- N/I	nti	t 1.	nn.
	01		

Outlook

A noncommutative approach to the quantisation

of lattice gauge theories

based on [arXiv:1705.03815]

Francesca Arici

IMAPP Radboud University Nijmegen

Foundational and Structural Aspects of Gauge Theories

Mainz, June 2, 2017

			. •		
6.01			÷.	^	n
		vu			

1 Motivation

- 2 Gauge theory on a graph and quantisation
- 3 Refinements of graphs
- 4 The continuum limit

5 Outlook

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Why lattice gauge the	eories?			

Gauge theories: connections on principal bundles up to equivalence.

Problems with quantisation of gauge theories:

Connections: infinitely many degrees of freedom.

Space of connections up to gauge equivalence. Singular quotient.
 Wilson (1974): approximate the manifold *M* with a lattice.

Kogut and Susskind (1975): Hamiltonian formulation.

N/I	nt	- IV	a	n	п

1 Motivation

- 2 Gauge theory on a graph and quantisation
- **B** Refinements of graphs
- 4 The continuum limit

5 Outlook

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Gauge theory on a gra	aph (cf. Baez)			

- Let $\Lambda = (\Lambda^0, \Lambda^1, s, t)$ be a directed graph:
 - Λ⁰ set of vertices;
 - Λ¹ set of edges;
 - source and target maps:

$$s: \Lambda^1 \to \Lambda^0, \qquad t: \Lambda^1 \to \Lambda^0.$$

Look at Λ^0 as a topological space w.r.t. the discrete topology.

Remark

Assumptions on the graph:

- At most one edge between two points;
- No single loops;
- Connected.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Gauge theory on a gra	aph (cf. Baez)			

Let $P \to \Lambda^0$ a principal bundle with **compact** structure group *G*. The base Λ^0 is discrete. $\Rightarrow P \simeq G^{\Lambda_0}$ For any $e \in \Lambda^1$ we define parallel transporters:

 $\mathcal{A}_e := \{F : P_{s(e)} \to P_{t(e)} \text{ smooth } | F(x \cdot g) = F(x) \cdot g\}.$

Space of connections/gauge fields:

$$\prod_{e\in\Lambda^1}\mathcal{A}_e\simeq G^{\Lambda^1}:=\mathcal{K}.$$

Canonical choice of probability measure: the Haar measure μ on G^{Λ^1} .

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Gauge theory on a graph (cf. Baez)				

Group of gauge transformations:

$$\mathcal{G} := \prod_{\nu \in \Lambda^{\mathbf{0}}} P_{\nu} imes_{\operatorname{Ad}} G \simeq G^{\Lambda^{\mathbf{0}}}.$$

Action of \mathcal{G} on \mathcal{K} :

$$(g = (g_v)_{v \in \Lambda^0}, a = (a_e)_{e \in \Lambda^1}) \mapsto g \cdot a := ((g \cdot a)_e)_{e \in \Lambda^1},$$

 $(g \cdot a)_e := g_{t(e)}a_eg_{s(e)}^{-1}.$

Extends to an action of \mathfrak{G} on the phase space $T^*\mathcal{K} = (T^*\mathcal{G})^{\Lambda^1}$.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Quantisation				

Quantisation of the system:

$$\mathcal{H} = L^2(\mathcal{K}, \mu) = L^2(G^{\wedge^1}, \mu_G^{\wedge^1}), \qquad A := B_0(L^2(\mathcal{K}, \mu)).$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Quantisation				

Quantisation of the system:

$$\mathcal{H} = L^2(\mathcal{K}, \mu) = L^2(G^{\Lambda^1}, \mu_G^{\Lambda^1}), \qquad A := B_0(L^2(\mathcal{K}, \mu)).$$

Motivation: Weyl quantisation.

Look at the operators P, Q on $L^2(\mathbb{R})$ satisfying the commutation relation

$$PQ - QP = -i\hbar.$$

Exponentiating to 1-parameter groups we get the Weyl form of the CCR's:

$$U(t)V(s) = e^{-ist}V(s)U(t).$$

All such pairs of 1-parameter groups on $L^2(\mathbb{R})$ are unitarily equivalent. Covariant pair of representations of \mathbb{R} and $C_0(\mathbb{R})$.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Stone-Von Neumann				

Theorem (Stone-Von Neumann, Mackey)

Let G be a locally compact group. Then any covariant pair of representations of G and $C_0(G)$ on a Hilbert space \mathcal{H} is a multiple of the standard representation on $L^2(G)$.

For the left regular representation we have

 $C_0(G) \rtimes_{\lambda} G \simeq B_0(L^2(G))$

Kijowski and Rudolph in [3] consider the algebra of observables

$$A:=C(G^{\Lambda^{1}})\rtimes G^{\Lambda^{1}}\simeq B_{0}(\mathcal{H}).$$

This algebra can be realised as a groupoid C*-algebra.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
The C*-algebra of a pair groupoid as a quantisation				

Geometric realisation as a groupoid C*-algebra: pair groupoid

$$X \times X \xrightarrow[t]{s} X$$
.

 $C_r^*(X \times X)$: completion of the convolution algebra $C_c(X \times X)$ in the norm coming from the left regular representation.

Theorem (Renault)

Let X locally compact and Hausdorff with a Radon measure of full support μ .

$$C_{\rm r}^*(X \times X) \simeq B_0(L^2(X)). \tag{1}$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook	
The C^* -algebra of a pair groupoid as a quantisation					

Geometric realisation as a groupoid C*-algebra: pair groupoid

$$X \times X \xrightarrow[t]{s} X$$
.

 $C_r^*(X \times X)$: completion of the convolution algebra $C_c(X \times X)$ in the norm coming from the left regular representation.

Theorem (Renault)

Let X locally compact and Hausdorff with a Radon measure of full support μ .

$$C_{\rm r}^*(X \times X) \simeq B_0(L^2(X)). \tag{1}$$

Define the quantization without the need of a group structure!

For Q compact Riemannian, the quantization of T^*Q is $B_0(L^2(Q))$.

	(daman) Bange meery on a graph			
Gauge symmetries and	I reduction of the quantum system (Rieffel Induct	tion)		
Unitary r	epresentation U of the gauge gr	oup $\mathfrak{G}={\it G}^{\Lambda^{m 0}}$ on	$\mathcal{H} = L^2(\mathcal{K}).$	

$$U((g_x)_{x\in\Lambda^{\mathbf{0}}})\psi((a_e)_{e\in\Lambda^{\mathbf{1}}})=\psi\left((g_{s(e)}a_eg_{t(e)}^{-1})_{e\in\Lambda^{\mathbf{1}}}\right),\qquad\psi\in\mathcal{H}.$$
 (2)

Hilbert space \mathcal{H}^g of $\mathcal{G}\text{-invariant}$ vectors in $\mathcal{H}.$

Push the measure forward to $\mathfrak{G}\backslash\mathfrak{K}$: we obtain $\mathfrak{H}^{\mathfrak{G}}\simeq L^{2}(\mathfrak{G}\backslash\mathfrak{K},\mu_{\mathsf{G}})$.

Gauge symmetries and reduction of the quantum system (Rieffel Induction)	
Unitary representation U of the gauge group $\mathfrak{G}=\mathcal{G}^{\wedge^{0}}$ on $\mathfrak{H}=L^{2}(\mathfrak{K}).$	

$$U((g_x)_{x\in\Lambda^{\mathbf{0}}})\psi((a_e)_{e\in\Lambda^{\mathbf{1}}}) = \psi\left((g_{s(e)}a_eg_{t(e)}^{-1})_{e\in\Lambda^{\mathbf{1}}}\right), \qquad \psi\in\mathcal{H}.$$
 (2)

Hilbert space \mathcal{H}^g of $\mathcal{G}\text{-invariant}$ vectors in $\mathcal{H}.$

Push the measure forward to $\mathfrak{G}\backslash \mathfrak{K}$: we obtain $\mathfrak{H}^{\mathfrak{G}} \simeq L^2(\mathfrak{G}\backslash \mathfrak{K}, \mu_{\mathbf{G}})$. Consider the subalgebra

$$A^{\mathcal{G}} := A \cap \phi(\mathcal{G})' \subseteq A.$$

Outloo

Gauge symmetries and reduction of the quantum system (Rieffel Induction)	
Unitary representation U of the gauge group $\mathfrak{G}={\sf G}^{\wedge^{m 0}}$ on $\mathfrak{H}=L^2(\mathfrak{K}).$	

$$U((g_{\mathsf{x}})_{\mathsf{x}\in\Lambda^{\mathbf{0}}})\psi((a_{e})_{e\in\Lambda^{\mathbf{1}}})=\psi\left((g_{\mathsf{s}(e)}a_{e}g_{t(e)}^{-1})_{e\in\Lambda^{\mathbf{1}}}\right),\qquad\psi\in\mathfrak{H}.$$
 (2)

Hilbert space \mathcal{H}^{9} of \mathcal{G} -invariant vectors in \mathcal{H} .

Push the measure forward to $\mathfrak{G}\backslash \mathfrak{K}$: we obtain $\mathfrak{H}^{\mathfrak{G}} \simeq L^2(\mathfrak{G}\backslash \mathfrak{K}, \mu_{\mathsf{G}})$. Consider the subalgebra

$$A^{\mathcal{G}} := A \cap \phi(\mathcal{G})' \subseteq A.$$

 $\pi : A \to \mathcal{B}(\mathcal{H})$ induces a representation $\tilde{\pi} : A^{\mathcal{G}} \to \mathcal{B}(\mathcal{H}^{\mathcal{G}})$. Observable algebra of the reduced system:

$$A^{\mathcal{G}}/\ker \tilde{\pi} \simeq B_0(\mathfrak{H}^{\mathcal{G}}).$$

Gauge symmetries and reduction of the quantum system (Rieffel Induction)	
Unitary representation U of the gauge group $\mathfrak{G}=\mathcal{G}^{\Lambda^{0}}$ on $\mathfrak{H}=L^{2}(\mathfrak{K}).$	

$$U((g_{x})_{x\in\Lambda^{\mathbf{0}}})\psi((a_{e})_{e\in\Lambda^{\mathbf{1}}})=\psi\left((g_{s(e)}a_{e}g_{t(e)}^{-1})_{e\in\Lambda^{\mathbf{1}}}\right),\qquad\psi\in\mathcal{H}.$$
 (2)

Hilbert space $\mathcal{H}^{\mathcal{G}}$ of \mathcal{G} -invariant vectors in \mathcal{H} .

Push the measure forward to $\mathcal{G}\setminus\mathcal{K}$: we obtain $\mathcal{H}^{\mathcal{G}} \simeq L^2(\mathcal{G}\setminus\mathcal{K}, \mu_{\mathsf{G}})$. Consider the subalgebra

$$A^{\mathcal{G}} := A \cap \phi(\mathcal{G})' \subseteq A.$$

 $\pi : A \to \mathcal{B}(\mathcal{H})$ induces a representation $\tilde{\pi} : A^{\mathcal{G}} \to \mathcal{B}(\mathcal{H}^{\mathcal{G}})$. Observable algebra of the reduced system:

$$A^{\mathcal{G}}/\ker \tilde{\pi} \simeq B_0(\mathfrak{H}^{\mathcal{G}}).$$

Open problem: Guillemin-Sternberg conjecture, i.e. quantisation commutes with reduction. (cf. Boeijnk, Landsman, Van Suijlekom).

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
The quantum Hamilto	onian			

The free Hamiltonian (Kogut-Susskind [4]) is defined as

$$H_0 = \sum_{e \in \Lambda^1} -rac{1}{2} I_e \Delta_e$$

where Δ_e is the Laplacian (Casimir) on G.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
The quantum Hamilto	onian			

The free Hamiltonian (Kogut-Susskind [4]) is defined as

$$\mathcal{H}_0 = \sum_{e \in \Lambda^1} -rac{1}{2} I_e \Delta_e$$

where Δ_e is the Laplacian (Casimir) on G.

Essentially self-adjoint on $C^{\infty}(G^{\Lambda^1}) \subset L^2(G^{\Lambda^1})$, hence closable.

(3)

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
The quantum Hamilto	onian			

The free Hamiltonian (Kogut-Susskind [4]) is defined as

$$\mathcal{H}_0 = \sum_{e \in \Lambda^1} -rac{1}{2} I_e \Delta_e$$

where Δ_e is the Laplacian (Casimir) on G.

Essentially self-adjoint on $C^{\infty}(G^{\wedge^1}) \subset L^2(G^{\wedge^1})$, hence closable.

 H_0 is well-behaved with respect to the action of the gauge group:

The restriction $H_{0,red}$ to $Dom(H_0) \cap \mathcal{H}^{\mathfrak{G}}$ is a self-adjoint operator on $\mathcal{H}^{\mathfrak{G}}$

Commutative diagram

$$\begin{array}{c|c} \mathsf{Dom}(H_0) \xrightarrow{H_0} & \mathcal{H} \\ & & \downarrow^{p_{\mathcal{H}}g} \\ & & \downarrow^{p_{\mathcal{H}}g} \\ \mathsf{Dom}(H_0) \cap \mathcal{H}^g \xrightarrow{H_{0,\mathrm{red}}} & \mathcal{H}^g \end{array}$$

(3)

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

1 Motivation

Gauge theory on a graph and quantisation

3 Refinements of graphs

4 The continuum limit

5 Outlook

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Refinements				

Let Λ_i, Λ_j be two graphs. An inclusion $\iota : \Lambda_i \to \Lambda_j$ consists of

- An injective map $\iota^{0} : \Lambda_{i}^{0} \to \Lambda_{j}^{0}$,
- A map ℓ¹ that assigns to every e ∈ Λ¹_i a simple path in Λ_j starting at s(e) and ending at t(e).

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Refinements				

Let Λ_i, Λ_j be two graphs. An inclusion $\iota : \Lambda_i \to \Lambda_j$ consists of

- An injective map $\iota^0 : \Lambda^0_i \to \Lambda^0_j$,
- A map ι^1 that assigns to every $e \in \Lambda_i^1$ a simple path in Λ_j starting at s(e)and ending at t(e).

Definition

 Λ_j is a refinement of Λ_i if there exists an inclusion $\iota : \Lambda_i \to \Lambda_j$.

Partial order on the set of (equivalence classes of) finite oriented graphs.

Remark

More rigorously: look at the free category C_Λ generated by a graph and define refinements as functors between such categories.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Lattice subdivisions				

Two classes :

• Λ_i is obtained from Λ_i by adding an extra edge (possibly an extra vertex):

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Lattice subdivisions				

Definition

We let Refine denote the category with the following properties:

- Its set of objects is the class of oriented graphs;
- Given two oriented graphs Λ_i and Λ_j , then the set of morphisms from Λ_i to
 - Λ_j is given by the set of refinements $(\Lambda_i, \Lambda_j, \iota)$.
- Composition is given by composition of refinement functors.
- For each oriented graph Λ , there is a canonical refinement $(\Lambda, \Lambda, \mathrm{Id})$;

Aim: define functors from Refine to the categories appearing in the quantisation: Top, Hilb, C*Alg, Grpd.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
The space of connections				

Any refinement $\Lambda_i \leq \Lambda_j$ induces a map at the level of configuration spaces

 $R_{ij}: \mathfrak{K}_j \to \mathfrak{K}_i \quad (R_{ij}(a))_e = a_{e_1} \dots a_{e_n}$

for $e \in \Lambda_i$ with $\iota(e) = (e_1, \ldots, e_n)$.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
The space of connections				

Any refinement $\Lambda_i \leq \Lambda_j$ induces a map at the level of configuration spaces

$$R_{ij}:\mathfrak{K}_j
ightarrow\mathfrak{K}_i\quad (R_{ij}(a))_e=a_{e_1}\ldots a_{e_r}$$

for $e \in \Lambda_i$ with $\iota(e) = (e_1, \ldots, e_n)$.

Equivariance condition

$$(\iota^{(0)})^*(g) \cdot R_{i,j}(a) = R_{i,j}(g \cdot a), \quad \forall g \in \mathfrak{G}_j, a \in \mathfrak{K}_j$$

hence it descends to a map $R_{i,j}^{\mathrm{red}} \colon \mathfrak{G}_j \setminus \mathfrak{K}_j \to \mathfrak{G}_i \setminus \mathfrak{K}_i$.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
The space of connections				

Any refinement $\Lambda_i \leq \Lambda_j$ induces a map at the level of configuration spaces

$$R_{ij}:\mathfrak{K}_j
ightarrow\mathfrak{K}_i\quad (R_{ij}(a))_e=a_{e_1}\ldots a_{e_r}$$

for $e \in \Lambda_i$ with $\iota(e) = (e_1, \ldots, e_n)$.

Equivariance condition

$$(\iota^{(0)})^*(g) \cdot R_{i,j}(a) = R_{i,j}(g \cdot a), \quad \forall g \in \mathfrak{G}_j, a \in \mathfrak{K}_j$$

hence it descends to a map $R_{i,j}^{\mathrm{red}} \colon \mathfrak{G}_j \setminus \mathfrak{K}_j \to \mathfrak{G}_i \setminus \mathfrak{K}_i$.

We obtain a commutative diagram:

(4)

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Measures and Hilbert spaces				

On the inverse system of Hausdorff spaces $(\mathcal{K}_i, R_{i,j})$ we have an *exact* inverse system of Radon measures for $(\mathcal{K}_i, R_{i,j})$, i.e. for $i \leq j$ we have

 $(R_{i,j})_*(\mu_j) = \mu_i.$

The image of the Haar measure on \mathcal{K}_i is the Haar measure on \mathcal{K}_i .

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Measures and Hilbert spaces				

On the inverse system of Hausdorff spaces $(\mathcal{K}_i, R_{i,j})$ we have an *exact* inverse system of Radon measures for $(\mathcal{K}_i, R_{i,j})$, i.e. for $i \leq j$ we have

$$(R_{i,j})_*(\mu_j)=\mu_i.$$

The image of the Haar measure on \mathcal{K}_j is the Haar measure on \mathcal{K}_i .

Similarly, we have an *exact* inverse system of measures on $(\mathcal{G}_i \setminus \mathcal{K}_i, \mathcal{R}_{i,j}^{red})$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Measures and Hilbert spaces				

On the inverse system of Hausdorff spaces $(\mathcal{K}_i, R_{i,j})$ we have an *exact* inverse system of Radon measures for $(\mathcal{K}_i, R_{i,j})$, i.e. for $i \leq j$ we have

$$(R_{i,j})_*(\mu_j)=\mu_i.$$

The image of the Haar measure on \mathcal{K}_j is the Haar measure on \mathcal{K}_i . Similarly, we have an *exact* inverse system of measures on $(\mathcal{G}_i \setminus \mathcal{K}_i, R_{i,j}^{\text{red}})$ Obtain direct systems of Hilbert spaces: we have unitary maps

$$\begin{split} u_{ij} &: R_{ij}^* : L^2(\mathcal{K}_i) \to L^2(\mathcal{K}_j) \quad u(\psi) = \psi \cdot R_{ij}, \\ u_{ij} &: (R_{ij}^{\mathrm{red}})^* : L^2(\mathcal{G}_i \backslash \mathcal{K}_i) \to L^2(\mathcal{G}_j \backslash \mathcal{K}_j) \quad u(\psi) = \psi \cdot R_{ij}^{\mathrm{red}}. \end{split}$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Observable algebras				

The isometries between the Hilbert spaces induce injective *-homomorphisms between the algebras of observables.

$$egin{aligned} & v\colon B_0(L^2(\mathcal{K}_i)) o B_0(L^2(\mathcal{K}_j)), & b\mapsto ubu^*; \ & v^{\mathrm{red}}\colon B_0(L^2(\mathfrak{G}_iackslash\mathcal{K}_i)) o B_0(L^2(\mathfrak{G}_jackslash\mathcal{K}_j)), & b\mapsto u^{\mathrm{red}}b(u^{\mathrm{red}})^*, \end{aligned}$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Observable algebras				

The isometries between the Hilbert spaces induce injective *-homomorphisms between the algebras of observables.

$$\begin{split} & \mathsf{v} \colon B_0(L^2(\mathfrak{K}_i)) \to B_0(L^2(\mathfrak{K}_j)), \qquad b \mapsto ubu^*; \\ & \mathsf{v}^{\mathrm{red}} \colon B_0(L^2(\mathfrak{G}_i \backslash \mathfrak{K}_i)) \to B_0(L^2(\mathfrak{G}_j \backslash \mathfrak{K}_j)), \qquad b \mapsto u^{\mathrm{red}} b(u^{\mathrm{red}})^* \end{split}$$

The collections $(B_0(L^2(\mathcal{K}_i)), v_{i,j})$ and $(B_0(L^2(\mathcal{G}_i \setminus \mathcal{K}_i)), v_{i,j}^{red})$ form direct systems of C*-algebras.

Motiva	tion	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Groupo	ids				

The map $R_{i,j} \colon \mathcal{K}_j \to \mathcal{K}_i$ canonically gives rise to a groupoid morphism

$$\mathsf{R}_{i,j} = \left(\mathsf{R}_{i,j}^{(0)}, \mathsf{R}_{i,j}^{(1)}\right) : \mathsf{G}_j \to \mathsf{G}_i \qquad \mathsf{R}_{i,j}^{(0)} = \mathsf{R}_{i,j}, \ \mathsf{R}_{i,j}^{(1)} = \mathsf{R}_{i,j} \times \mathsf{R}_{i,j}$$

(Similarly for $\mathsf{R}^{\mathrm{red}}_{i,j} \colon \mathsf{G}^{\mathrm{red}}_{j} \to \mathsf{G}^{\mathrm{red}}_{i}$.)

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Groupoids				

The map $R_{i,j} \colon \mathcal{K}_j \to \mathcal{K}_i$ canonically gives rise to a groupoid morphism

$$\mathsf{R}_{i,j} = \left(\mathsf{R}_{i,j}^{(0)}, \mathsf{R}_{i,j}^{(1)}\right) : \mathsf{G}_j \to \mathsf{G}_i \qquad \mathsf{R}_{i,j}^{(0)} = \mathsf{R}_{i,j}, \ \mathsf{R}_{i,j}^{(1)} = \mathsf{R}_{i,j} \times \mathsf{R}_{i,j}$$

(Similarly for $\mathsf{R}^{\mathrm{red}}_{i,j} \colon \mathsf{G}^{\mathrm{red}}_j o \mathsf{G}^{\mathrm{red}}_i$.)

The maps $R_{i,j}$ induce a map $R_{i,j}^*$ between the groupoid C*-algebras (pullback).

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Hamiltonians				

Given two graphs Λ_i , Λ_j , we consider the Hamiltonians

$$H_{0,i} = \sum_{e \in \Lambda_i^1} -\frac{1}{2} I_{i,e} \Delta_e, \quad \text{and} \quad H_{0,j} = \sum_{e \in \Lambda_i^1} -\frac{1}{2} I_{j,e} \Delta_e,$$

let $\mathcal{H}_i := L^2(\mathcal{K}_i)$, let $\mathcal{H}_j := L^2(\mathcal{K}_j)$ with maps $u : \mathcal{H}_i \to \mathcal{H}_j$ and $u_{\mathrm{red}} : \mathcal{H}_i^{\mathfrak{S}_j} \to \mathcal{H}_i^{\mathfrak{S}_j}$ between the corresponding Hilbert spaces.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Hamiltonians				

Given two graphs Λ_i , Λ_j , we consider the Hamiltonians

$$H_{0,i} = \sum_{e \in \Lambda_i^1} -\frac{1}{2} I_{i,e} \Delta_e, \quad \text{and} \quad H_{0,j} = \sum_{e \in \Lambda_i^1} -\frac{1}{2} I_{j,e} \Delta_e,$$

let $\mathcal{H}_i := L^2(\mathcal{K}_i)$, let $\mathcal{H}_j := L^2(\mathcal{K}_j)$ with maps $u : \mathcal{H}_i \to \mathcal{H}_j$ and $u_{\mathrm{red}} : \mathcal{H}_i^{\mathfrak{G}_i} \to \mathcal{H}_j^{\mathfrak{G}_j}$ between the corresponding Hilbert spaces. If we assume that for each $e \in \Lambda_i^1$, we have

$$I_{i,e} = \sum_{k=1}^n I_{j,e_k},$$

we have compatibility between Hamiltonians at different levels.

(6)

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

1 Motivation

Gauge theory on a graph and quantisation

3 Refinements of graphs

4 The continuum limit

5 Outlook

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Limit of configuration	spaces, Hilbert spaces and observable algebras			

We can take the projective limit on the space of connections

$$\mathfrak{K}_{\infty} := \varprojlim_{i \in I} \mathfrak{K}_i, \qquad R_{i,\infty} : \mathfrak{K}_{\infty} \to \mathfrak{K}_i.$$

Note that there is no group structure on \mathcal{K}_{∞} !

There exists a Radon measure μ_{∞} on \mathcal{K}_{∞} such that $R_{i,\infty}(\mu_{\infty}) = \mu_i$ (Prokhorov's theorem).

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Limit of configuration	spaces, Hilbert spaces and observable algebras			

We can take the projective limit on the space of connections

$$\mathfrak{K}_{\infty} := \varprojlim_{i \in I} \mathfrak{K}_i, \qquad R_{i,\infty} : \mathfrak{K}_{\infty} \to \mathfrak{K}_i.$$

Note that there is no group structure on \mathcal{K}_{∞} !

There exists a Radon measure μ_{∞} on \mathcal{K}_{∞} such that $R_{i,\infty}(\mu_{\infty}) = \mu_i$ (Prokhorov's theorem).

Direct limit Hilbert space:

$$\mathcal{H}_{\infty} := \varinjlim_{i \in I} \mathcal{H}_i \simeq L^2(\mathcal{K}_{\infty}, \mu_{\infty}).$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
Limit of configuration	spaces, Hilbert spaces and observable algebras			

We can take the projective limit on the space of connections

$$\mathfrak{K}_{\infty} := \varprojlim_{i \in I} \mathfrak{K}_i, \qquad R_{i,\infty} : \mathfrak{K}_{\infty} \to \mathfrak{K}_i.$$

Note that there is no group structure on \mathcal{K}_{∞} !

There exists a Radon measure μ_{∞} on \mathcal{K}_{∞} such that $R_{i,\infty}(\mu_{\infty}) = \mu_i$ (Prokhorov's theorem).

Direct limit Hilbert space:

$$\mathcal{H}_{\infty} := \varinjlim_{i \in I} \mathcal{H}_i \simeq L^2(\mathcal{K}_{\infty}, \mu_{\infty}).$$

For the direct limit of the observable algebras

$$\lim_{i\in I}A_i\simeq B_0(\mathcal{H}_\infty).$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook	
The limit groupoid and its C*-algebra					

The limit groupoid G_{∞} is also a pair groupoid and is given by

$$\mathsf{G}_{\infty} = \mathscr{K}_{\infty} \times \mathscr{K}_{\infty}.$$

It is by definition a free and transitive groupoid.

The groupoid C*-algebra $C^*(\mathcal{K}_{\infty} \times \mathcal{K}_{\infty})$ is isomorphic to the limit observable algebra:

$$C^*(\mathsf{G}_{\infty}) = C^*(\varprojlim_{i \in I} \mathsf{G}_i) \simeq B_0(L^2(\mathscr{K}_{\infty}, \mu)) \simeq \varinjlim_{i \in I} B_0(L^2(\mathscr{K}_i, \mu_i)) \simeq \varinjlim_{i \in I} C^*(\mathsf{G}_i),$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook		
Symmetries and the continuum limit						

By equivariance can consder $\mathcal{K}^{\mathrm{red}}_{\infty}$. Then there exists a Radon measure $\mu^{\mathrm{red}}_{\infty}$ on $\mathcal{K}^{\mathrm{red}}_{\infty}$ such that $R^{\mathrm{red}}_{i,\infty}(\mu^{\mathrm{red}}_{\infty}) = \mu^{\mathrm{red}}_{i}$.

Next, we can consider the space of square integrable functions on $\mathcal{K}^{\rm red}_\infty$ with respect to the Radon measure $\mu^{\rm red}_\infty$ and get

 $\mathfrak{H}^{\mathrm{red}}_{\infty} \simeq L^2(\mathfrak{K}^{\mathrm{red}}_{\infty}, \mu^{\mathrm{red}}_{\infty}).$

wouvation	(Quantum) gauge theory on a graph	Rennements		Outlook
Symmetries and the co	ontinuum limit			i i
By equiva	ariance can consder ${\mathcal K}^{ m red}_\infty.$ Then	there exists a R	adon measure $\mu^{ m red}_\infty$ on	1
$\mathcal{K}^{ ext{red}}_{\infty}$ such	h that $R_{i \infty}^{\mathrm{red}}(\mu_{\infty}^{\mathrm{red}})=\mu_{i}^{\mathrm{red}}.$			

Next, we can consider the space of square integrable functions on $\mathcal{K}^{\rm red}_\infty$ with respect to the Radon measure $\mu^{\rm red}_\infty$ and get

 $\mathcal{H}^{\mathrm{red}}_{\infty} \simeq L^2(\mathcal{K}^{\mathrm{red}}_{\infty}, \mu^{\mathrm{red}}_{\infty}).$

The algebra of observables satisfies

$$\varinjlim_{i\in I} B_0(\mathcal{H}_i) \simeq B_0(\mathcal{H}_\infty^{\mathrm{red}}).$$

and this is again a groupoid C*-algebra

$$\mathcal{C}^*(\mathsf{G}^{\mathrm{red}}_\infty)\simeq B_0(L^2(\mathscr{K}^{\mathrm{red}}_\infty,\mu^{\mathrm{red}}_\infty)).$$

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

1 Motivation

Gauge theory on a graph and quantisation

3 Refinements of graphs

4 The continuum limit

5 Outlook

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

 Rigorous operator algebraic approach to lattice field theories and their continuum limit.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

- Rigorous operator algebraic approach to lattice field theories and their continuum limit.
- Reduction of quantum lattice gauge fields via Rieffel induction.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

- Rigorous operator algebraic approach to lattice field theories and their continuum limit.
- Reduction of quantum lattice gauge fields via Rieffel induction.
- Compatibility with limit constructions and with the action of the gauge group.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

- Rigorous operator algebraic approach to lattice field theories and their continuum limit.
- Reduction of quantum lattice gauge fields via Rieffel induction.
- Compatibility with limit constructions and with the action of the gauge group.
- We identified a limit G_∞ for which the groupoid C*-algebra C*(G_∞) is isomorphic to the limit of the observable algebras lim_{i∈1} A_i.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

- Rigorous operator algebraic approach to lattice field theories and their continuum limit.
- Reduction of quantum lattice gauge fields via Rieffel induction.
- Compatibility with limit constructions and with the action of the gauge group.
- We identified a limit G_∞ for which the groupoid C*-algebra C*(G_∞) is isomorphic to the limit of the observable algebras lim_{i∈1} A_i.
- Goal: incorporate the dynamics:

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

- Rigorous operator algebraic approach to lattice field theories and their continuum limit.
- Reduction of quantum lattice gauge fields via Rieffel induction.
- Compatibility with limit constructions and with the action of the gauge group.
- We identified a limit G_∞ for which the groupoid C*-algebra C*(G_∞) is isomorphic to the limit of the observable algebras lim_{i∈I} A_i.
- Goal: incorporate the dynamics:
 - study of the Hamiltonian in the limit;

Mot	tivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook

- Rigorous operator algebraic approach to lattice field theories and their continuum limit.
- Reduction of quantum lattice gauge fields via Rieffel induction.
- Compatibility with limit constructions and with the action of the gauge group.
- We identified a limit G_∞ for which the groupoid C*-algebra C*(G_∞) is isomorphic to the limit of the observable algebras lim_{i∈I} A_i.
- Goal: incorporate the dynamics:
 - study of the Hamiltonian in the limit;
 - infinitely many degrees of freedom: need to enlarge the algebra of observables.

Motivation	(Quantum) gauge theory on a graph	Refinements	The continuum limit	Outlook
References				

- F. Arici, R. Stienstra, W. D. van Suijlekom, *Quantum lattice gauge theories and groupoid C*-algebras*, [arXiv:1705.03815].
- J. C. Baez, Spin Networks in Gauge theory, Adv. Math. 117, 253-272 (1996).
- J. Kijowski, G. Rudolph, *Charge superselection sectors for QCD on the lattice*, J. Math. Phys **117**, 253-272 (1996).
- J. Kogut, L. Susskind, *Hamiltonian formulation of Wilson's lattice gauge theories*, Phys. Rev D **11**, 395-408 (1975).
- P. S. Muhly, J. N. Renault, D. P. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17, 3-22 (1987).
- K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10, 2445-2459 (1974)