Fermion Bags: Tutorial
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A. The idea of Fermion Bags

Generic partition function in lattice field theory:

[ = /[ 0| /[dw di)] e —Splo] — X2, ;¥ Mijlo] 9,

Traditional Approach: Integrate over the fermions

4 = /[dO'] e_Sb[U] Det(M[g])
negative pOSTVe

STOP Develop a QMC!



Fermion Bag |dea:

(i) Express the Grassman path integral in terms of fermion world
lines.

(i) Group the world lines into “fermion bags” so that we can
integrate over the bosonic field and sum over fermion world
lines within each bag.

(i) Find the grouping so that the sum over weights of fermion

world lines and the bosonic integral gives positive weight
within each bag.

Z = /[da]z W(C, o) :“Z Q(B)”
C B

Hope: Local physics of the problem lends itself to this description.



Pros:

(i) New solutions to sign problems can emerge.

(i) Faster algorithms can be designed.

(i) Weights of fermion bags are smaller and less singular.

Cons:

(i) No simple recipe that is widely applicable. Each problem
needs to be thought through carefully.

(i) May require modifications to the action (“designer models”).

(i) An area of research in itself.

In traditional lattice field theory this has yielded a new class of
fermion Monte Carlo algorithms.

We can study exactly massless fermions on large lattices,
which continues to be difficult with traditional HMC.

Recently we have been able to extend these to
Hamiltonian lattice field theories.



Worldlines from Grassmann Variables:

Single site example:
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In general

/ [dd][dle "M@ = S W(C, o)

[C]

where the weight W(C, o)

can be negative.

Here we expanded each term
e~ ViMi(o)i — 1 . My(o); Example of C

and integrated over the
Grassmann variables.

It “M” is a “good” matrix then Det(M) is positive.
Usually this requires some “symmetry.”



B. Application in Lattice Field Theory

| attice Yukawa Models sc prp2o12)

Bosonic Action:  S,[0] = —k Z (ei(ex—ex+a)+e—i(ex—ex+a))

Fermion Action:

Sf[@' w] — Z 77);“ (@x Usta — @X—Fa ¢X) + 8 Z eisxexaxwx
staggered fermions - { +1  x € even
(pi—flux) —1 x € odd

The action is invariant under U(1) chiral transformations



Let us focus on the Zz symmetric case: 0« = 0,27/3, —27/3

Recently the Zs model has s
become interesting, since it

IS related to the Semi-metal-

Kekule VBS transition.

It has been proposed that xx
fermions induce a

quantum critical point in Dirac semimetal  FIQCP Kekule-VBS
2+1 dimensions.

First order
/3 Broken Phase

\ with massive fermions
iti Second order

Phase Diagram of the lattice model: Critical
End-Point
K \. n oin /

/3 Symmetric Phase
with massless fermions



The traditional approach has a severe sign problem!

£ = Ze% ZX,Oﬁ (ZXZ:+a+Z:ZX+a)
]
/‘[d@dw] e_ Zx,a WT'M (Ex wx—l—a_aija wx)_ gZX(ZX)c‘:XEXwX
\ /
Det (A + D(Z)) 's complex

Antisymmetric matrix,

has positive determinant
source of the

sign problem!



Fermion Bag Approach:

Introduce a monomer field [Nn]

Z =) gh Y e e BRutEm) (7). (2,)
[n] 2]

/ (@] e~ Sxe 3 (Px berabura ) (L) (0, )

|

Anti-symmetric matrix




We group the interaction sites
first and perform the sum
over /3 spins.

Z e” ZX,O{ (ZXZ:+Q+Z:ZX+Q) (ZX1 )gxl "'(ZXk )gxk
2]

e/ﬁl(ZxZ:—ka—'_Z;Zx—l—Oé) — fb(/{) -+ fl(/{) (ZXZ;+Q+Z;<ZX+CE)

—— —_——
boson worldlines

o—<—

Sum of Z3 spins
Imposes constraints on

boson worldlines. I _7 o—>—



We can rewrite the spin partition function

Z eK’ Zx,a (ZXZ;+()¢+Z: ZX‘FOé) (le )E:Xl o (ZXk )exk
[z]

4]

constrained Zs worldline
configurations

..... - . L - ———— _————

Fermion partition function is a sum overall 1
paths that does not contain the interaction

sites. 0

S M, (77 - Y 1 T 1T T T

/ [dpdip] e 2 x,a T(% Vxta—Vxia wx) -y 0 I N I

_____ I . . _————

= Det(Widnl) a T

which is positive!



The partition function can be finally written without sign problems:

Z =3 (g, n]) Det(Wiln)

[n,q]

The boson and fermion sector talk to each
other through the monomer field [n]



Weak coupling vs. Strong Coupling:

Weak Coupling

“A few small bags
and one big bag”

“Diagrammatic Determinantal
Monte Carlo.”
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Strong Coupling

“‘Many small bags”



Background Fields: New definitions of fermion bags
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C. Application in Hamiltonian Lattice
Field Theory

Why think in terms of a Hamiltonian?

(i) Natural in condensed matter physics.

(i) For lattice field theorists it eliminates an
unnecessary fermion doubling and preserves some
internal symmetries.

(i) Some sign problems are easily solved.

(iv) Algorithms scale better.

In discrete time these formulations look like regular lattice
field theories but without space-time rotation symmetries.



Where we will write the generic

Partitio Function: . .
Hamiltonian as

7 = Tr(e_BH) H = Hy+ Hi

Discrete time approach: Tr(e_BH) = T (e_gH e =" -"'e_sH)

Continuous time approach:

e ) = 5[] T O e o)
k

T

time ordered



|deas of fermion bags should in principle extend to the discrete
time approach for local Hamiltonians by using a “checkerboard”
type space-time lattice.

Fermion world lines are simply the occupation number basis:

Problem:

In the auxiliary field approach each time step takes the form:

e ¢ CiJr Mii[o]c;

In the continuous time limit the fermion bags are difficult to identify.



The partition function takes the form

We can define Bi(ok) = exp(—eM*(ok))  then
7 = /[da] Det (1 + B, (o) Br, -1(ow, 1)--Bi(o1) )

Advantage: Determinants are spatial size x spatial size

Disadvantage: Difficult to identify fermion bags, except in the
weak coupling language (7).



D. Spatial Fermion Bags

Challenge: How can we identity space-time fermion bags in the similar to
the Lagrangian approach in continuous time”

A simple ldea: Choose Hy =0 and H.,. = H

Then the partition function is

(e =3 [ 6] Te(( Hi) (i)~ Hio))

The at very high temperatures (no interactions) all spatial sites
form fermions bags and are independent of each other!

What about lower temperatures?



Consider “local designer Hamiltonians™ such that each insertion
of the interaction gives a positive trace!

Tr((=Hint) (—Hint)- (= Hint) ) > 0
The simplest example is
H = Hi = Z §eccl g+l c)
(ij)

which is equivalent to

1
H = _tzn,-j (CI-TCJ'—I—CJTC,') + V Z(”i_ 5) (nj — 5)
(if) )

The partition function can be written as
- k a(clci+cl ¢ a(cl¢j+clc)
Z = [[dt] ) & Tr(..(e*G9TG) . (eMGaTGD) )

[b,t]
\

Positive



[b,t] configuration; k = 9
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configuration weight Q([b, t]) = &* Tr(...(eO‘(CfTCf“fTC")....(eO‘(CfTCJ'*CfTC"))...)



Fermion bags are “entangled” set of points!
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b+t

At high temperature fermion dynamics splits
naturally into disconnected bags
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Fermion bag size as a function of spatial volume with At = 0.25
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Equilibration

3.0x10°
2.5x106 | :
i 1x10° | ....000 ] -
: ° )
2-0)(106 __ . 6><104_ °
2x10*} = L=100,8=4

= 15x10°  * ) 400 0 5 10 15 20 -

_ o L=64
1.0x108} o L=48

500000

()
pT 1

0 5 10 15
sweeps



Days on a single core!

time to update bonds is linear in 3
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bond-update time (days)

Scaling of the algorithm: V3 3

50 N 60 B 70 N 80 90 100



We can accelerate the algorithm further if we
abandon the continuous time approach, Iin
line with the “Lattice Field Theory” paradigm!

Technical Detalls:
Emilie Huffman (Poster Next week!)



