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Teaching an old dog new tricks…

The old dog: 

O(2)-symmetric Wilson-Fisher conformal field theory in (2+1)  

simulated/emulated by Worm algorithm, or ultracold atoms

The new trick:  

Novel mechanism of charge fractionalization:  

Halon, a polaron with half-integer charge 
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Polaron/impurity in a quantum-critical environment  
is a well-known fundamental problem…



Let us look at the U(1) problem from the charge-quantization perspective…

More generally: the problem of trapped quanta



Elementary excitations—quasiparticles and/or centers—can carry quanta of 
conserved quantities, such as: 

(i) energy (always, by definition), 

(ii) momentum/quasi-momentum (in translation-invariant cases), 

(iii)  projection of angular momentum (e.g., Kelvons), 

(iv)  projection of spin, 

(v) the number of genuine (as opposed to quasi) particles (e.g., quasiparticles in  
Landau theory of Fermi liquid; and also: vacancies, interstitials, impuritons,     
particle/hole excitations in Mott insulators). 

(vi)  (topology-driven) fractional quantization (e.g., quantum Hall, spinons in 1D)



A rule of thumb:

The number of genuine particles is a bad quantum number whenever 
corresponding U(1) symmetry is broken—even if only in the topological sense, like 
in 1D superfluids; and is a good quantum number otherwise, apart from topology-
driven cases, and also static impurity (i.e., a center) in a normal Fermi liquid.

The particle charge is a good 
quantum number: 

quasiparticles in Landau Fermi liquid theory, 
and also for Fermi polarons/molecules in the 
normal Fermi sea; 

vacancies, interstitials, impuritons;  
particle/hole excitations in Mott insulators

The particle charge is a bad 
quantum number:

… good but trivial (zero):

excitons 

phonons in a solid

phonons in a superfluid 

Bogoliubov quasiparticles in a superconductor 

static impurity (center) in a normal Fermi 
liquid



Types of transitions between two charge-quantized states 
of an impurity (or a trapping center) 

in the absence of broken U(1) symmetry
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coexistence asymptotic metastability critical endpoint

Takes place when there is an 
insulating gap. 

The two edges of the insulating gap 
define the two endpoints. 

On the approach to the endpoint, the 
upper branch is a weakly bound state 
of the lower-branch impurity/center 
and a quasiparticle compensating the 
charge.

The upper branch is decaying, 
but metastable on approach to 
the transition point: decay width 
vanishes faster than the energy 
difference.

?



Example of asymptotic metastability: Resonant Fermi polaron

 Prokof'ev and  Svistunov, Phys. Rev. B 77, 020408 (2008)

(Experimental realization with ultracold atoms: Feshbach resonance)



Example of coexistence: an impurity/center in the Mott insulator

Experimental realization with ultracold atoms: optical traps
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at an integer filling factorH = − ai
+

i, j
∑ aj + U ni

i
∑ ni −1( ) + Vni=0

On the approach to the endpoint, the upper branch is a 
weakly bound state of the lower-branch impurity/center and 
a particle/hole excitation compensating the charge.

Parabolic dispersion is crucial for this type of end-point scenario: 
There are no weakly bound states for linear dispersion.



Q: What happens right at the superfluid-to-Mott-insulator criticality?

at an integer filling factor, in 2DH = − ai
+

i, j
∑ aj + Uc ni

i
∑ ni −1( ) + Vni=0

(when the system emulates O(2)-symmetric Wilson-Fisher conformal field theory)

δ n(r) d 2r∫charge  = 



Path integral simulations by Worm algorithm

(2+1)-dimensional path-integral representation of the Hubbard model and/or 3D J-current model
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strength of the repulsive center

size of the halo:

VVc

Criticality: The Halon

r0 ∼ V −Vc
− "ν
, !ν = 2.33(5)

The halo charge            is  guaranteed by emergent particle-hole symmetry.  ±1/ 2



Extracting the value of  !ν

In the grand canonical ensemble, calculate the change in the total number of 
particles as a response to the center strength at different  system sizes and see 
which exponent collapses the data.

The relevant range of parameters is when the size of the halo is of the order of the system size.



Structure of the halo

(linear-response tail)

δn

rr0

∝ 1
r0
2−sr s

∝
r0
r3

(universal scaling ansatz)

(singular core)

The amplitude of the linear-response  
tail diverges on the  approach to the 
critical point, whereas the amplitude 
of the singular core vanishes.

δn(r) = ± r0
−2 fhalo r / r0( ) (r ≥ ruv )

fhalo (x)∝1/ x
3, x≫1

fhalo (x)∝1/ x
s , s = 1+1/ !ν , x≪1



Hctr =Vn̂0 ⇒ n0 ≡ n̂0 ≡ ∂H
∂V

= dE
dV

n0 = reg. part +δn(r∼ruv ) ⇒ n0 ∝ reg. part +
1
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2−s
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dEhalo
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Deriving relation r0 ∼ V −Vc
− "ν( )s = 1+1/ !ν

Ehalo ∝1/ r0 ⇒
dEhalo
dV

=
dEhalo
dr0

dr0
dV
∼
1
r0
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dr0
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∼

1
r0
1−1/ "ν



Consistency with numerics

I(r) = δ n( ′r ) d 2
′r <r
∫ ′r , I(r) = − 1

2
+ const r

L
⎛
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⎞
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2−s

In the canonical ensemble, and right at V=Vc, calculate the integral I(r) and compare 
to the finite-size scaling ansatz.



Path-integral visualization 
of the entanglement 
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The particle is 
on the center.

The particle 
 is in the halo.

The particle is 
on the center.

The particle is 
on the center.

The particle 
 is in the halo.



Minimalistic model: Spin-1/2 impurity in the O(2)-critical bosonic environment

H int = γ (ψ̂ Ŝ+ + ψ̂ †Ŝ− )+ hzŜz

[1] Seth Whitsitt and Subir Sachdev,  arXiv: 1709.04919
[2] Kun Chen, Yuan Huang, Youjin Deng, and BS, 2017 (to appear soon)

Q = Ŝz + d drψ̂ †ψ̂∫ the charge (takes on half-integer values)

hzŜz creates the halon hxŜx yet another relevant perturbation

ν z ≡ !ν
 Monte Carlo  RG of Ref. [1]

ν x
2.66

1.08 1.13(2)

 2.33(5)

ξα ∝ | hα |
−ναcorrelation length/time: (α = z,x)



VVc

1. The charge of the center is half-integer. 

2. The charge of the halo is plus/minus one half. 

3. One particle (or hole) gets entangled between the center and the halo.

To summarize: the halon, a new quasiparticle with unusual properties


