Monte Carlo Methods for Graphene and Carbon Nanotubes

Timo
 A. Lähde

Institute for Advanced Simulation (IAS-4) / Institut für Kernphysik (IKP-3)
Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

Progress in Diagrammatic Monte Carlo Methods (DIMOCA 2017) for Quantum Field Theories in Particle, Nuclear and Condensed Matter Physics

Mainz Institute for Theoretical Physics (MITP),
Johannes-Gutenberg Universitä† Mainz, Germany, September 26, 2017

Outline

FORSCHUNGSZENTRUM
Attempt at a pedagogical introduction to Monte Carlo simulations of graphene (and carbon nanomaterials)

2008: Low-energy Dirac theories of graphene Monte Carlo simulations with staggered fermions

Phys. Rev. B79, 165425 (2009), arXiv:0901. 0584 [cond.mat-str.el]
Monte Carlo simulations of the hexagonal Hubbard theory, graphene and carbon nanotubes

Phys. Rev. B93, 155106 (2016), arXiv:1511.04918 [cond.mat-str.el]
2017: Graphene as an infinite-radius nanotube?
Insulating state (due to interactions) observed
Collaboration with Evan Berkowitz, Christopher Körber, Stefan Krieg, Peter Labus, Thomas Luu

Graphene-like carbon nano-materials:
Carbon nanotubes, graphite, fullerenes ...

$$
1 s^{2} \quad 2 s^{2} 2 p^{2}
$$

graphene
single graphite layer
nanotube rolled graphene

graphite stacked graphene
fullerene wrapped graphene

Electronic structure of graphene:
Tight-binding (TB) description ...
P. R. Wallace,

Phys. Rev. 71, 622 (1947)
A. H. Castro Neto et al.,

Rev. Mod. Phys. 81, 109 (2009)

$$
\begin{aligned}
H & \equiv H_{t b} \\
& \equiv-\kappa \sum_{\langle x, y\rangle, s} a_{x, s}^{\dagger} a_{y, s}
\end{aligned}
$$

$$
\begin{aligned}
\vec{a}_{1} & \equiv\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right) a, & \boldsymbol{b}_{2}, & \vec{b}_{1}
\end{aligned}>\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right) \frac{2 \pi}{a},
$$

$$
f(\vec{k})=e^{i a k_{x} / \sqrt{3}}+2 e^{-i a k_{x} /(2 \sqrt{3})} \cos \left(a k_{y} / 2\right)
$$

$\backslash \mathrm{Kappa}=2.7 \mathrm{eV}$ can be determined e.g. from the measured Fermi velocity

$$
v_{f}=\frac{\sqrt{3}}{2} \kappa a \simeq \frac{c}{300}
$$

Graphene with electron-electron interactions, hexagonal Hubbard theory ...

NB: APPLIED GRAPHENE PHYSICS USUALLY STOPS HERE
\rightarrow We continue ...

$$
\begin{aligned}
H & \equiv H_{t b}+H_{I} \\
& \equiv-\kappa \sum_{\langle x, y\rangle, s} a_{x, s}^{\dagger} a_{y, s}+\frac{1}{2} \sum_{x, y} V_{x, y} q_{x} q_{y}
\end{aligned}
$$

T. Paiva et al.,

Phys. Rev. B 72, (2005) 085123
Z. Y. Meng et al., Nature 464, (2010) 847
S. Sorella et al., Sci. Rep. 2, (2012) 992
P. V. Buividovich et al., Phys. Rev. B 86, (2012) 245117
D. Smith and L. von Smekal, Phys. Rev. B 89, (2014) 195429

System is neutral at "half-filling" (i.e. one electron per lattice site)

$$
q_{i} \equiv a_{i, \uparrow}^{\dagger} a_{i, \uparrow}+a_{i, \downarrow}^{\dagger} a_{i, \downarrow}-1
$$

In practice:
Interaction parameterized in terms of ($U_{00,}$, alpha)
or ($U_{00}, U_{01}, \ldots, U_{0 n,}$ \alpha)

How do we obtain the constants (U, alpha)? At present, mostly theoretical input (DFT etc.) ...

T. O. Wehling et al.,

Phys. Rev. Lett. 106, (2011) 236805
Ho-Kin Tang et al.,
Phys. Rev. Lett. 115, (2015) 186602

1) Short-range screening due to electrons in sp^{2} (\sigma) orbitals
2) Coulomb "tail" suppressed by dielectric constant of medium (substrate)

Dirac theory for graphene: Linearized low-energy description

The couplings inside the unit
cell (U_{00} and U_{01}) are captured
by the contact terms:
The couplings inside the unit
cell (U_{00} and U_{01}) are captured
by the contact terms:
The couplings inside the
cell (U_{00} and U_{01}) are capt
by the contact terms:

$$
\begin{aligned}
& g_{d}=-2 \tilde{g}_{d}=\frac{\left(U_{00}+U_{01}\right) a^{2}}{8} \\
& g_{c}=-2 \tilde{g}_{c}=\frac{\left(U_{00}-U_{01}\right) a^{2}}{8} \\
& g_{f}=g_{a}=-2 \tilde{g}_{f}=-2 \tilde{g}_{a}=-\frac{U_{00} a^{2}}{8}
\end{aligned}
$$

I. F. Herbut,

Phys. Rev. Lett. 97, 146401 (2006)

G. Semenoff,

Phys. Rev. Lett. 54, 2449 (1984)
J. E. Drut, D. T. Son,

Phys. Rev. B 77, 075115 (2008)

Almost QED in $2+1$ dimensions (A_{0} in $3+1 d$):

$$
\begin{aligned}
\mathcal{L} & =\sum_{\sigma= \pm 1} \bar{\psi}_{\sigma}\left(\gamma_{0} \partial_{0}+i A_{0}+v_{f} \gamma_{i} \partial_{i}\right) \psi_{\sigma}+\frac{\varepsilon_{0}}{2 e^{2}}\left(\partial_{i} A_{0}\right)^{2} \\
& +g_{c} \sum_{\sigma= \pm 1}\left(\bar{\psi}_{\sigma} \psi_{\sigma}\right)^{2}+g_{d} \sum_{\sigma= \pm 1}\left(\bar{\psi}_{\sigma} \gamma_{0} \psi_{\sigma}\right)^{2} \\
& +g_{f} \sum_{\sigma= \pm 1}\left(\sigma \bar{\psi}_{\sigma} \psi_{\sigma}\right)^{2}+g_{a} \sum_{\sigma= \pm 1}\left(\sigma \bar{\psi}_{\sigma} \gamma_{0} \psi_{\sigma}\right)^{2} \\
& +\tilde{g}_{c} \sum_{\mu=3,5} \sum_{\sigma= \pm 1}\left(\bar{\psi}_{\sigma} \gamma_{1} \gamma_{\mu} \psi_{\sigma}\right)^{2} \\
& +\tilde{g}_{d} \sum_{\mu=3,5} \sum_{\sigma= \pm 1}\left(\bar{\psi}_{\sigma} \gamma_{0} \gamma_{1} \gamma_{\mu} \psi_{\sigma}\right)^{2} \\
& +\tilde{g}_{f} \sum_{\mu=3,5} \sum_{\sigma= \pm 1}\left(\sigma \bar{\psi}_{\sigma} \gamma_{1} \gamma_{\mu} \psi_{\sigma}\right)^{2} \\
& +\tilde{g}_{a} \sum_{\mu=3,5} \sum_{\sigma= \pm 1}\left(\sigma \bar{\psi}_{\sigma} \gamma_{0} \gamma_{1} \gamma_{\mu} \psi_{\sigma}\right)^{2}
\end{aligned}
$$

Dirac theory + Coulomb (low energies) ...

 gauge field in $3+1$

Figure by Mirco Milletari

$$
\begin{gathered}
S_{E}=-\sum_{a=1}^{N_{f}} \int d^{2} x d t \bar{\psi}_{a} D\left[A_{0}\right] \psi_{a}+\frac{1}{2 g^{2}} \int d^{3} x d t\left(\partial_{i} A_{0}\right)^{2} \\
D\left[A_{0}\right]=\gamma_{0}\left(\partial_{0}+i A_{0}\right)+v \gamma_{i} \partial_{i}, \quad i=1,2
\end{gathered}
$$

$$
\begin{aligned}
g^{2} & =e^{2} / \epsilon_{0} \\
\alpha_{g} & \equiv \frac{e^{2}}{4 \pi \epsilon_{0} \hbar v} \simeq 300 \alpha \sim 1
\end{aligned}
$$

The U(4) chiral symmetry can spontaneously break (SSB);
NB: Earlier studies of SSB in QED3 and QED4 (Kogut, Hands, Schierholz, ...)

"Lattice QCD for graphene" ...

"Staggered" or Kogut-Susskind fermions (1 flavor = 2 spin states in graphene)

NB - no "rooting" used

$$
\begin{aligned}
K_{\mathbf{n}, \mathbf{m}}[\theta]= & \frac{1}{2}\left(\delta_{\mathbf{n}+\mathbf{e}_{0}, \mathbf{m}} U_{\mathbf{n}}-\delta_{\mathbf{n}-\mathbf{e}_{0}, \mathbf{m}} U_{\mathbf{m}}^{\dagger}\right) & & \text { Chys. Rev. Le } \\
& +\frac{v}{2} \sum_{i} \eta_{\mathbf{n}}^{i}\left(\delta_{\mathbf{n}+\mathbf{e}_{i}, \mathbf{m}}-\delta_{\mathbf{n}-\mathbf{e}_{i}, \mathbf{m}}\right)+m_{0} \delta_{\mathbf{n}, \mathbf{m}} & & \eta_{\mathbf{n}}^{0}=1,
\end{aligned}
$$

Non-compact gauge action (as in Lattice QED)
S. Hands et al.,
J. E. Drut, T. A. Lähde,
P. V. Buividovich et al.,
C. DeTar et al.,

$$
U_{0, \mathbf{n}}=U_{\mathbf{n}} \equiv \exp \left(i \theta_{\mathbf{n}}\right) \quad \eta_{\mathbf{n}}^{1}=(-1)^{n_{0}}
$$

Phys. Rev. B 78, 165423 (2008)

Phys. Rev. B 79, (2009) 165425,
Phys. Rev. Lett. 102, (2009) 026802

Phys. Rev. B 86, (2012) 045107

Phys. Rev. Lett. 117, (2016) 266802

$$
S_{E, N}^{g}=\frac{\beta}{2} \sum_{\mathbf{n}} \sum_{i=1}^{3}\left(\theta_{\mathbf{n}+\mathbf{e}_{i}}-\theta_{\mathbf{n}}\right)^{2} \quad \beta \equiv v_{F} / g^{2}=1 /\left(4 \pi \alpha_{g}\right)
$$

Monte Carlo updates:

Importance sampling with Metropolis algorithm ...

$$
P[\theta] \equiv \exp \left(-S_{\mathrm{eff}}[\theta]\right)=\operatorname{det}(K[\theta]) \exp \left(-S_{E}^{g}[\theta]\right)
$$

We can perform either random (local)
updates or (global) Molecular Dynamics
(MD) updates

$$
p \equiv \frac{P\left[\theta^{\prime}\right]}{P[\theta]}=\exp (-\Delta S) \quad \Delta S=S_{\mathrm{eff}}\left[\theta^{\prime}\right]-S_{\mathrm{eff}}[\theta]
$$

Fermion determinant is evaluated using "pseudofermions"

$$
\begin{array}{rl}
\operatorname{det}(Q) \propto \int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi \exp \left(-S_{E}^{p}\right) & \\
S_{E}^{p}=\sum_{\mathbf{n}, \mathbf{m}} \phi_{\mathbf{n}}^{\dagger} Q_{\mathbf{n}, \mathbf{m}}^{-1}[\theta] \phi_{\mathbf{m}}=\sum_{\mathbf{n}} \xi_{\mathbf{n}}^{\dagger} \xi_{\mathbf{n}} & Q \equiv K^{\dagger} K \\
\phi=K^{\dagger} \xi
\end{array}
$$

Putting all the pieces together:

Hybrid Monte Carlo algorithm (with pseudofermions) ...

Evolution Hamiltonian for Molecular
Dynamics update

$$
H=\sum_{\mathbf{n}} \frac{\pi_{\mathbf{n}}^{2}}{2}+S_{E}^{g}+S_{E}^{p}
$$

$$
\dot{\theta}_{\mathbf{n}}=\frac{\delta H}{\delta \pi_{\mathbf{n}}}=\pi_{\mathbf{n}}
$$

Numerical integration of Hamiltonian

$$
\dot{\pi}_{\mathbf{n}}=-\frac{\delta H}{\delta \theta_{\mathbf{n}}} \equiv F_{\mathbf{n}}^{g}+F_{\mathbf{n}}^{p}
$$

equations of motion

$$
\begin{aligned}
\begin{aligned}
F_{\mathbf{n}}^{g} \equiv-\frac{\delta S_{E}^{g}}{\delta \theta_{\mathbf{n}}} & =-\frac{1}{g^{2}} \sum_{j=1}^{3} \mathfrak{I}\left(U_{\mathbf{n}} U_{\mathbf{n}+\mathbf{e}_{j}}^{\dagger}-U_{\mathbf{n}-\mathbf{e}_{j}} U_{\mathbf{n}}^{\dagger}\right) \\
& =-\frac{1}{g^{2}}\left[6 \theta_{\mathbf{n}}-\sum_{j=1}^{3}\left(\theta_{\mathbf{n}+\mathbf{e}_{j}}+\theta_{\mathbf{n}-\mathbf{e}_{j}}\right)\right]+\cdots
\end{aligned} \\
F_{\mathbf{n}}^{p}=-\frac{\delta S_{E}^{p}}{\delta \theta_{\mathbf{n}}}=\phi^{\dagger} Q^{-1} \frac{\delta Q}{\delta \theta_{\mathbf{n}}} Q^{-1} \phi \quad \begin{array}{l}
\text { The "pseudofermion force term" uses } \\
\text { 99\% of the CPU time (iterative inversion) }
\end{array}
\end{aligned}
$$

Look for spontaneous chiral symmetry breaking (SSB):

Analysis of the chiral condensate ...

Compute condensate and susceptibility as
a function of the lattice coupling

$$
\sigma=\frac{1}{V \mathcal{Z}} \int \mathcal{D} A_{0} \operatorname{Tr}\left(D^{-1}\left[A_{0}\right]\right) \exp \left(-S_{\text {eff }}\left[A_{0}\right]\right) \quad \begin{aligned}
\sigma & \equiv\langle\bar{\chi} \chi\rangle \\
\chi_{l} & \equiv \frac{\partial \sigma}{\partial m_{0}}
\end{aligned}
$$

Finite size scaling analysis in the
presence of a mass term

$$
m_{0} X(\beta)=Y(\beta) f_{1}(\sigma)+f_{3}(\sigma)
$$

Dependence on σ :
Information on critical exponents $\delta, \beta_{\mathrm{m}}$!
$f_{1}(\sigma)=\sigma^{\delta-1 / \beta_{m}}$
$f_{3}(\sigma)=\sigma^{\delta}$

Dependence on β :
Information on critical coupling β_{c} !
$X(\beta)=X_{0}+X_{1}\left(1-\beta / \beta_{c}\right)$
$Y(\beta)=Y_{1}\left(1-\beta / \beta_{c}\right)$

Spontaneous Chiral Symmetry breaking
Note that $\beta \equiv v_{F} / g^{2}=1 /\left(4 \pi \alpha_{g}\right)$
J. E. Drut, T. A. Lähde,

Phys. Rev. Lett. 102, (2009) 026802 Phys. Rev. B 79, (2009) 241405(R)

However ...

How should we interpret these results?

No insulating phase detected in suspended graphene at low T (conductivity measurements)

D. C. Elias et al.,

Nat. Phys. 7, (2011) 701

In hexagonal Hubbard theory: Transition to AFMI (Anti-ferromagnetic Mot† Insulator) phase at $U_{00} / \mathrm{kappa}=3.8$
Z. Y. Meng et al.,

Nature 464, (2010) 847
S. Sorella et al.,

Sci. Rep. 2, (2012) 992

"Lattice QCD" formulation

for the hexagonal Hubbard theory ...

$$
\begin{aligned}
& H \equiv H_{t b}+H_{I} \\
& \equiv-\kappa \sum_{\langle x, y\rangle, s} a_{x, s}^{\dagger} a_{y, s}+\frac{1}{2} \sum_{x, y} V_{x, y} q_{x} q_{y} \\
& q_{i} \equiv a_{i, \uparrow}^{\dagger} a_{i, \uparrow}+a_{i, \downarrow}^{\dagger} a_{i, \downarrow}-1
\end{aligned}
$$

R. Brower et al.,

PoS LATTICE2011, (2011) 056
P. V. Buividovich et al.,

Phys. Rev. B 86, (2012) 245117
D. Smith and L. von Smekal,

Phys. Rev. B 89, (2014) 195429
T. Luu and T. A. Lähde,

Phys. Rev. B 93, (2016) 155106

Move to a description in terms of
particle and hole operators

$$
\begin{aligned}
& b_{x, \downarrow}^{\dagger} \equiv a_{x, \downarrow}, \quad b_{x, \downarrow} \equiv a_{x, \downarrow}^{\dagger} \\
& H=-\kappa \sum_{\langle x, y\rangle}\left(a_{x, \uparrow}^{\dagger} a_{y, \uparrow}-b_{x, \downarrow}^{\dagger} b_{y, \downarrow}\right)+\frac{1}{2} \sum_{x, y} V_{x, y} q_{x} q_{y} \\
& \\
& \quad q_{i}=a_{i, \uparrow}^{\dagger} a_{i, \uparrow}-b_{i, \downarrow}^{\dagger} b_{i, \downarrow}
\end{aligned}
$$

Flip the sign of the b (hole)
operators on one sublattice

$$
H=-\kappa \sum_{\langle x, y\rangle}\left(a_{x}^{\dagger} a_{y}+b_{x}^{\dagger} b_{y}\right)+\frac{1}{2} \sum_{x, y} V_{x, y} q_{x} q_{y}
$$

NB! Many other formulations possible: See e.g. S. Beyl et al., arXiv:1708.03661

Lattice Monte Carlo for the hexagonal Hubbard theory: Grassmann path integral formulation ...

$$
\begin{aligned}
\langle O(t)\rangle \equiv \frac{1}{Z} \operatorname{Tr} & {\left[O(t) e^{-\beta H}\right] } \\
& =\frac{1}{Z} \int\left[\prod_{\alpha} d \psi_{\alpha}^{*} d \psi_{\alpha} d \eta_{\alpha}^{*} d \eta_{\alpha}\right] e^{-\sum_{\alpha}\left(\psi_{\alpha}^{*} \psi_{\alpha}+\eta_{\alpha}^{*} \eta_{\alpha}\right)}\langle-\psi,-\eta| O(t) e^{-\beta H}|\psi, \eta\rangle
\end{aligned}
$$

Subdivide Euclidean time into N_{+}"slices"

$$
\backslash \text { delta }=\backslash \text { beta } / N_{+}
$$

$$
e^{-\beta H} \equiv e^{-\delta H} e^{-\delta H} \cdots e^{-\delta H}
$$

$Z=\operatorname{Tr}\left[e^{-\beta H}\right]=$
$\int \prod_{t=0}^{N_{t}-1}\left\{\left[\prod_{\alpha} d \psi_{\alpha, t}^{*} d \psi_{\alpha, t} d \eta_{\alpha, t}^{*} d \eta_{\alpha, t}\right] e^{-\sum_{\alpha}\left(\psi_{\alpha, t+1}^{*} \psi_{\alpha, t+1}+\eta_{\alpha, t+1}^{*} \eta_{\alpha, t+1}\right)}\left\langle\psi_{t+1}, \eta_{t+1}\right| e^{-\delta H}\left|\psi_{t}, \eta_{t}\right\rangle\right\}$

Hubbard-Stratonovich (HS) transformation ...

$$
\begin{aligned}
&\left\langle\psi_{t+1}, \eta_{t+1}\right| e^{-\delta H}\left|\psi_{t}, \eta_{t}\right\rangle=\left\langle\psi_{t+1}, \eta_{t+1}\right| e^{\delta \kappa \sum_{\langle x, y\rangle}\left(a_{x}^{\dagger} a_{y}+b_{x}^{\dagger} b_{y}\right)-\frac{1}{2} \sum_{x, y} \delta V_{x, y} q_{x} q_{y}}\left|\psi_{t}, \eta_{t}\right\rangle \\
& \propto \int \prod_{x} d \tilde{\phi}_{x}\left\langle\psi_{t+1}, \eta_{t+1}\right| e^{\tilde{\kappa} \sum_{\langle x, y\rangle}\left(a_{x}^{\dagger} a_{y}+b_{x}^{\dagger} b_{y}\right)-\frac{1}{2} \sum_{x, y} \tilde{V}_{x, y}^{-1} \tilde{\phi}_{x} \tilde{\phi}_{y}+\sum_{x} i \tilde{\phi}_{x} q_{x}}\left|\psi_{t}, \eta_{t}\right\rangle
\end{aligned}
$$

$$
\tilde{\kappa} \equiv \delta \kappa, \quad \tilde{V} \equiv \delta V, \quad \tilde{\phi} \equiv \delta \phi
$$

If we assume that $\exp (-\backslash d e l t a * H)$ is normal-ordered:

$$
\begin{aligned}
&\left\langle\psi_{t+1}, \eta_{t+1}\right| e^{-\delta H}\left|\psi_{t}, \eta_{t}\right\rangle=\int \prod_{x} d \tilde{\phi}_{x, t} e^{-\frac{1}{2} \sum_{x, y}[\tilde{V}]_{x, y}^{-1} \tilde{\phi}_{x, t} \tilde{\phi}_{y, t}} \\
& \times \exp \left\{\tilde{\kappa} \sum_{\langle x, y\rangle}\left(\psi_{x, t+1}^{*} \psi_{y, t}+\eta_{x, t+1}^{*} \eta_{y, t}\right)+\sum_{x}\left(e^{i \tilde{\phi}_{x, t}} \psi_{x, t+1}^{*} \psi_{x, t}+e^{-i \tilde{\phi}_{x, t}} \eta_{x, t+1}^{*} \eta_{x, t}\right)\right\}+\mathcal{O}\left(\delta^{2}\right)
\end{aligned}
$$

For the \phi_x*q_x term, we used the following identity:

$$
\langle\psi| \exp \left\{\sum_{x, y} a_{x}^{\dagger} A_{x, y} a_{y}\right\}\left|\psi^{\prime}\right\rangle \equiv \exp \left\{\sum_{x, y} \psi_{x}^{*}\left[e^{A}\right]_{x, y} \psi_{y}^{\prime}\right\}
$$

Similarly to Lattice QCD,

integrate out Grassmann fields ...

$$
\begin{aligned}
& Z=\int \mathcal{D} \tilde{\phi} \mathcal{D} \psi^{*} \mathcal{D} \psi \mathcal{D} \eta^{*} \mathcal{D} \eta e^{-\frac{1}{2} \sum_{x, y, t}[\tilde{V}]_{x, y}^{-1} \tilde{\phi}_{x, t} \tilde{\phi}_{y, t}} \exp \left\{\tilde{\kappa} \sum_{\langle x, y\rangle, t}\left(\psi_{x, t+1}^{*} \psi_{y, t}+\eta_{x, t+1}^{*} \eta_{y, t}\right)\right. \\
&\left.-\sum_{x, t}\left(\psi_{x, t+1}^{*}\left(\psi_{x, t+1}-e^{i \tilde{\phi}_{x, t}} \psi_{x, t}\right)+\eta_{x, t+1}^{*}\left(\eta_{x, t+1}-e^{-i \tilde{\phi}_{x, t}} \eta_{x, t}\right)\right)\right\}
\end{aligned}
$$

Fermion determinants for particles and holes, potential contained in the "gauge action" term

$$
\begin{gathered}
Z=\int \mathcal{D} \tilde{\phi} \operatorname{det}[M(\tilde{\phi})] \operatorname{det}\left[M^{*}(\tilde{\phi})\right] \exp \left\{-\frac{1}{2} \sum_{x, y, t=0}^{N_{t}-1}[\tilde{V}]_{x, y}^{-1} \tilde{\phi}_{x, t} \tilde{\phi}_{y, t}\right\} \\
M\left(x, t ; y, t^{\prime} ; \tilde{\phi}\right) \equiv \delta_{x, y}\left(\delta_{t, t^{\prime}}-e^{i \tilde{\phi}_{x, t^{\prime}}} \delta_{t-1, t^{\prime}}\right)-\tilde{\kappa} \delta_{\langle x, y\rangle} \delta_{t-1, t^{\prime}}
\end{gathered}
$$

Monte Carlo probability weight,

 should be positive definite ...$$
\begin{aligned}
P(\tilde{\phi}) & \equiv \frac{1}{Z} \operatorname{det}[M(\tilde{\phi})] \operatorname{det}\left[M^{*}(\tilde{\phi})\right] \exp \left\{-\frac{1}{2} \sum_{x, y, t=0}^{N_{t}-1}[\tilde{V}]_{x, y}^{-1} \tilde{\phi}_{x, t} \tilde{\phi}_{y, t}\right\} \\
& =\frac{1}{Z} \operatorname{det}\left[M(\tilde{\phi}) M^{\dagger}(\tilde{\phi})\right] \exp \left\{-\frac{1}{2} \sum_{x, y, t=0}^{N_{t}-1}[\tilde{V}]_{x, y}^{-1} \tilde{\phi}_{x, t} \tilde{\phi}_{y, t}\right\}
\end{aligned}
$$

Generate "ensembles" of configurations with your
favorite Monte Carlo algorithm!
Here: \rightarrow Hybrid Monte Carlo (HMC)

$$
\begin{aligned}
& \langle O\rangle \approx \frac{1}{N_{\mathrm{cf}}} \sum_{i=1}^{N_{\mathrm{cf}}} O\left[\tilde{\phi}_{i}\right] \\
& \left\langle a_{x}(\tau) a_{y}^{\dagger}(0)\right\rangle=\left\langle M^{-1}(x, \tau ; y, 0)\right\rangle \approx \frac{1}{N_{\mathrm{cf}}} \sum_{i=1}^{N_{\mathrm{cf}}} M^{-1}\left(x, \tau ; y, 0 ; \tilde{\phi}_{i}\right)
\end{aligned}
$$

For instance:
Single quasiparticle propagator \rightarrow quasiparticle spectrum

Computing the single-particle correlator, dispersion relation with interactions ...

Block notation makes the A/B sublattice structure explicit

$$
\begin{aligned}
& M\left(x, t^{\prime} ; y, t\right) \Psi(y, t)= \\
& \left(\begin{array}{cc}
\delta_{x, y}\left(\delta_{t^{\prime}, t}-e^{i \Phi_{A}\left(x, t^{\prime}\right)} \delta_{t-1, t^{\prime}}\right) & -\tilde{\kappa} \delta_{\langle x, y\rangle} \delta_{t-1, t^{\prime}} \\
-\tilde{\kappa} \delta_{\langle x, y\rangle} \delta_{t-1, t^{\prime}} & \delta_{x, y}\left(\delta_{t^{\prime}, t}-e^{i \Phi_{B}\left(x, t^{\prime}\right)} \delta_{t-1, t^{\prime}}\right.
\end{array}\right)\binom{\Psi_{A}(y, t)}{\Psi_{B}(y, t)} \\
& \Psi(x, t)=\binom{\Psi_{A}(x, t)}{\Psi_{B}(x, t)}=\binom{\psi_{x, t}}{\psi_{x+\vec{a}, t}} \quad \Phi(x, t)=\binom{\Phi_{A}(x, t)}{\Phi_{B}(x, t)}=\binom{\tilde{\phi}_{x, t}}{\tilde{\phi}_{x+\vec{a}, t}}
\end{aligned}
$$

Momentum projection
for a given lattice momentum mode

$$
\begin{gathered}
G_{ \pm}\left(\vec{k}_{i}, \tau\right) \equiv\left\langle a_{ \pm}\left(\vec{k}_{i}, \tau\right) a_{ \pm}^{\dagger}\left(\vec{k}_{i}, 0\right)\right\rangle=\frac{1}{N^{2}} \sum_{\vec{x}_{j}, \vec{x}_{k} \in\{\vec{X}\}} e^{i \vec{k}_{i} \cdot\left(\vec{x}_{j}-\vec{x}_{k}\right)}\left\langle a_{ \pm}\left(\vec{x}_{j}, \tau\right) a_{ \pm}^{\dagger}\left(\vec{x}_{k}, 0\right)\right\rangle \\
a_{ \pm}^{\dagger}(\vec{x}) \equiv \frac{1}{\sqrt{2}}\binom{a_{A}^{\dagger}(\vec{x})}{ \pm a_{B}^{\dagger}(\vec{x})}=\frac{1}{\sqrt{2}}\binom{a_{\vec{x}}^{\dagger}}{ \pm a_{\vec{x}+\vec{a}}^{\dagger}}
\end{gathered}
$$

Large-time behavior of correlators ...

$$
\begin{aligned}
G_{ \pm}\left(\vec{k}_{i}, \tau\right)= & \frac{1}{2 N^{2}} \sum_{\vec{x}_{j}, \vec{x}_{k} \in\{\vec{X}\}} e^{i \vec{k}_{i} \cdot\left(\vec{x}_{j}-\vec{x}_{k}\right)}\left\{\left\langle M_{A A}^{-1}\left(\vec{x}_{j}, \vec{x}_{k} ; \tau\right)\right\rangle+\left\langle M_{B B}^{-1}\left(\vec{x}_{j}, \vec{x}_{k} ; \tau\right)\right\rangle\right. \\
& \left. \pm\left(\left\langle M_{A B}^{-1}\left(\vec{x}_{j}, \vec{x}_{k} ; \tau\right)\right\rangle+\left\langle M_{B A}^{-1}\left(\vec{x}_{j}, \vec{x}_{k} ; \tau\right)\right\rangle\right)\right\}
\end{aligned}
$$

Compare with TB (non-interacting) correlator:

$$
\begin{aligned}
G_{ \pm}\left(\vec{k}_{i}, \tau\right) & \equiv \frac{1}{2}\left[G_{A A}\left(\vec{k}_{i}, \tau\right)+G_{B B}\left(\vec{k}_{i}, \tau\right) \pm\left(G_{A B}\left(\vec{k}_{i}, \tau\right)+G_{B A}\left(\vec{k}_{i}, \tau\right)\right)\right] \\
& =\frac{1}{2 \cosh \left(\omega\left(\vec{k}_{i}\right) \beta / 2\right)}\left[\cosh \left(\omega\left(\vec{k}_{i}\right)(t-\beta / 2)\right) \pm \cos \left(\theta_{k_{i}}\right) \sinh \left(\omega\left(\vec{k}_{i}\right)(t-\beta / 2)\right)\right]
\end{aligned}
$$

At large Euclidean projection time:

$$
G_{ \pm}\left(\vec{k}_{i}, \tau\right) \propto e^{ \pm \omega\left(\vec{k}_{i}\right) \tau}
$$

$$
\begin{gathered}
E(\vec{k})=i \omega(\vec{k})= \pm \kappa|f(\vec{k})| \\
f(\vec{k})=e^{i a k_{x} / \sqrt{3}}+2 e^{-i a k_{x} /(2 \sqrt{3})} \cos \left(a k_{y} / 2\right) \\
\theta_{k_{i}} \equiv \tan ^{-1}\left(\operatorname{Im} f\left(\vec{k}_{i}\right) / \operatorname{Re} f\left(\vec{k}_{i}\right)\right)
\end{gathered}
$$

Advantages (and disadvantages) of the hexagonal formulation ...

1) Hexagonal Hubbard theory allows for easy contact with the cond-mat (and applied physics) communities
2) Lattice artifacts are now actual physical effects, no need for extrapolation in the (spatial) lattice spacing
3) Spatial lattice dimensions can also be physical (for instance the length of a nanotube) especially in applied physics
4)Possible disadvantage: Tight-binding approach not considered $a b$ initio, cannot be systematically improved?
4) However: Still considered "sufficiently ab initio" in most cond-mat and applied settings

Carbon nanotubes:

Definitions, basic concepts ...

Saito, Dresselhaus \& Dresselhaus,
"Physical properties of carbon nanotubes"

Chiral vector:

$$
\vec{C}_{h} \equiv n \vec{a}_{1}+m \vec{a}_{2}
$$

Translation vector:

$$
\vec{T} \equiv t_{1} \vec{a}_{1}+t_{2} \vec{a}_{2}
$$

Saito, Dresselhaus \& Dresselhaus, "Physical properties of carbon nanotubes"

Chiral (4,2) nanotube - semiconducting ...

$(4,2)$ w/ $3,4, \& 5$ unit cells

$$
N_{U}=\frac{\left|\vec{C}_{h} \times \vec{T}\right|}{\left|\vec{a}_{1} \times \vec{a}_{2}\right|}
$$

$$
\boldsymbol{K}_{1}=\frac{1}{N}\left(-t_{2} \boldsymbol{b}_{1}+t_{1} \boldsymbol{b}_{2}\right), \quad \boldsymbol{K}_{2}=\frac{1}{N}\left(m b_{1}-n \boldsymbol{b}_{2}\right)
$$

Figures by Thomas Luu

Advantage of studying carbon nanotubes:

Extant experimental data ...

(50
V. V. Deshpande et al., Science 323, (2009) 106

Interaction-induced energy gap measured in (n, n) nanotubes of radii $1-4 \mathrm{~nm}$

> Purely "geometric" effects (bandgap) carefully ruled out, also: observation of excitons

Current status of nanotube calculations ...

1) No curvature effects accounted for (most relevant for highenergy spectrum), also important only for $r<1 \mathrm{~nm}$?
2) Only contact interaction U_{00} used, what is the effect from including \alpha (long-range interactions) as well?
3) Extrapolation in temporal lattice spacing \delta (very important effect!)
4) Extrapolation in \# of nanotube unit cells (length of nanotube) appears to be less important (we use 15-25 unit cells)
5)Monte Carlo simulations at low T (algorithmic challenge, is HMC the most efficient choice?)

Preliminary results for carbon nanotubes

V. V. Deshpande et al.,

 with radii up to $1 \mathrm{~nm} .$.

Figure by Thomas Luu
These nanotubes appear to be very
close to the critical U/kappa $=3.8$

Spare slides

Determination of the single-particle gap:

$(3,3)$ armchair nanotube, actual Monte Carlo data ...

Projected onto a specific momentum mode in the spectrum

$$
|\vec{T}|\left(\left|k_{\perp}\right|,\left|k_{\|, i}\right|\right)=\left(\frac{2 \pi}{3}, \frac{4 \pi}{3 \sqrt{3}}\right)
$$

$$
m_{\mathrm{eff}}((\tau / \delta+\Delta) / 2)=-\frac{1}{\Delta} \frac{\ln \left(G_{-}(\tau / \delta+\Delta)\right)}{\ln \left(G_{-}(\tau / \delta)\right)}
$$

"Effective mass plot" à la Lattice QCD \rightarrow

Colored bands \rightarrow fit to asymptotic correlator Points with errorbars \rightarrow effective mass (illustration only)

Extrapolation in Euclidean time, tube length ... Dirac (K) point ...

$$
E_{K} / \kappa=.551(46)
$$

9 unit cells

Extrapolated (but finite T) spectrum:

$(3,3)$ nanotube ...

STM observation of an energy gap

 in "quasi-suspended graphene" (controversial) ?Guohong Li et al.,
Phys. Rev. Lett. 112, (2010) 176804

Table 3.3: Parameters for Carbon Nanotubes. ${ }^{\text {a) }}$

symbol	name	formula value
a	length of unit vector	$a=\sqrt{3} a_{\mathrm{C}-\mathrm{C}}=2.49 \AA, \quad{ }^{\text {C }}$ C-C $=1.44 \AA$
$\boldsymbol{a}_{1}, a_{2}$	unit vectors	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) a,\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) a \quad x, y$ coordinate
b_{1}, b_{2}	reciprocal lattice vectors	$\left(\frac{1}{\sqrt{3}}, 1\right) \frac{2 \pi}{a},\left(\frac{1}{\sqrt{3}},-1\right) \frac{2 \pi}{a} \quad x, y$ coordinate
C_{h}	chiral vector	$C_{h}=n \boldsymbol{a}_{1}+m \boldsymbol{a}_{2} \equiv(n, m),(0 \leq\|m\| \leq n)$
L d_{t}	length of C_{h} diameter	$\begin{aligned} & L=\left\|C_{h}\right\|=a \sqrt{n^{2}+m^{2}+n m} \\ & d_{t}=L / \pi \end{aligned}$
θ	chiral angle	$\begin{array}{lr} \sin \theta=\frac{\sqrt{3} m}{2 \sqrt{n^{2}+m^{2}+n m}} & 0 \leq\|\theta\| \leq \frac{\pi}{6} \\ \cos \theta=\frac{2 n+m}{2 \sqrt{n^{2}+m^{2}+n m}}, & \tan \theta=\frac{\sqrt{3} m}{2 n+m} \end{array}$
d d_{R}	$\begin{aligned} & \operatorname{gcd}(n, m)^{b)} \\ & \left.\operatorname{gcd}(2 n+m, 2 m+n)^{b}\right) \end{aligned}$	$d_{R}= \begin{cases}d & \text { if }(n-m) \text { is multiple of } 3 d \\ 3 d & \text { if }(n-m) \text { is not multiple of } 3 d\end{cases}$
T	translational vector	$\begin{aligned} & T=t_{1} a_{1}+t_{2} a_{2} \equiv\left(t_{1}, t_{2}\right) \\ & t_{1}=\frac{\left.\operatorname{gcd}\left(t_{1}, t_{2}\right)=1^{b}\right)}{d_{R}}, t_{2}=-\frac{2 n+m}{d_{R}} \end{aligned}$
T	length of T	$T=\|T\|=\frac{\sqrt{3} L}{d_{R_{2}}}$
N	Number of hexagons in the nanotube unit cell.	$N=\frac{2\left(n^{2}+d^{d_{2}}+n m\right)}{d_{R}}$
\boldsymbol{R}	symmetry vector	$\begin{aligned} & \boldsymbol{R}=p \boldsymbol{a}_{1}+q \boldsymbol{a}_{2} \equiv(p, q) \quad \operatorname{gcd}(p, q)=\mathbf{1}^{b)} \\ & t_{1} q-t_{2} p=1,(0<m p-n q \leq N) \\ & (m p-n q) T \end{aligned}$
τ		$\tau=\frac{(m p-N q) A}{2 \pi} N=\frac{m A}{N}$
ψ	rotation angle of \boldsymbol{R}	$\psi=\frac{2 \pi}{N} \quad$ in radians
M	number of \boldsymbol{T} in $N \boldsymbol{R}$.	$N R=C_{h}+M T$

${ }^{\text {a) }}$ In this table n, m, t_{1}, t_{2}, p, q are integers and $d, d_{R} N$ and M are integer functions of these integers.
${ }^{\text {b) }} \operatorname{gcd}(n, m)$ denotes the greatest common divisor of the two integers n and m.

