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Spectral functions and Imaginary time correlations

We want the spectral function of some operator Example: s
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With QMC we can compute the imaginary-time correlator
G(t) = (0T (1)0(0)) = (¢"HOte ™ H0O) T€[0,8], B=T""

Relationship between G(r) and S(w):
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But we are faced with the difficult inverse problem:
- know G(7) from QMC for some points 7, i=1,2,...,Nt
- statistical errors are always present

Solution S(w) is not unique given incomplete (noisy) QMC data

- the numerical analytic continuation problem
- difficult to resolve fine-structure of S(w)



QMC Data may look like this:

T G(7) o(7) (error)
0.100000000  ©0.785372902099492  0.000025785921025
0.200000000 0.0617745252224320 0.00002411097/8744
0.300000000 ©0.486570613927804  0.000022858341732
0.400000000 0.383735739475007 0.000022201962003
0.600000000 ©0.239426314549321  0.000021230286782
0.900000000 0.118831597893045 0.000021304530787
1.200000000 0.059351045039398  0.000020983919497
1.600000000 0.023755763120921 0.000020963449347
2.000000000 ©0.009567293481952  0.000021147137686
2.500000000 0.003071962229791 0.000020315351879
3.000000000 ©0.001017989765629  0.000020635751833
3.600000000 0.000255665406091 0.000020493781188

From a given “guess” of the spectrum S(w) we can compute

Gs(T) = /_OO e "“Sw)dr

We want to minimize the “distance” to the QMC data points; mimimize
1
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QMC statistical errors are correlated; actually has to use covariance matrix
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General analytic continuation procedure

Represent the spectrum using
some suitable generic parametrization
- e.g., sum of many delta functions

Sl wi= iAié(w — wj)

Manifestation of ill-posed analytic continuation prob
- many spectra have almost same goodness-of-fit (close to best y°)

S(w)

W

em.

Need some way to regularize the spectrum
- without loss of information



Maximum entropy (MaxEnt) method
Silver, Sivia, Gubernatis, PRB 1990; Jarrell, Gubernatis, Phys. Rep. 1996

Use entropy to quantify amount of information in the spectrum

E = —/de(w) In (%) P(S) x exp (aF)

D is a “default model”; result in the absence of data
P(S|G) x exp(=x*/2 + aE)
Find S that maximizes P(S|G), i.e., maximize
Q=aF-x°
E has a smoothing effect if a is not too small

- how to choose «a?
- different variants of the method use different criteria

Was for some time the standard approach

- still most widely used

- Indications that E may bias the spectrum too much in some cases
- sharp features (edges, sharp peaks) cannot be resolved



Stochastic analytic continuation (SAC)

Sandvik, PRB 1998; Beach, arXiv 2004; Syljuasen, PRE 2008; Sandvik, PRE 2016
[slightly different approach: Mishchenko, Prokofev, Svistunov,... papers 2000-]

Sample the spectrum, using Heisenberg chain, T=J/2 (PRB 1998)
y2 - SAC better than MaxEnt
P(S|G) x exp | —Z= . | . ,
20 |
0 = sampling temperature > ]ﬂ%
- how to choose ¢

- several proposals

Monte Carlo sampling in space of
delta functions (or other space)

- average <S(w)> is smooth




SAC and entropic pressure

Syljuasen (PRE 2008)
- just use 6=1

P(S|G) o< exp(—x"/2)

Leads to a problem
(Sandvik, PRE 2016)

when No is large

- sampling become dominated
by configurational entropy
- quality of fit deteriorates

Test case:
Dynamic structure
factor of 1D Heisenberg

chain at T=0 (gq=0.8x), L=500

Compare with:
Bethe Ansatz
(Sebastian Caux)
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Diagnostics and input from entropy

Shift the lower and upper edges of the spectrum to
avoid entropic distortions there
- entropy minimum signals actual edges of the spectrum
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With the lower edge fixed the spectrum is very good
- iImportant: single maximum also imposed in sampling
(further reduces entropy)
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Referee comment:
“Of course if you know the answer you can cook up a method”



ImprOved SAC scheme Hui Shao & A. Sandvik (work in progress)

Problem with all SAC schemes so far: slow sampling:
it can take several hours to find optimal sampling temp or optimal
frequency bounds and obtain a final smooth average

New parametrization: Delta-functions of equal amplitude in continuum
- use histogram to collect “hits”

AT T

Use monotonically increasing distances for an edge

Can also build in “prominent feature”, e.g., dominant delta-fktn




Determination of sampling temperature

LI s <o (=35)

Use simulated annealing to find lowest chi-squared value
- the data is then overfitted

Raise the temperature
such that 2 is above the

minimum value by ~ one 4
standard deviation of
the 42 distribution E3

<X2> :X?nin+a\/ X?nina a~1 2

- the spectrum fluctuates L
and data not overfitted

More delta-functions — 10 8 ©

lower temperature
- overcomes some of the entropy problems



Dependence on the sampling temperature, ©® = 10 x 1.1 "
L=16 Heisenberg chain, S(#/2,w), T/J=0.5

uniform grid

no grid

1

Chi2 = 647.49386
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1 Chi2 = 20.80033




Delta-function and continuum, test with synthetic data
- noise level 2*10~ (20 7 points, 47=0.1)

Free sampling cannot resolve the delta function very well
- high-energy peak is also distorted



Delta function as prominent feature

- use one main delta function with adjustable weight ag
- other delta functions can not go below its energy wo

Motivation: Moving weight S(w)
into the main delta function
reduces the entropy; detected

in ¥y vs amplitude aop

Results for previous
synthetic test data

- 1+500 delta-tktns
Gives the correct
weight and location
of the delta function

Fix a slightly higher
sampling temperature
than in free sampling, to

see the ¥ minimum
appears more clearly
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The entire spectrum is very well reproduced!



More challenging case: continuum touches delta-fktn

Synthetic spectrum with
- wo=04
-an=1.0

QMC data can
reach error level 10

Orel = 107° ()




Dynamic structure factor of 2D S=1/2 Heisenberg model
H. Shao, Y. Q Qin, S. Capponi, 003 . . | . |
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Presence of magnon pole detected a,(7,75-k)=0.90

for all momenta g

S(m,m—-k;w)
—

Small pole at (z,0) related to d

almost deconfined spinons 0o 3 E—
(from study of J-Q model) w/J



nature

Comparison with RyEi Brics
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neutron scattering

Fractional excitations in the square-lattice

experlments quantum antiferromagnet
B. Dalla Piazza', M. Mourigal"?3*, N. B. Christensen*>, G. J. Nilsen"®, P. Tregenna-Piggott>,
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Our picture: Nearly deconfined spinons
- small but non-zero (z,0) magnon pole

- deconfinement at (z,0) when weak
multi-spin interactions added



1D Heisenberg chain, A(w)=5(0.87,w)
- sampling with edge built in (location not fixed)
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1D Heisenberg chain, A(w)=5(0.87,w)
- sampling with edge built in (location fixed at known frequency)
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Suppress peak entropy by imposing fixed
distance between two lowest deltas
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In principle one can optimize
any feature within some IF .
parametrization, and also
extend to more than one 0 |
feature. 2 4 6



Conclusions

Further developments of stochastic analytic continuation method

Good parameterizations of the spectrum can
- reduce detrimental entropic pressures
- produce better results

One or more parameters (“features™) can be optimized by
using entropy-related signal.

Some of these insights can also be used with Max-Ent

Lower-edge delta-function (magnon pole) confirmed for 2D Heisenberg
- good agreement with experiments

- calculations + theory suggest nearly deconfined spinons



