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Dijkgraaf-Witten theories as a gauge theory )

G a finite group, M a closed oriented 3-manifold.
Configuration space: Bung(M), a finite groupoid. “Path integral”:

tftG(M):/ e’ = |Bung(M)|
Bung(M)



[e] le]e]

A 3d TFT from a gauge theory

Groupoid cardinality is the unique function assigning to a finite groupoid X a
rational number |X| such that:

@ (Normalization): |pt| = 1, where pt = %/ /id.

9 (Homotopy invariance): X 2 Y implies |[X| = |Y/|.

o (Gluing): | XU Y| =|X]|+]Y].

@ (Covering): If F: X — Y is an n-sheeted covering map, then |X| = n|Y]|.
Covering of groupoids is a functor F : X — Y/, surjective on objects and
satisfying the unique path lifting property.

If p:y1 — y» is a morphism in Y and xi € X such that F(x1) = yi, then
Al p’: x1 — x2 in X such that F(p') = p.

A covering map is n-sheeted, if the preimage of every object in Y consists
of n objects in X.




Remark

Homotopy invariance and gluing axiom = groupoid cardinality is completely
determined by |BG| = | * //G|, where G is a finite group.
EG := G\\G the action groupoid for the left regular action. Then EG — BG

=i
sending g " h to the element hg™' € G is a |G|-sheeted covering. On the
other hand, EG = pt, since the left action is transitive and free. Thus,
|EG| = 1 by the normalization axiom; the covering axiom then implies that
1BG| =

IGl-
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Definition

Let I be an essentially finite groupoid, i.e. assume that I is equivalent to a
groupoid with only finitely many morphisms. The groupoid cardinality of the
groupoid [ is the rational number

1
M= > TR

[glemo(T)

A\
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Properties of groupoid cardinality

Q | XxY|=|X]||Y|
Proof: |_|—,X,‘YL satisfies the axioms of groupoid cardinality.

Q Let S be a finite G-set and S//G the action groupoid. Then
S//6G| = {3
Proof: by the gluing axiom, restrict to transitive actions and use the
orbit-stabilizer theorem.
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Properties of groupoid cardinality

Q |X x Y| =|X| Y]

Proof: |_|¢‘Y‘ satisfies the axioms of groupoid cardinality.
Q Let S be a finite G-set and S//G the action groupoid. Then
15//G1 = g

Proof: by the gluing axiom, restrict to transitive actions and use the
orbit-stabilizer theorem.

Multiplicative invariant for closed three-manifolds: tftg(M) := |[Bung(M)|

If M is connected and m € M, replace Bung(M) by the action groupoid
Hom(m1 (M, m), G)//G with G acting by conjugation. Then

|Bung(M)| = [Hom(m (M), G)| / |G| .

expresses tftg(M) in terms of the fundamental group of M.

The statement that tftg(M) is an invariant of 3-manifolds is not a deep
statement. The relevant statement is locality of the invariant,



Definition of topological field theories

Definition (Cobordism category)

@ Objects of cobp,,—1: closed oriented

(n — 1)-manifolds. LS\’/{D

@ Morphisms: spans S — M «— S’ with M - Oﬂ\o/ <) N
oriented n-manifold with boundary Cj ~ 0 o
OM =SS, up to diffeomorphism relative ’ &' o

boundary.

@ Monoidal product is disjoint union.
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Definition of topological field theories

Definition (Cobordism category)

@ Objects of cobp,,—1: closed oriented ~ N
(n — 1)-manifolds. LS\f/éj

@ Morphisms: spans S — M «— S’ with M 72 <O N
oriented n-manifold with boundary o I
OM =SS, up to diffeomorphism relative - $' o
boundary. i

@ Monoidal product is disjoint union.

Definition (Topological field theory)

An (oriented) topological field theory is a symmetric monoidal functor
tft : coby’,_1 — vect. (It is a representation of coby’,_.)

Topological fact: cob5'; is the free symmetric monoidal category on a
commutative Frobenius object.

Corollary: tft(S') is a commutative Frobenius algebra. Any such Frobenius
algebra gives a two-dimensional TFT.
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Universal construction [BHMV] =GNS construction

General construction of a TFT from an invariant of closed manifolds.
Given C a category and 1 € C an object. Two functors:

Hom(1,— free
—

Fi: C ) Set free, vecty and F°: C Hom(Z1) gop free, vectx
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Universal construction [BHMV] =GNS construction

General construction of a TFT from an invariant of closed manifolds.
Given C a category and 1 € C an object. Two functors:

Hom(—,1) free

Hom(1,— f
Di>)Setﬁ>vectk and F°: C —" Set — vecty

Fi: C
Invariant=State: / : End¢(1) — K gives pairing
Fi(c) @ Fi°(c) — vect defined on a basis 0 ® §g — I(g o f)

GNS functors
.7'—1,/ = fl/lRad and ]‘—f,o/ = .7:1/I‘Rad

Examples: one-object category C = x//A with algebra A;
C = cobp,n—1 and | = () invariant of closed manifolds

Theorem (L. Miiller, CS 2017)

Q IfC is monoidal and | : Endc(1) — K is a morphism of monoids, then the
GNS functor Fi,; is lax monoidal.

Q If F1,1 is monoidal, then it is symmetric.

Q A 3-dimensional (abelian) DW theory can be constructed from a
symmetric monoidal category cobs» with Wilson lines.
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Vector spaces for surface, alternative geometric construction

¥ closed oriented 2-manifold.
For any 3-manifold M with 9M = X and P € Bung(X), we can consider

Ym: P |Bung(M, P)|

This is a gauge-invariant function on space of field configurations Bung(X)
Thus assign to X the space of such functions:

tfte(Z) = Clmo(Bung(X))]

In DW theories, vector spaces are obtained by linearization from categories of
bundles
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Dijkgraaf-Witten theories as an extended TFT

Implement more locality by pair-of-pants decomposition: cut surfaces along

circles.
S a closed oriented 1-manifold.
For any surface ¥ with 9X = S and consider

s :  Bung(S) — vect with P+ Clm(Bung(X, P)]

This is a vector bundle over the space Bung(S) of field configurations on S.
Thus assign to S the category of such bundles:

tftc(S) = [Bung(S), vect]
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Dijkgraaf-Witten theories as an extended TFT

Implement more locality by pair-of-pants decomposition: cut surfaces along

circles.
S a closed oriented 1-manifold.
For any surface ¥ with 9X = S and consider

s :  Bung(S) — vect with P+ Clm(Bung(X, P)]

This is a vector bundle over the space Bung(S) of field configurations on S.
Thus assign to S the category of such bundles:

tftc(S) = [Bung(S), vect]

Remarks
O An extended 3d TFT assigns assigns a C-linear category to a 1-manifold.
Q In DW theories, the category is obtained by a 2-step procedure:

S — Bung(S) — [Bung(S), vect]
Assign field configurations, followed by linearization.

! 2 — vect

Bur —,vec
Q In general: tftg: cobszo 10 SpanGrp [Fovest
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Extended three-dimensional topological field theories

Definition (Cobordism bicategory)

Definition (2-vector spaces) o Objects: closed oriented

Denote by 2-vect the symmetric monoidal 1-manifolds.
bicategory @ 1-Morphisms: spans
@ Objects: finitely semisimple k-linear S — M « S’ with M oriented
abelian categories. 2-manifold with boundary
~Q /
@ 1-Morphisms: k-linear functors, OM=SUS'.
2-morphisms: k-linear natural @ 2-Morphisms: 3-manifolds
transformations. with corners up to

& The monoidal product is given by the diffeomorphisms

Deligne product. @ The monoidal product is given
by disjoint union.

Definition (Extended topological field theory)

A 3-2-1 extended oriented topological field theory is a symmetric monoidal
2-functor tft : cobs’, ; — 2-vect.
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Evaluation of a 3-2-1 TFT

Definition (Extended topological field theory)
A 3-2-1 extended oriented topological field theory is a symmetric monoidal

2-functor tft : cobs’; ; — 2-vect.

Examples:
1-morphism
TN
B ;
) w e (J (@]
o

gives tensor product
® : tft(S) x tft(S') — tft(S)

= Modular category tft(S")
For Dijkgraaf-Witten theories:

2-morphism
>
J v

gives braiding
® = "

[G//G,vect] = D(G) — mod



Equivariant Dijkgraaf-Witten theories from twisted bundles )

Observation

@ Bantay constructed in 2005 a premodular category B(G < H) from a
normal subgroup G C H (indeed, for a crossed module of groups).

9 B(G < H) is modularizable; Its modularization turns out to be the Drinfeld
double [G//G, vect] = D(G) — mod.
@ This category inherits an action of J:= H/G.




Equivariant Dijkgraaf-Witten theories from twisted bundles )

Observation

@ Bantay constructed in 2005 a premodular category B(G < H) from a
normal subgroup G C H (indeed, for a crossed module of groups).

9 B(G < H) is modularizable; Its modularization turns out to be the Drinfeld
double [G//G, vect] = D(G) — mod.
@ This category inherits an action of J:= H/G.

Question from representation theory:
Is the modularization the neutral component of a J-equivariant modular

category?



An action of a group J on a category C is a monoidal functor J — C.
A weak action of a group J on a group G is a monoidal functor J — x//G.

Theorem (Dedecker 1960, Schreier 1926)

There is a bijection between weak J-actions on G and group extensions

1-G—oHS J—>1




Definition
An action of a group J on a category C is a monoidal functor J — C.
A weak action of a group J on a group G is a monoidal functor J — *//G.

Theorem (Dedecker 1960, Schreier 1926)

There is a bijection between weak J-actions on G and group extensions

1-G—oHS J—>1

. o
Let J be a finite group.

Q@ Denote by cobiz’l a cobordism bicategory where all manifolds are
endowed with a J-cover.

Q An extended 3d J-equivariant TFT is a symmetric monoidal 2-fuctor

tft”

J
cob3,; — 2 — vect

Goal: construct J a equivariant TFT from a weak J-action on G.



Idea: use a different stack: J-twisted G-bundlesforl - G - H 5 J —1

Definition

Let J act weakly on G. Let P . M be a J-cover over M.

@ A P-twisted G-bundle over M is a pair (Q, ¢), consisting of an H-bundle
Q over M and a smooth map ¢ : @ — P over M that is required to obey

©(q - h) = w(q) - m(h)

forall g € Q and h € H.

@ A morphism of P-twisted bundles (Q, ) and (Q’,¢’) is a morphism
f: Q@ — Q' of H-bundles such that ¢’ o f = ¢.

@ We denote the category of P-twisted G-bundles by Bung (P — M).

i
Remarks

@ Twisted G-bundles can be pulled back along maps f: M — N

7 Bung(P — N) — Bung(f*P — M)

@ Bung(MxJ — M) = Bung(M).

\



Theorem (Maier, Nikolaus, S, 2012)

1-G—-HZJ—1

Q J-twisted G-bundles give a symmetric monoidal 2-functor
éﬁﬁc : cobizyl — SpanGrp

Q@ Upon linearization, this functor gives a J-equivariant TFT tftZ.



Theorem (Maier, Nikolaus, S, 2012)

1-G—-HZJ—1

Q J-twisted G-bundles give a symmetric monoidal 2-functor
éﬁﬁc : cobiz,l — SpanGrp

Q@ Upon linearization, this functor gives a J-equivariant TFT tft{.

A\

Remarks
@ We have tft5(S}) = [H;// G, vect] with H; := 7~ *(j).

9 The category [H//G, vect] carries the structure of a J-equivariant modular
category.

J J

() "

[G//G,vect]——— [H//G,vect] mod

modularization T\L orbifold ,H orbifold

B(G<H) mod “—— [H//H,vect] mod

A\



Theorem (S., Woike 2017)

@ Reformulate a J-equivariant TFT as
Z: cobz2 — RepGrpde

Q Let I and Q be additive, essentially finite homotopy invariant presheaves
satisfying a gluing condition and ¢ : I — € a morphism of presheaves.
Then the associated symmetric monoidal functor

Zy : cobz 2 — RepGrpde

is an Q-equivariant topological field theory.

Compute orbifold theory (at the level of invariants of 3-manifolds):

Zy

2 (M) = /Bun,(M) Z\(M, P) dP :/ 77 [P]| dP = [Bunw(M)),

Bun (M)

where Cavalieri's principle for groupoid cardinality enters in the last step.



[ 1o

Part 3: Topological field theories with defects

Dijkgraaf-Witten theories with defects from relative bundles )

Consider a larger symmetric monoidal bicategory ==
d,or .

cob3yy: (=)

(-

@ Objects: 1-manifolds with marked points

@ 1-Morphisms: 2-manifolds with boundary

@ 2-morphisms: 3-manifolds with corner

Definition (TFT with defects)

An (oriented) 3-2-1 TFT with defects is a symmetric monoidal functor
tft cobg 2y — 2-vect.

Goal: construct Dijkgraaf-Witten theories with defects



oce

Two applications of TFT with defects: quantum codes and CFT

1. Some problems with quantum codes:
@ Realistic samples have simple topology (disc).
Dimension of distinguished subspace sensitive to genus (Verlinde formula).
@ Relevant representations of mapping class groups too small to admit no
universal quantum gates.

Possible way out: two-layer systems with twist
defects
Effectively conformal blocks at higher genus

@ Increased dimension

@ Representations of braid groups admitting o st defeck (eng. o Lol ditocatin)
universal gates
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Two applications of TFT with defects: quantum codes and CFT

1. Some problems with quantum codes:
@ Realistic samples have simple topology (disc).
Dimension of distinguished subspace sensitive to genus (Verlinde formula).
@ Relevant representations of mapping class groups too small to admit no
universal quantum gates.

Possible way out: two-layer systems with twist
defects
Effectively conformal blocks at higher genus
@ Increased dimension
@ Representations of braid groups admitting
universal gates

2. Holographic construction of CFT correlators
(including ultimately non-ssi CFTs)
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Defects and boundaries in Dijkgraaf-Witten theories

Idea: keep the same 2-step procedure,

tfte :  cobsa Bug SpanGrp — 2 — vect

but allow for more general bundles as field configurations.
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Defects and boundaries in Dijkgraaf-Witten theories

Idea: keep the same 2-step procedure,

tfte :  cobsa Bug SpanGrp — 2 — vect

but allow for more general bundles as field configurations.

Definition

Given a relative manifold j : Y — X and a group homomorphism i : H — G,

Pc  Pu
Buny_o(Y = X):=<{ | , | ,a:IndfiPy—>*Pg
X Y

Topological Langrangian

w e Z3(G,C")

Transgress to T(w) € Z*(G//G,C*)
to get twisted linearization of
Bung(S') = G//G

=) (35 90,9.)




Categories for 1-manifolds

(Fuchs, S., Valentino, 2014)

2.6 Categories from 1-manifolds

Example: Interval

€ x C.qx G_‘FGI/
Lok, > Gy Bum ('13: qucr_._\\ /H,‘

. i xH x \-12'
Hy = Gox G,
S, . ¢ Transgress to 2-cocycle on gu,“[‘_t,\
sl G
2 1 7 rd (for twisted linearization)
!
Check:
Data:
3 ¥ . w
w, € 2 (C_a ,c ) bulk Lagrangian Module category ~ H (HI G)over(ﬂg.mk)

e, € Cl (HA)@,:) bdry Lagrangian —
g (e
Fu.w ‘*)ru K )‘((H () \‘ H(H’ IGZ))

2 "%
N T
T w, (Wl )

40 = w,

911 This "explains" representation theoretic results:

classification of module categories, cf. [O]



0000
Functors for surfaces: the transmission functor

Extended TFT: surface with boundaries, ~~ left exact k-linear functor.
Special case: to cylinder with a circular defect D

100-@

associate the transmission functor: for D A-bimodule category get functor

Fp: Z(A) — Z(A)




0000
Functors for surfaces: the transmission functor

Extended TFT: surface with boundaries, ~~ left exact k-linear functor.
Special case: to cylinder with a circular defect D

100-@

associate the transmission functor: for D A-bimodule category get functor

Fp: Z(A) — Z(A)

General principle of field theory:

Invertible codimension 1 defects describe symmetries.

3d TFT of TV type: Brauer-Picard group describes symmetries

TFT axioms: if D is invertible, then Fp is braided. Compare two functors

©o ©

FDXFD) Fpo®
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The transmission functor for invertible defects is braided

Natural isomorphism is monoidal

®O(FD X FD) = Fpo®

and braided

=y

Explicit calculation for
Dijkgraaf-Witten theories:

D — Fp is the map in the
description of the Brauer-Picard

group




(Fuchs, Priel, S., Valentino, 2015)

2.8 Symmetries for abelian DW

Special case: * G= A abelian ,w=1
%r’?tc(A vco{) O (AQA )
with o\ Q % , X) X ,a\

quadratic form 2) Automorphisms of CS 2-gerbe

. . 1-gerbe on ‘?.sum "B-field"
Obvious symmetries: g

W(AC") = an(r,€)>p

1) Symmetries of %"""‘A (transgression)
((GAM*(?)MMA\= AM*(A) Subgroup: A‘L’Aéc Ao 6-%
Subgroup: Braided equivalence:

H‘f_; M}/\Le C /—\@A/ @=/1

Braided equivalence:
-1
€® (@) AeA — Ao’

Ao n* — Ao N
(g0 "™ (g, xrBq.7)




3) Partial e-m dualities:

Example: A cyclic, fix  $. A A°

Braided equivalence:
Ko A" — A® A
(g, 7) = (£, &)
Subgroup: Aau < ABA

NCRICH

o a = T A ¥
@k 1) Q %\DZ)(aqy SR € )

Theorem [FPSV]

These symmetries form a set of generators

fi
o Br?(c &A-m&)



Outlook

Dijkgraaf-Witten C  Turaev-Viro TFT C  Reshetikhin-Turaev TFT
Gauge theory state sum model surgery

@ Fact:
Topological boundary conditions only exist in Turaev-Viro theories
= natural framework for holographic constructions of 2d CFTs

@ Goal:
tft cobfjrirz 1 — 2-vect based on finite tensor categories (not necessarily

semisimple)

9 Applications:
@ Holographic construction of logarithmic conformal field theories with
dualities
o TFT understanding of “‘categorified representation theory”
¢ TFT understanding of other facts in representation theory, e.g.
SLy(Z)-equivariant Frobenius-Schur indicators.



	Dijkgraaf-Witten theories
	Groupoid cardinality
	Definition of topological field theories
	Universal construction=GNS construction
	Extended topological field theories

	Equivariant Dijkgraaf-Witten from twisted bundles
	Twisted bundles
	Equivariant TFT from twisted bundles
	Orbifold construction

	Dijkgraaf-Witten theories with defects from relative bundles
	Topological field theories with defects
	Defect Dijkgraaf-Witten theories from relative bundles
	Transmission functors

	Outlook

