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A. The idea of Fermion Bags
Generic partition function in lattice field theory:

Z =

Z
[d�]

Z
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Traditional Approach: Integrate over the fermions

negative

STOP

positive

Develop a QMC!



(i) Express the Grassman path integral in terms of fermion world   
lines. 

(ii) Group the world lines into “fermion bags” so that we can 
integrate over the bosonic field and sum over fermion world 
lines within each bag. 

(iii) Find the grouping so that the sum over weights of fermion 
world lines and the bosonic integral gives positive weight 
within each bag.

Fermion Bag Idea:

Z =

Z
[d�]

X

C

W (C ,�) =
X

B

⌦(B)“               ”

Hope: Local physics of the problem lends itself to this description.



Pros:  
(i) New solutions to sign problems can emerge. 
(ii) Faster algorithms can be designed. 
(iii) Weights of fermion bags are smaller and less singular. 

Cons: 
(i) No simple recipe that is widely applicable. Each problem 

needs to be thought through carefully. 
(ii) May require modifications to the action (“designer models”). 
(iii) An area of research in itself.

In traditional lattice field theory this has yielded a new class of 
fermion Monte Carlo algorithms. 

We can study exactly massless fermions on large lattices,  
which continues to be difficult with traditional HMC.

Recently we have been able to extend these to 
Hamiltonian lattice field theories.



Worldlines from Grassmann Variables:

Z =

Z Y
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Single site example:
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hole
fermion 
worldline



Example of Ce� iMij (�) j = 1�  iMij(�) j

Here we expanded each term

and integrated over the 
Grassmann variables.

In general

W (C ,�)

can be negative.

where the weight

Z
[d ][d ]e� iMij (�) j =

X

[C ]

W (C ,�)

If “M” is a “good” matrix then Det(M) is positive. 
Usually this requires some “symmetry.”



Lattice Yukawa Models

Bosonic Action:

Fermion Action:
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B. Application in Lattice Field Theory

The action is invariant under U(1) chiral transformations

staggered fermions 
(pi-flux)
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= 0, 2⇡/3,�2⇡/3

Recently the Z3 model has 
become interesting, since it 
is related to the Semi-metal-
Kekule VBS transition. 

It has been proposed that 
fermions induce a 
quantum critical point in 
2+1 dimensions.

Fermion-induced quantum critical points
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A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson
paradigm remains unknown. According to Landau cubic criterion, phase transitions should be
first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg
free energy. Here, from renormalization group (RG) analysis we show that second-order quantum
phase transitions can occur at such putatively first-order transitions in interacting two-dimensional
Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless
fermions, we call them fermion-induced quantum critical points (FIQCP). We further introduce a
microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac
semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana
quantum Monte Carlo simulations show convincing evidences of a FIQCP for N = 2, 3, 4, 5, 6,
consistent with the RG analysis. We finally discuss possible experimental realizations of the FIQCP
in graphene and graphene-like materials.

Fathoming the behavior of quantum matters near
quantum phase transitions in strongly correlated many-
body systems is among central and challenging issues
in modern condensed matter physics [1]. Due to Lan-
dau and Ginzburg [2], a prevalent understanding of
phase transitions is provided by order parameters whose
nonzero expectation value can characterize phases with
lower symmetries. Su�ciently close to the transition
point, order parameter fluctuations at large distances and
long times dominate the physics near such phase transi-
tions and are described by a continuum field theory of
order parameters. Combined with Wilson’s renormaliza-
tion group (RG) theory [3], this sophisticated Landau-
Ginzburg-Wilson (LGW) paradigm for phase transitions
has made huge successes in understanding second-order
phase transitions in correlated many-body systems in-
cluding superconductors, density-wave compounds, and
electronic liquid crystals [4–6].

Quantum critical points beyond the LGW paradigm
have attracted increasing attentions. It is particularly
intriguing to identify and understand quantum critical
points which are forbidden according to the Landau
criterion – the so-called Landau-forbidden transitions.
Remarkably, the theory of deconfined quantum critical
points (DQCP) [7] provides an exotic scenario of realiz-
ing a continuous quantum phase transition between two
symmetry-incompatible phases, which is putatively first-
order according to the Landau symmetry criterion. Frac-
tional excitations play an important role in such DQCP
[7–11].

The Landau cubic criterion states that continuous
phase transitions are also forbidden when cubic terms
of order parameters are allowed by symmetry in the
Landau-Ginzburg (LG) free energy. For instance, the
quantum three-state Potts model in 2+1 or 3+1 dimen-
sions has been convincingly shown to feature a first-order
quantum phase transition [12], as cubic terms of the Z3

Dirac	semimetal� Kekule-VBS�FIQCP	 J/t�

T�

FIG. 1. | The fermion-induced quantum critical point
(FIQCP). According to the Landau cubic criterion, the tran-
sition would be putatively first-order because cubic terms of
order-parameters are allowed by symmetry in the Landau-
Ginzburg theory. However, it can be induced to be second-
order by coupling to massless Dirac fermions. This FIQCP
provides a new and generic scenario for transitions violating
the Landau cubic criterion.

order parameters are allowed and relevant in the low-
energy LG free energy. One may naturally ask the fol-
lowing question: Is there any continuous transition that
can violate this Landau criterion concerning cubic terms
in LG free energy?
Here we discover an intriguing scenario violating the

Landau cubic criterion; namely fermion-induced quan-
tum critical points (FIQCP) are second-order quantum
phase transitions induced by coupling gapless fermions
to fluctuations of order parameters whose cubic terms
appear in the Landau-Ginzburg theory. To be more
explicit, we consider a quantum phase transition between
Dirac semimetals in 2D [13–18] and Kekule valence bond
solids (Kekule-VBS) [19–22] with Z3 symmetry-breaking
where cubic terms are allowed in the LG free energy,
as schematically shown in Fig. 1. We perform RG
analysis to show that this putative first-order phase
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Let us focus on the Z3 symmetric case:

κ

g

Phase Diagram of the lattice model:

First order

Z3 Symmetric Phase 
with massless fermions

Z3 Broken Phase 
with massive fermions

Second orderCritical
End-Point



The traditional approach has a severe sign problem!
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has positive determinant

source of the  
sign problem!
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Introduce a monomer field [n]

Fermion Bag Approach:

Anti-symmetric matrix



We group the interaction sites 
first and perform the sum 
over Z3 spins.
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Sum of Z3 spins 
imposes constraints on 
boson worldlines.

boson worldlines
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We can rewrite the spin partition function
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constrained Z3 worldline 
configurations
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Fermion partition function is a sum over all 
paths that does not contain the interaction 
sites.

= Det(Wk [n])

which is positive!

⌦([q, n])



The partition function can be finally written without sign problems:

Z =
X

[n,q]

⌦([q, n]) Det(Wk [n])

The boson and fermion sector talk to each 
other through the monomer field [n]



Weak coupling vs. Strong Coupling:

Weak Coupling Strong Coupling

“A few small bags 
and one big bag” “Many small bags”

5

FIG. 2: An example of a monomer configuration [n] showing free
fermion bags on a two dimensional lattice. The filled circles repre-
sent monomers and the connected regions without monomers form
free fermion bags.

viewpoint are uniquely defined for every monomer configura-
tion. An interesting feature of the strong coupling viewpoint
is that at sufficiently strong couplings there are many distinct
fermion bags, which we label as B = 1, 2..., and fermions
from one bag cannot hop to a different bag. In contrast in the
weak coupling viewpoint there is a single fermion bag con-
taining all monomer sites. Based on these two viewpoints we
can write the partition function in two different but equivalent
ways:

Z =
∑

[n]

UNm

∏

B

(

Det(WB)
)2

(21a)

Z =
(

Det(M)
)

∑

[n]

UNm

(

Det(G)
)2

, (21b)

where Nm represents the number of monomers in the config-
uration,M is the free staggered fermion matrix defined in (2),
WB represents the free staggered fermion matrix connecting
the sites within the bag B, and G represents a Nm ×Nm free
staggered propagator matrix connecting monomer sites. The
elements of G are given by

Gx,y =
−i

L3

∑

k

eik·(x−y)

∑

α′ ηx,α′ sin kα′

∑

α sin
2 kα

(22)

where k ≡ (k1, k2, k3) where kα = (2n + 1)π/L, n =
0, 1.., L − 1 due to anti-periodic boundary conditions. At
weak couplings there are very few monomers and the weak
coupling viewpoint becomes more useful for calculations and
the Boltzmann weight of each monomer configuration is noth-
ing but the sum over all Feynman diagrams. Thus, the weak
coupling viewpoint is exactly identical to the well known
diagrammatic determinantal Monte Carlo methods [46–49].

On the other hand at strong couplings, when the number of
monomers becomes comparable to the volume, the strong
coupling view point becomes useful for calculations since free
fermion bags become small. As we discuss below, it is also
easy to understand some of the strong coupling results of the
previous section intuitively.
Expressions for observables can also be derived easily in

the fermion bag approach. For example, in the strong coupling
viewpoint the two point fermion correlation function is given
by

⟨ψx,i ψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

W−1
B;x,y,

(23)
where W−1

B;x,y is the inverse of the Dirac operator within the
free fermion bag B that contains the sites x and y. It is under-
stood that when either of the sites x or y contains a monomer,
that configuration does not contribute to the correlation func-
tion. Further, since fermions cannot hop from one fermion bag
to another, x and y are also forced to be within the same bag.
With this insight it is easy to see why fermion correlations
decay exponentially at strong couplings. Since the lattice is
filled with monomers, large fermion bags are suppressed ex-
ponentially and fermions are confined within small regions.
The argument that shows that even bosonic correlations de-

cay exponentially is more subtle. In principle, it is possible
to have a single insertion of ψi,xψi,x within special fermion
bags that allow a zero mode in the matrixWB. Clearly, such
bags do not contribute to the partition function since without
the insertion of ψi,xψi,x the determinant Det(WB) vanishes.
However, with the insertion of ψi,xψi,x one row and one col-
umn are removed from the matrix and then the determinant no
longer vanishes. This is very similar to the argument of how
instantons can contribute to the chiral condensate in single fla-
vor QCD. However, since there are two flavors in our model
and ψi,xψi,x only involves the flavor i, the determinant of the
other flavor still vanishes due to the zero mode in WB of the
second flavor. Thus, single insertion of a fermion bilinear is
forbidden in our model. For this reason bosonic correlation
functions also get contribution only when both x and y are
within the same bag. For example the expression for one of
the correlation functions is given by

⟨ψxψx,i ψy,iψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

×
(

W−1
B;x,y

)2
. (24)

Since x and y are within the bag, it too decays exponentially at
sufficiently large coupling as we found in the previous section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The first is
a block algorithm that creates, destroys and moves monomers
within blocks. The second is a worm algorithm that creates

“Diagrammatic Determinantal  
Monte Carlo.”



Back ground configuration Small fluctuations

5

FIG. 2: An example of a monomer configuration [n] showing free
fermion bags on a two dimensional lattice. The filled circles repre-
sent monomers and the connected regions without monomers form
free fermion bags.

viewpoint are uniquely defined for every monomer configura-
tion. An interesting feature of the strong coupling viewpoint
is that at sufficiently strong couplings there are many distinct
fermion bags, which we label as B = 1, 2..., and fermions
from one bag cannot hop to a different bag. In contrast in the
weak coupling viewpoint there is a single fermion bag con-
taining all monomer sites. Based on these two viewpoints we
can write the partition function in two different but equivalent
ways:

Z =
∑

[n]

UNm

∏

B

(

Det(WB)
)2

(21a)

Z =
(

Det(M)
)

∑

[n]

UNm

(

Det(G)
)2

, (21b)

where Nm represents the number of monomers in the config-
uration,M is the free staggered fermion matrix defined in (2),
WB represents the free staggered fermion matrix connecting
the sites within the bag B, and G represents a Nm ×Nm free
staggered propagator matrix connecting monomer sites. The
elements of G are given by

Gx,y =
−i

L3

∑

k

eik·(x−y)

∑

α′ ηx,α′ sin kα′

∑

α sin
2 kα

(22)

where k ≡ (k1, k2, k3) where kα = (2n + 1)π/L, n =
0, 1.., L − 1 due to anti-periodic boundary conditions. At
weak couplings there are very few monomers and the weak
coupling viewpoint becomes more useful for calculations and
the Boltzmann weight of each monomer configuration is noth-
ing but the sum over all Feynman diagrams. Thus, the weak
coupling viewpoint is exactly identical to the well known
diagrammatic determinantal Monte Carlo methods [46–49].

On the other hand at strong couplings, when the number of
monomers becomes comparable to the volume, the strong
coupling view point becomes useful for calculations since free
fermion bags become small. As we discuss below, it is also
easy to understand some of the strong coupling results of the
previous section intuitively.
Expressions for observables can also be derived easily in

the fermion bag approach. For example, in the strong coupling
viewpoint the two point fermion correlation function is given
by

⟨ψx,i ψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

W−1
B;x,y,

(23)
where W−1

B;x,y is the inverse of the Dirac operator within the
free fermion bag B that contains the sites x and y. It is under-
stood that when either of the sites x or y contains a monomer,
that configuration does not contribute to the correlation func-
tion. Further, since fermions cannot hop from one fermion bag
to another, x and y are also forced to be within the same bag.
With this insight it is easy to see why fermion correlations
decay exponentially at strong couplings. Since the lattice is
filled with monomers, large fermion bags are suppressed ex-
ponentially and fermions are confined within small regions.
The argument that shows that even bosonic correlations de-

cay exponentially is more subtle. In principle, it is possible
to have a single insertion of ψi,xψi,x within special fermion
bags that allow a zero mode in the matrixWB. Clearly, such
bags do not contribute to the partition function since without
the insertion of ψi,xψi,x the determinant Det(WB) vanishes.
However, with the insertion of ψi,xψi,x one row and one col-
umn are removed from the matrix and then the determinant no
longer vanishes. This is very similar to the argument of how
instantons can contribute to the chiral condensate in single fla-
vor QCD. However, since there are two flavors in our model
and ψi,xψi,x only involves the flavor i, the determinant of the
other flavor still vanishes due to the zero mode in WB of the
second flavor. Thus, single insertion of a fermion bilinear is
forbidden in our model. For this reason bosonic correlation
functions also get contribution only when both x and y are
within the same bag. For example the expression for one of
the correlation functions is given by

⟨ψxψx,i ψy,iψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

×
(

W−1
B;x,y

)2
. (24)

Since x and y are within the bag, it too decays exponentially at
sufficiently large coupling as we found in the previous section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The first is
a block algorithm that creates, destroys and moves monomers
within blocks. The second is a worm algorithm that creates

weak couplings

strong couplings
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FIG. 2: An example of a monomer configuration [n] showing free
fermion bags on a two dimensional lattice. The filled circles repre-
sent monomers and the connected regions without monomers form
free fermion bags.

viewpoint are uniquely defined for every monomer configura-
tion. An interesting feature of the strong coupling viewpoint
is that at sufficiently strong couplings there are many distinct
fermion bags, which we label as B = 1, 2..., and fermions
from one bag cannot hop to a different bag. In contrast in the
weak coupling viewpoint there is a single fermion bag con-
taining all monomer sites. Based on these two viewpoints we
can write the partition function in two different but equivalent
ways:

Z =
∑

[n]

UNm

∏

B

(

Det(WB)
)2

(21a)

Z =
(

Det(M)
)

∑

[n]

UNm

(

Det(G)
)2

, (21b)

where Nm represents the number of monomers in the config-
uration,M is the free staggered fermion matrix defined in (2),
WB represents the free staggered fermion matrix connecting
the sites within the bag B, and G represents a Nm ×Nm free
staggered propagator matrix connecting monomer sites. The
elements of G are given by

Gx,y =
−i

L3

∑

k

eik·(x−y)

∑

α′ ηx,α′ sin kα′

∑

α sin
2 kα

(22)

where k ≡ (k1, k2, k3) where kα = (2n + 1)π/L, n =
0, 1.., L − 1 due to anti-periodic boundary conditions. At
weak couplings there are very few monomers and the weak
coupling viewpoint becomes more useful for calculations and
the Boltzmann weight of each monomer configuration is noth-
ing but the sum over all Feynman diagrams. Thus, the weak
coupling viewpoint is exactly identical to the well known
diagrammatic determinantal Monte Carlo methods [46–49].

On the other hand at strong couplings, when the number of
monomers becomes comparable to the volume, the strong
coupling view point becomes useful for calculations since free
fermion bags become small. As we discuss below, it is also
easy to understand some of the strong coupling results of the
previous section intuitively.
Expressions for observables can also be derived easily in

the fermion bag approach. For example, in the strong coupling
viewpoint the two point fermion correlation function is given
by

⟨ψx,i ψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

W−1
B;x,y,

(23)
where W−1

B;x,y is the inverse of the Dirac operator within the
free fermion bag B that contains the sites x and y. It is under-
stood that when either of the sites x or y contains a monomer,
that configuration does not contribute to the correlation func-
tion. Further, since fermions cannot hop from one fermion bag
to another, x and y are also forced to be within the same bag.
With this insight it is easy to see why fermion correlations
decay exponentially at strong couplings. Since the lattice is
filled with monomers, large fermion bags are suppressed ex-
ponentially and fermions are confined within small regions.
The argument that shows that even bosonic correlations de-

cay exponentially is more subtle. In principle, it is possible
to have a single insertion of ψi,xψi,x within special fermion
bags that allow a zero mode in the matrixWB. Clearly, such
bags do not contribute to the partition function since without
the insertion of ψi,xψi,x the determinant Det(WB) vanishes.
However, with the insertion of ψi,xψi,x one row and one col-
umn are removed from the matrix and then the determinant no
longer vanishes. This is very similar to the argument of how
instantons can contribute to the chiral condensate in single fla-
vor QCD. However, since there are two flavors in our model
and ψi,xψi,x only involves the flavor i, the determinant of the
other flavor still vanishes due to the zero mode in WB of the
second flavor. Thus, single insertion of a fermion bilinear is
forbidden in our model. For this reason bosonic correlation
functions also get contribution only when both x and y are
within the same bag. For example the expression for one of
the correlation functions is given by

⟨ψxψx,i ψy,iψy,i⟩ =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

×
(

W−1
B;x,y

)2
. (24)

Since x and y are within the bag, it too decays exponentially at
sufficiently large coupling as we found in the previous section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The first is
a block algorithm that creates, destroys and moves monomers
within blocks. The second is a worm algorithm that creates

general couplings

Background Fields: New definitions of fermion bags



C. Application in Hamiltonian Lattice 
Field Theory
Why think in terms of a Hamiltonian?

(i) Natural in condensed matter physics. 

(ii) For lattice field theorists it eliminates an 
unnecessary fermion doubling and preserves some 
internal symmetries. 

(iii) Some sign problems are easily solved. 

(iv) Algorithms scale better.

In discrete time these formulations look like regular lattice 
field theories but without space-time rotation symmetries.



Partitio Function:

Z = Tr
⇣
e��H

⌘

Where we will write the generic 
Hamiltonian as 

Discrete time approach: Tr
⇣
e��H

⌘
= Tr

⇣
e�"H e�"H ....e�"H

⌘

Continuous time approach:

time ordered

H = H0 + Hint

Tr
⇣
e��H

⌘
=

X

k

Z
[dt] Tr

⇣
e�(��tk )H0(�Hint)e

�(tk�tk�1)H0 ...Hinte
�t1H0

⌘



Ideas of fermion bags should in principle extend to the discrete 
time approach for local Hamiltonians by using a “checkerboard” 
type space-time lattice.

Fermion world lines are simply the occupation number basis:

In  the continuous time limit the fermion bags are difficult to identify.

In the auxiliary field approach each time step takes the form:           
Problem:

e�" c†i Mij [�]cj



The partition function takes the form

Z =

Z
[d�] Det

⇣
1 + BNt (�Nt )BNt�1(�Nt�1)....B1(�1)

⌘

Z =

Z
[d�] Tr

⇣
...e�" c†i M

k
ij [�k ]cj ...e�" c†i M

k0
ij [�k0 ]cj ...

⌘

Bk(�k) = exp(�"Mk(�k))We can define then

Advantage: Determinants are spatial size x spatial size

Disadvantage: Difficult to identify fermion bags, except in the 
weak coupling language (?).



Challenge: How can we identify space-time fermion bags in the similar to 
the Lagrangian approach in continuous time?

A simple Idea: Choose H0 = 0 Hint = Hand

Tr
⇣
e��H

⌘
=

X

k

Z
[dt] Tr

⇣
(�Hint)(�Hint)...(�Hint)

⌘

Then the partition function is

The at very high temperatures (no interactions) all spatial sites 
form fermions bags and are independent of each other!

D. Spatial Fermion Bags

What about lower temperatures?



Consider “local designer Hamiltonians” such that each insertion 
of the interaction gives a positive trace!

Tr
⇣
(�Hint)(�Hint)...(�Hint)

⌘
� 0

The simplest example is

H = Hint =
X

hiji

�e↵(c
†
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†
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�
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1

2
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which is equivalent to

The partition function can be written as
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Fermion bags are “entangled” set of points!
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4 fermion bags!
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At high temperature fermion dynamics splits 
naturally into disconnected bags
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Fermion bag size as a function of spatial volume with Δt = 0.25

Maximum Cluster Size and Equilibration

I We find that for a timeslice of .25, clusters are no bigger
than around 30 sites. This holds across lattice sizes.

I We can often then calculate weight ratios then as
determinants of 30 ⇥ 30 matrices or smaller. We have
achieved small-� equilibration for lattices as large as
100 ⇥ 100!
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Figure: Average maximum sizes of
clusters in each timeslice for
equilibrated configurations. Timeslice
size is .25.

Figure: Equilibration of t-V model on
a square 100 ⇥ 100 lattice. (� = 4.0)
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FIG. 4. Plot showing � = L equilibration of the total number of
bonds Nb in a bond configuration starting from zero, as a function of
Monte Carlo sweeps. The horizontal lines show the expected equi-
librated values. The time for a single bond-update on a single core
are approximately 30 days for L = 100, 30 hours for L = 64, and 4
hours for L = 48. Inset shows equilibration at L = 100, � = 4.

Before we begin the bond update we divide the configu-
ration space into time-slices of width 0.25 with t0 chosen to
be at the beginning of the first time slice. We then update
bonds within each time-slice sequentially. During the update
of a time-slice we define two N⇥N matrices: the background

matrix MB (which is a product of all of the Bx,d matrices out-
side the selected time-slice and On), and the time-slice matrix

MT , which is the product of all the Bx,d matrices within the
time-slice being updated. Figure 3 shows what contributes to
MB and MT . When the configuration of bonds within the
time-slice is changed then only MT changes to M 0

T . The ratio
R is given by

R =

det( N +MBM 0
T )

det( N +MBMT )
= det ( N +GB�) , (9)

where we have defined two new N ⇥ N matrices GB =

( N +MBMT )
�1 MBMT and � =

�
M�1

T M 0
T � N

�
.

Since the bond matrices Bx,d in different fermion bags com-
mute, it is easy to verify that � is non-zero only within a
block which contains spatial sites connected to fermion bags
that change. If we randomly choose a spatial block contain-
ing about 30� 60 sites and focus on updating the bonds only
within that block, during such a block-update the size of the
matrix � cannot be greater than the sum of the sites in the
fermion bags that touch the sites within the block. We refer to
this set of sites, which can be larger than the block size, as a
super-bag and denote its size as s. Since � is non-zero only
in an s⇥ s block, it is easy to show that the computation of R
(the ratio of the weight of the current configuration with that
of the background configuration that existed at the time when
the block update began) using (9), reduces to the computation
of the determinant of an s ⇥ s matrix. Since GB and MT

are fixed matrices during the entire block-update they can be

computed and stored and all proposals to update the current
configuration within the block reduces to the computations of
a determinant of an s ⇥ s matrix, independent of the system
size [45].

Since the fermion bag size does not grow with system size
the maximum size of � remains roughly the same on all time-
slices even on large lattices. When the block within the same
time-slice is changed, we need to recompute GB and MT .
Due to the structure of GB we can use identities such as

( +M1M2)
�1

= (1�G2)
⇣
(1�G1)(1�G2) +G1G2

⌘�1
(1�G1) (10)

where Gi = (1 + Mi)
�1Mi, to express it in terms of partial

Gi’s. These identities avoid instability issues. Since partial
Gi’s can be calculated and stored we can compute GB eas-
ily without encountering instabilities. The recomputation of
GB within a time-slice requires a time that scales as O

�
sN2

�

at most because we can use the Woodbury matrix identity in
terms of inverses of stable partial products. When we change
time-slices we use a storage scheme for our partial products
similar to the one in [18] to facilitate updates that scale lin-
early in �. We have found that our algorithm not suffer from
stabilization problems even when N = 10, 000 [45].

The time to complete a single sweep with our algorithm
scales as �N3, which is similar to the traditional auxiliary
field algorithms. However, we believe we have reduced the
prefactor significantly using the idea of fermion bags [45].
In Fig. 4 we show equilibration of Nb (the total number of
bonds in a configuration) as a function of sweeps for � =

L = 48, 64, 100 and V = 1.304t. Although the L = 100

data has not equilibrated, there is no bottleneck (see inset of
Fig. 4). We estimate the bond density at equilibrium to be
Nb/�L2 ⇡ 2.7, which means at L = � = 100 we will have
roughly 2.7 million bonds after equilibration. A single sweep
will then roughly require a month to complete on a single
3GHz CPU core. The results shown in the next section were
obtained with an order of 104 equilibrated configurations.

IV. RESULTS AT CRITICALITY

Using the algorithm described above, we have studied the
two dimensional t � V model and computed the critical ex-
ponents at the quantum phase transition between the massless
and the massive fermion phases. These critical exponents are
expected to belong to the Ising Gross-Neveu universality class
with Nf = 1 four-component Dirac fermions [46, 47]. For
large values of L we expect the observable hCi to scale as
L�4 in the massless phase and to saturate to a constant in the
massive phase. In the critical region (V ⇡ Vc and large values
of L) we expect hCi to satisfy the leading critical finite size
scaling relation [48, 49]

hCi = 1

L1+⌘
f
⇣
(V � Vc)L

1/⌫/t
⌘
. (11)

Our Monte Carlo results are consistent with these expecta-
tions.

Equilibration



time to update bonds is linear in β
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Scaling of time: Pi-Fluxes near Critical Point

I This algorithm has scaling �N3 in accordance with
LCT -INT algorithms, as opposed to �3N3 for
CT -INT -algorithms. (Wang, Iazzi, Corboz, Troyer, PRB 91 (2015))

I We can see the linear scaling in time at small �-values and
extrapolate for the time of a full sweep at large �.
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Figure: Time to do one sweep for
different � values at V = 1.304.
Confirmed linear scaling with �.

Figure: Extrapolation to low
temperatures.
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FIG. 7. Plot showing equilibration of the bond number for V/t =
1.304, L = 100 configurations with � = 1, 2, 4 as a function of
sweeps.
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FIG. 8. Plot showing the time to complete a single bond-update (in
days) for L = 48, 64, 100 with � = L at V/t = 1.304. The solid
line is a plot of ⌧ = 3⇥ 10�13

L

7.

Finally, we update the matrices M 0
T that are found in � often. For ease of computation and to ensure stability, the quantity

we update is actually ⇤ = GBMT
�1MT

0, and the determinant we calculate is

R = det

�
[ �GB +⇤]s⇥s

�
=

���det
⇣⇥

( �GB)QT
+R

⇤
s⇥s

⌘��� , (A.15)

where we are using the RQ factorization of ⇤ into an upper triangular matrix R and an orthogonal matrix Q, as in [44]. Only
the MT

0 matrices have to be updated each time, so we store an RQ factorization of the GBMT
�1 product for the block update.

ALGORITHM PERFORMANCE

As mentioned in Section III of the paper, we can easily equilibrate even L = 100 lattices for small � values. Fig. 7 shows
some equilibrations for the small � values of 1, 2 amd 4 at V/t = 1.304 (this is currently also shown in the inset of Fig.4 of the
paper). In Fig. 8, we confirm the O(�N3

) scaling of time for a complete bond-update. In particular we plot the bond update
time ⌧b (in days) as a function of L for three different lattice sizes at the coupling V/t = 1.304 close to the critical point. Since
� = L we expect a scaling of O(L7

). As expected the solid line in the figure, which is the plot of ⌧b = 3 ⇥ 10

�13L7, roughly
passes through all the points.

In order to compute our observable we need to generate a large number of statistically independent configurations. Through
the Open Science Grid, we have access to several hundreds of CPU cores at a time. Thus, we can typically run about 1000
independent threads of our algorithm. On small lattices we start 1000 independent runs from a configuration without any bonds.
We then wait for equilibration and collect about 20 sweeps of data from each thread thus generating statistics of about 204
configurations.

On larger lattices we equilibrate 10 independent configurations and copy each configuration on 100 cores. Thus we start the
1000 cores with equilibrated configurations but many of which are completely correlated. In Fig. 9 we plot the Monte Carlo
fluctuations of three such threads starting from the same equilibrated configuration with different random number sequences. We
note that the observable N defined in Eq.(6) of the paper seems to become decorrelated within a few sweeps. Hence, we again
can generate 20 sweeps of data on each of the 1000 threads. We compute averages after throwing away the first few sweeps.

Scaling of the algorithm: V3 β

L = β



Technical Details: 
Emilie Huffman (Poster Next week!)

We can accelerate the algorithm further if we 
abandon  the continuous time approach, in 
line with the “Lattice Field Theory” paradigm!


