏
v∈Λ0

Pv ×Ad G ' GΛ0
.

Action of G on K:

(g = (gv )v∈Λ0 , a = (ae)e∈Λ1) 7→ g · a := ((g · a)e)e∈Λ1 ,

(g · a)e := gt(e)aeg
−1
s(e).

Extends to an action of G on the phase space T ∗K = (T ∗G)Λ1
.
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Quantisation

Quantisation of the system:

H = L2(K, µ) = L2(GΛ1
, µΛ1

G ), A := B0(L2(K, µ)).

Motivation: Weyl quantisation.

Look at the operators P,Q on L2(R) satisfying the commutation relation

PQ − QP = −i/h.

Exponentiating to 1-parameter groups we get the Weyl form of the CCR’s:

U(t)V (s) = e−istV (s)U(t).

All such pairs of 1-parameter groups on L2(R) are unitarily equivalent.

Covariant pair of representations of R and C0(R).
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Stone-Von Neumann

Theorem (Stone-Von Neumann, Mackey)

Let G be a locally compact group. Then any covariant pair of representations

of G and C0(G) on a Hilbert space H is a multiple of the standard

representation on L2(G).

For the left regular representation we have

C0(G) oλ G ' B0(L2(G))

Kijowski and Rudolph in [3] consider the algebra of observables

A := C(GΛ1
) o GΛ1

' B0(H).

This algebra can be realised as a groupoid C∗-algebra.
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The C∗-algebra of a pair groupoid as a quantisation

Geometric realisation as a groupoid C∗-algebra: pair groupoid

X × X
s //
t
// X .

C∗r (X × X ): completion of the convolution algebra Cc(X × X ) in the norm

coming from the left regular representation.

Theorem (Renault)

Let X locally compact and Hausdorff with a Radon measure of full support µ.

C∗r (X × X ) ' B0(L2(X )). (1)

Define the quantization without the need of a group structure!

For Q compact Riemannian, the quantization of T ∗Q is B0(L2(Q)).
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Gauge symmetries and reduction of the quantum system (Rieffel Induction)

Unitary representation U of the gauge group G = GΛ0
on H = L2(K).

U((gx)x∈Λ0)ψ((ae)e∈Λ1) = ψ
(

(gs(e)aeg
−1
t(e))e∈Λ1

)
, ψ ∈ H. (2)

Hilbert space HG of G-invariant vectors in H.

Push the measure forward to G\K: we obtain HG ' L2(G\K, µG).

Consider the subalgebra

AG := A ∩ φ(G)′ ⊆ A.

π : A→ B(H) induces a representation π̃ : AG → B(HG ).

Observable algebra of the reduced system:

AG/ ker π̃ ' B0(HG ).

Open problem: Guillemin-Sternberg conjecture, i.e. quantisation commutes

with reduction. (cf. Boeijnk, Landsman, Van Suijlekom).
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The quantum Hamiltonian

The free Hamiltonian (Kogut-Susskind [4]) is defined as

H0 =
∑
e∈Λ1

−1
2
Ie∆e (3)

where ∆e is the Laplacian (Casimir) on G .

Essentially self-adjoint on C∞(GΛ1
) ⊂ L2(GΛ1

), hence closable.

H0 is well-behaved with respect to the action of the gauge group:

The restriction H0,red to Dom(H0) ∩HG is a self-adjoint operator on HG.

Commutative diagram

Dom(H0)
H0 //

p
HG

��

H

p
HG

��
Dom(H0) ∩HG

H0,red // HG
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Refinements

Let Λi ,Λj be two graphs. An inclusion ι : Λi → Λj consists of

An injective map ι0 : Λ0
i → Λ0

j ,

A map ι1 that assigns to every e ∈ Λ1
i a simple path in Λj starting at s(e)

and ending at t(e).

Definition

Λj is a refinement of Λi if there exists an inclusion ι : Λi → Λj .

Partial order on the set of (equivalence classes of) finite oriented graphs.

Remark

More rigorously: look at the free category CΛ generated by a graph and define

refinements as functors between such categories.
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Lattice subdivisions

Two classes :

Λj is obtained from Λi by adding an extra edge (possibly an extra vertex):

Λi Λj Λi Λi+1

Without addition of a vertex. With addition of a vertex.

Λj is obtained from Λi by subdividing an edge into two edges:

Λi Λj
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Lattice subdivisions

Definition

We let Refine denote the category with the following properties:

Its set of objects is the class of oriented graphs;

Given two oriented graphs Λi and Λj , then the set of morphisms from Λi to

Λj is given by the set of refinements (Λi ,Λj , ι).

Composition is given by composition of refinement functors.

For each oriented graph Λ, there is a canonical refinement (Λ,Λ, Id);

Aim: define functors from Refine to the categories appearing in the

quantisation: Top,Hilb,C∗Alg,Grpd.
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The space of connections

Any refinement Λi � Λj induces a map at the level of configuration spaces

Rij : Kj → Ki (Rij(a))e = ae1 . . . aen

for e ∈ Λi with ι(e) = (e1, . . . , en).

Equivariance condition

(ι(0))∗(g) · Ri,j(a) = Ri,j(g · a), ∀g ∈ Gj , a ∈ Kj

hence it descends to a map Rred
i,j : Gj\Kj → Gi\Ki .

We obtain a commutative diagram:

Kj

πj

��

Ri,j // Ki

πi

��
Gj\Kj

Rred
i,j // Gi\Ki

(4)
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Measures and Hilbert spaces

On the inverse system of Hausdorff spaces (Ki ,Ri,j) we have an exact inverse

system of Radon measures for (Ki ,Ri,j), i.e. for i ≤ j we have

(Ri,j)∗(µj) = µi .

The image of the Haar measure on Kj is the Haar measure on Ki .

Similarly, we have an exact inverse system of measures on (Gi\Ki ,R
red
i,j )

Obtain direct systems of Hilbert spaces: we have unitary maps

uij : R∗ij : L2(Ki )→ L2(Kj) u(ψ) = ψ · Rij ,

uij : (Rred
ij )∗ : L2(Gi\Ki )→ L2(Gj\Kj) u(ψ) = ψ · Rred

ij .
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Observable algebras

The isometries between the Hilbert spaces induce injective ∗-homomorphisms

between the algebras of observables.

v : B0(L2(Ki ))→ B0(L2(Kj)), b 7→ ubu∗;

v red : B0(L2(Gi\Ki ))→ B0(L2(Gj\Kj)), b 7→ uredb(ured)∗,

The collections (B0(L2(Ki )), vi,j) and (B0(L2(Gi\Ki )), v red
i,j ) form direct

systems of C∗-algebras.
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Groupoids

The map Ri,j : Kj → Ki canonically gives rise to a groupoid morphism

Ri,j =
(
R(0)
i,j ,R

(1)
i,j

)
: Gj → Gi R(0)

i,j = Ri,j , R
(1)
i,j = Ri,j × Ri,j

(Similarly for Rred
i,j : Gred

j → Gred
i .)

The maps Ri,j induce a map R∗i,j between the groupoid C∗-algebras (pullback).

C∗(Gi )

'
��

R∗
i,j

// C∗(Gj)

'
��

B0(L2(Ki ))
vi,j
// B0(L2(Kj))

(5)
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Hamiltonians

Given two graphs Λi , Λj , we consider the Hamiltonians

H0,i =
∑
e∈Λ1

i

−1
2
Ii,e∆e , and H0,j =

∑
e∈Λ1

j

−1
2
Ij,e∆e ,

let Hi := L2(Ki ), let Hj := L2(Kj) with maps u : Hi → Hj and

ured : HGi
i → H

Gj

j between the corresponding Hilbert spaces.

If we assume that for each e ∈ Λ1
i , we have

Ii,e =
n∑

k=1

Ij,ek , (6)

we have compatibility between Hamiltonians at different levels.
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Limit of configuration spaces, Hilbert spaces and observable algebras

We can take the projective limit on the space of connections

K∞ := lim←−
i∈I

Ki , Ri,∞ : K∞ → Ki .

Note that there is no group structure on K∞!

There exists a Radon measure µ∞ on K∞ such that Ri,∞(µ∞) = µi

(Prokhorov’s theorem).

Direct limit Hilbert space:

H∞ := lim−→
i∈I

Hi ' L2(K∞, µ∞).

For the direct limit of the observable algebras

lim−→
i∈I

Ai ' B0(H∞).
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The limit groupoid and its C∗-algebra

The limit groupoid G∞ is also a pair groupoid and is given by

G∞ = K∞ ×K∞.

It is by definition a free and transitive groupoid.

The groupoid C∗-algebra C∗(K∞ ×K∞) is isomorphic to the limit observable

algebra:

C∗(G∞) = C∗(lim←−
i∈I

Gi ) ' B0(L2(K∞, µ)) ' lim−→
i∈I

B0(L2(Ki , µi )) ' lim−→
i∈I

C∗(Gi ),
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Symmetries and the continuum limit

By equivariance can consder Kred
∞ . Then there exists a Radon measure µred

∞ on

Kred
∞ such that Rred

i,∞(µred
∞ ) = µred

i .

Next, we can consider the space of square integrable functions on Kred
∞ with

respect to the Radon measure µred
∞ and get

H
red
∞ ' L2(Kred

∞ , µred
∞ ).

The algebra of observables satisfies

lim−→
i∈I

B0(Hi ) ' B0(Hred
∞ ).

and this is again a groupoid C∗-algebra

C∗(Gred
∞ ) ' B0(L2(Kred

∞ , µred
∞ )).
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Rigorous operator algebraic approach to lattice field theories and their

continuum limit.

Reduction of quantum lattice gauge fields via Rieffel induction.

Compatibility with limit constructions and with the action of the gauge

group.

We identified a limit G∞ for which the groupoid C∗-algebra C∗(G∞) is

isomorphic to the limit of the observable algebras lim−→i∈I
Ai .

Goal: incorporate the dynamics:

study of the Hamiltonian in the limit;

infinitely many degrees of freedom: need to enlarge the algebra of

observables.
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