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Analytic Continuation with Optimized Features



Spectral functions and Imaginary time correlations

Relationship between G(𝝉) and S(𝜔):

G(⌧) =

Z 1
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But we are faced with the difficult inverse problem:

- know G(𝝉) from QMC for some points 𝝉i, i=1,2,…,N𝝉

- statistical errors are always present 

Solution S(𝜔)  is not unique given incomplete (noisy) QMC data

- the numerical analytic continuation problem

- difficult to resolve fine-structure of S(𝜔)

We want the spectral function of some operator
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With QMC we can compute the imaginary-time correlator
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 QMC Data may look like this:

      𝝉                     G(𝝉)                  𝜎(𝜏) (error)

 0.100000000   0.785372902099492   0.000025785921025    
 0.200000000   0.617745252224320   0.000024110978744 
 0.300000000   0.486570613927804   0.000022858341732 
 0.400000000   0.383735739475007   0.000022201962003 
 0.600000000   0.239426314549321   0.000021230286782 
 0.900000000   0.118831597893045   0.000021304530787 
 1.200000000   0.059351045039398   0.000020983919497 
 1.600000000   0.023755763120921   0.000020963449347 
 2.000000000   0.009567293481952   0.000021147137686 
 2.500000000   0.003071962229791   0.000020315351879 
 3.000000000   0.001017989765629   0.000020635751833 
 3.600000000   0.000255665406091   0.000020493781188

From a given “guess” of the spectrum S(𝜔) we can compute

GS(⌧) =

Z 1

�1
e�⌧!S(!)d⌧

We want to minimize the “distance” to the QMC data points; mimimize
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QMC statistical errors are correlated; actually has to use covariance matrix
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Manifestation of ill-posed analytic continuation problem:

- many spectra have almost same goodness-of-fit (close to best 𝜒2)

General analytic continuation procedure
Represent the spectrum using 

some suitable generic parametrization 

- e.g., sum of many delta functions 

S(!) =
N!X

i=1

Ai�(! � !i)
!

S(!)

Need some way to regularize the spectrum

- without loss of information



Maximum entropy (MaxEnt) method
Silver, Sivia, Gubernatis, PRB 1990; Jarrell, Gubernatis, Phys. Rep. 1996

P (S) / exp(↵E), P (S|G) / exp(��2/2 + ↵E)

E has a smoothing effect if 𝛼 is not too small

- how to choose 𝛼?

- different variants of the method use different criteria 

Was for some time the standard approach

- still most widely used

- indications that E may bias the spectrum too much in some cases

- sharp features (edges, sharp peaks) cannot be resolved

D is a “default model”; result in the absence of data

Q = ↵E � �2

Find S that maximizes P(S|G), i.e., maximize

Use entropy to quantify amount of information in the spectrum

E = �
Z

d!S(!) ln

✓
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◆
P (S) / exp (↵E)



Stochastic analytic continuation (SAC)

𝜃 = sampling temperature

Sandvik, PRB 1998; Beach, arXiv 2004; Syljuåsen, PRE 2008; Sandvik, PRE 2016 

In order to accurately determine Q

*, it is necessary to
carry out long simulations. If the annealing is performed too
quickly ~too few steps per Q value!, the calculated entropy
curve exhibits a broader maximum than what is seen in Fig.
1. The left side of the peak is quite stable with respect to the
annealing rate, but the location of the rapid drop is shifted
towards higher ln(1/Q). Apparently, the simulation easily
gets ‘‘trapped’’ at the local entropy maximum. Hence, in
cases where the maximum is broad and its exact position is
hard to determine, it may for practical purposes be better to
estimate Q

* as a point slightly to the left of the peak center
~which within error bars could be the actual maximum!. Fig-
ure 2 ~and more detailed studies of the dependence on Q)
also shows that the change in the spectrum before the en-
tropy peak is much less dramatic than right after, where
sharp peaks rapidly emerge. A strategy of slightly underesti-
mating ln(1/Q*) also conforms with the general notion that
too little structure is better than too much.
Next, results for both q5p/2 and q5p/4 are compared

with spectra obtained using the ‘‘classic’’ Max-Ent method1
~with a flat default!. The point Q

* used for the stochastic
method was determined as discussed above, as a point
slightly before the center of the last local entropy maximum,
where a clear increase with ln(1/Q) has ceased @e.g., for the
case q5p/2 discussed above, ln(1/Q)510.6 was used#. Fig-
ure 3 shows the results, along with histograms representing
the exact spectra. The new method clearly reproduces the
exact spectra better than the Max-Ent method, although the
Max-Ent results do also represent reasonable broadened av-
erages.
It should be stressed that although the entropy is used in

the method proposed here, the underlying philosophy differs
fundamentally from standard Max-Ent methods, where the
inclusion of the entropy in the optimization explicitly affects
the shape of the spectrum. In the stochastic method, a family
of spectra is obtained based only on the QMC data, and the
entropy is used only to single out one spectrum. Hence, any
structure in the spectrum obtained is due solely to the QMC
data.
The method has here been demonstrated only for a rela-

tively simple test case. Results obtained for other models and
dynamic quantities indicate that the behavior of the entropy
vs Q found here is typical for spectra with one broad con-
tinuous ~on some reasonable frequency scale! structure with
a single maximum. Good continued spectra are then obtained
using Q5Q

*, and for Q,Q

* two sharp peaks typically
start to emerge. In cases where the actual spectrum has two
peaks, there is also a sharp entropy drop as the global x

2

minimum is approached. However, the entropy maximum

associated with the appearance of the two peaks then occurs
at quite high x

2 values ~if the data is sufficiently good! and is
then clearly not the preferred point for sampling. For QMC
data of very high accuracy one would presumably have a
final entropy maximum before the sharp drop associated with
the emergence of additional peaks, and one could then again
use this to determine the optimum Q for sampling. In typical
cases the data may, however, be compatible with just two d

functions, and then it is difficult to determine a Q

*
~this is

then also an indication that the data are not of sufficient
accuracy for a reliable analytic continuation!. Clearly more
work is needed to clarify the general behavior of the entropy
before the method can be applied to more complicated spec-
tra than the single-maximum case considered here. A prob-
lem for practical use of the method is that the sampling
needed for an accurate determination of Q

* as well as the
averaging needed to obtain a final result are quite time con-
suming. The good agreement with the exact results obtained
here should motivate further work along these lines.

Support from the NSF under Grant Nos. DMR-95-27304
and DMR-97-12765 is acknowledged.
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7The very small minimum x

2 reflects the presence of covariance in
the QMC data.

8Note that
^

S
&

is the entropy averaged over the sampled spectra.
The entropy of the average spectrum has a very similar behav-
ior, but depends to a certain extent on the length of the simula-
tion ~longer simulation! smoother average! higher entropy!.
A priori, it is not clear which definition is preferable.

FIG. 3. The dynamic structure factor at two different wave num-
bers, obtained by averaging spectra at the respective Q5Q

*
~con-

nected points with error bars!. The Max-Ent results are shown as
dashed curves, and the exact diagonalization results are represented
by histograms.
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Heisenberg chain, T=J/2 (PRB 1998)

- SAC better than MaxEnt

Monte Carlo sampling in space of

delta functions (or other space)

- average <S(𝜔)> is smooth

- how to choose 𝜃

- several proposals

[slightly different approach: Mishchenko, Prokofev, Svistunov,… papers 2000-]

Sample the spectrum, using

P (S|G) / exp

✓
� �2

2⇥

◆
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A(ω) is the dynamic structure factor S(q,ω). At inverse
temperature β = 1/T it satisfies S(q,−ω) = e−βωS(q,ω).
In the method to be discussed, it is more practical to
define Aq(ω) = S(q,ω)(1 + e−βω), so that

K(τ,ω) = (e−τω + e−(β−τ)ω)(1 + e−βω)−1π−1, (5)

and integrating over ω ∈ (0,∞) in Eq. (1).
Gq(τ) is computed for a set τ ∈ {τ1, . . . , τM} with

τj = (j − 1)∆τ , and, because of symmetry properties,
only the range 0 ≤ τ ≤ β/2 has to be considered. For
large τ the statistical errors may become too large, and
he number of points M is therefore adjusted in this work
so that the relative error never exceeds 10%.
With Aq(ω) parametrized as

Aq(ω) =
N
∑

n=1

anδ(ω − ωn), ωn = (n− 1/2)∆ω, (6)

the weights {an} will first be importance-sampled using
Eq. (2) with Θ = 1 and later with a modified form. Dif-
ferent types of updates are carried out to transfer weight
between two or more δ-functions, with the normalization
Gq(0) conserved to achieve a high acceptance rate [6, 8].
Conservation of higher moments can also be incorporated
[6] but will not be done here. Single-weight updates ac-
count for the (small) normalization fluctuations.
T = 0 results for S(q,ω) are available from Bethe

Ansatz (BA) calculations including two-and four-spinon
processes, which accounts for almost all spectral weight
[18]. Comparisons will be made with these results for a
system with 500 spins [19] as well as with exact diago-
nalization results for an L = 16 chain at T > 0 [20].
Unconstrained sampling.—To illustrate the entropic

problem with the sampling method in the Θ = 1 formula-
tion [8], results for L = 500, q = 0.8π are shown in Fig. 1.
The QMC calculations were carried out at inverse tem-
perature β = 500, which for all practical purposes gives
T = 0 results for Gq(τ) at the momentum considered.
The time spacing was ∆τ = 1/4 and the number of data
pointsM = 33. The relative statistical error ofGq(τ) was
≈ 10−5 at τ1 = 0 and ≈ 0.1 at τM . Fig. 1 shows results
obtained with several different numbers of δ-functions in
the spectrum. Comparing with the BA result, a striking
feature is how the low-energy weight in the region be-
low the actual spectral edge increases with increasing N
(and the weight similarly increases also above the upper
bound at ω ≈ 3), while the peak is suppressed. The main
peak is too far to the right, and there is a second, spuri-
ous peak at higher ω which is more prominent for small
N . Overall, the results look similar to those of Ref. [8],
where only a fixed N = 1000 was used.
From a statistical-mechanics point of view, it is clear

that the sampling method suffers an entropic catastro-
phe for large N , with growing weight outside the bounds
of the actual spectrum and, therefore, a rapidly increas-
ing χ2. Results indicating a similar problem with the
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FIG. 1: (Color online) Dynamic structure factor at q = 0.8π
obtained by unconstrained sampling forω ∈ [0, 4] and differ-
ent N of the form 100× 2n (peak decreasing with increasing
N), compared with a BA result [18, 19]. The lower panel
shows details of the low-frequency part. The inset shows the
goodness of the fit versus N .

Bayesian selection of Θ can be seen in Fig. 7 of Ref. [9].
To counteract the entropy, several modifications of the
sampling method will be introduced next.
Constrained sampling at T=0.—If the spectral bounds

are known one can prevent the entropy-driven leakage of
weight and, presumably, the associated distortions of the
spectrum within the bounds. Normally the bounds are
not known, however, but, as will be shown below, they
can be approximately determined using the data. Before
discussing how this is done, another important feature re-
ducing the configurational entropy will be incorporated.
With the spectrum parametrized as in (6), no partic-

ular shape is imposed and when N becomes sufficiently
large any spectrum can be reproduced in principle. In
practice, however, one can only hope to resolve some
prominent features of the spectrum. In particular, it
is difficult to resolve a large number of closely spaced
peaks. In many cases one has some prior information,
e.g., one may know that the spectrum should have one
or two peaks. In other cases, recognizing the generic lim-
itations of analytic continuation, one may want to use a
spectrum with the smallest number of peaks consistent
with the QMC data. It is easy to impose a fixed number
of peaks in sampling a δ-function sum (6), by starting
with a spectrum with the desired number of peaks and
only proposing updates which do not create or destroy
peaks. Here a one-peak spectrum Aq(w) will be consid-
ered [which implies a single peak also in S(q,ω), unless
T is very high and a small peak at low ω can appear],

Test case: 
Dynamic structure 
factor of 1D Heisenberg 
chain at T=0 (q=0.8𝜋), L=500

Compare with: 
Bethe Ansatz 
(Sebastian Caux)

Leads to a problem  
(Sandvik, PRE 2016) 
when N𝜔 is large 
- sampling become dominated 

by configurational entropy 
- quality of fit deteriorates

SAC and entropic pressure
Syljuåsen (PRE 2008) 
- just use 𝜃=1 
P (S|G) / exp(��2/2)



3

0.6 0.7 0.8 0.9 1
ω1

0

1

2

3

4

5

6

7

χ2
/M

ωN = 2.9
ωN = 3.1
ωN = 3.3
ωN = 3.5

FIG. 2: (Color online) Goodness of fit versus the lower bound
of the spectrum for an L = 500 chain at q = 0.8π, for several
choices of the upper bound ωN and∆ω = 0.0025. The vertical
line shows the location of the edge of the BA spectrum.

but the procedures can be very easily generalized to any
number of peaks.
The bounds of the spectrum can be approximately de-

termined by following the goodness of the fit as a function
of the frequencies ω1 and ωN in Eq. (6). Fixing one of the
bounds, ωN say, a minimum in χ2 versus ω1 has to exist
for large N , because the entropic effect is reduced as ω1 is
increased (provided of course that the true spectrum has
vanishing or very small low-frequency weight), thereby
reducing χ2 until ω1 starts to extend into the region of
significant weight, whence χ2 must increase. Fig. 2 shows
results of such scans for the normalized goodness of fit,
χ2/M (with M used instead of the unknown number of
degrees of freedom, Ndof [5]). The minimum χ2/M is in-
deed for ω1 close to the lower spectral edge, and there is
a sharp increase when ω1 is pushed beyond the edge. The
upper edge can be roughly determined to within 5− 10%
of the location of the sharp decay in weight at ω ≈ 3.0
in the BA spectrum. The χ2 minimum becomes more
prominent for large N (hence making it easier to deter-
mine the bounds), in accord with the entropic scenario.
When determining the spectral bounds it is safe to

allow χ2 to deviate by a statistically insignificant amount
∝ M1/2 from the best value χ2

min [given that the width of
the χ2 distribution is (2Ndof)1/2 and M ∼ Ndof ], going
toward higher ω1 where χ2 grows very rapidly, and also
toward higher ωN where the spectrum is less sensitive to
the exact location of the bound. For the lower bound in
the case of a spectrum with a sharp edge, as is the case
here, one should not push ω1 beyond the point where
the peak of the spectrum is at the lower bound. One
may also determine ω1 by separately analyzing the large-
τ behavior, though that is not always an easy task unless
the lower edge is a well isolated δ-function.
A faster way to identify the spectral bounds is to begin

with high upper edge (beyond what is expected for the
true spectrum) and identify the best lower bound under
that condition. With the lower bound fixed at its opti-
mum, the upper bound can be optimized next. Iterating
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FIG. 3: (Color online) T → 0 dynamic structure factor at
q = 0.8π for an L = 500, obtained after two adjustments of
the spectral bounds (black curve). The BA result [18, 19] is
shown with the red curve.

this procedure once or twice typically leads to excellent
bounds very close to those obtained in a two-dimensional
search. The results of such a procedure for a small spac-
ing, ∆ω = 0.001, is shown in Fig. 3. The agreement with
the BA calculation (which for q = 0.8π misses about 2%
of the known total spectral weight) is remarkably good,
to the author’s knowledge unprecedented in QMC stud-
ies. The peak location is off by only 1%, the lower bound
slightly below it deviates by less than 0.5% from the true
edge, and the non-trivial profile is reproduced.
Constrained sampling at T>0.—In addition to the

entropy-driven leakage of spectral weight outside the cor-
rect bounds, there is another entropic effect in the sam-
pling of the single-peak spectrum at high (physical) tem-
perature. In such a spectrum the volume of the accessible
configuration space as a function of the peak height am
(located at the m:th δ-function) is given by

V (am) =
(am − a0)m−1

(m− 1)!

aN−m
m

(N −m)!
, (7)

where a0 is a floor imposed on the spectrum at the low-
frequency bound, a1 ≥ a0, which again is regarded as
an adjustable parameter to be optimized by monitoring
χ2(a0). The floor at the high-frequency bound does not
appear explicitly, being at 0 since the spectrum always
decays to 0 when ω → ∞, unlike at w → 0. Sampling
a spectrum (6) without any data, i.e., with χ2 = 0 in
Eq. (2), the fact that the configurational entropy ln(V )
increases rapidly with am will drive the peak to infinite
height (since no normalization is imposed). Sampling
with χ2 will of course counter-act this effect, but still the
entropy will unduly favor a sharp peak when N is large.
This is not a serious issue in the T = 0 case discussed
above (unless N is much larger than in Fig. 3), because
this spectrum has a very sharp peak. However, at high T
the peak entropy will cause problems, unless this version
of the entropic catastrophe is counteracted by dividing
the probability (2) by V (am).
In order to obtain continuity as a function of T , con-

Shift the lower and upper edges of the spectrum to 
avoid entropic distortions there 
- entropy minimum signals actual edges of the spectrum

Diagnostics and input from entropy
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FIG. 2: (Color online) Goodness of fit versus the lower bound
of the spectrum for an L = 500 chain at q = 0.8π, for several
choices of the upper bound ωN and∆ω = 0.0025. The vertical
line shows the location of the edge of the BA spectrum.

but the procedures can be very easily generalized to any
number of peaks.
The bounds of the spectrum can be approximately de-

termined by following the goodness of the fit as a function
of the frequencies ω1 and ωN in Eq. (6). Fixing one of the
bounds, ωN say, a minimum in χ2 versus ω1 has to exist
for large N , because the entropic effect is reduced as ω1 is
increased (provided of course that the true spectrum has
vanishing or very small low-frequency weight), thereby
reducing χ2 until ω1 starts to extend into the region of
significant weight, whence χ2 must increase. Fig. 2 shows
results of such scans for the normalized goodness of fit,
χ2/M (with M used instead of the unknown number of
degrees of freedom, Ndof [5]). The minimum χ2/M is in-
deed for ω1 close to the lower spectral edge, and there is
a sharp increase when ω1 is pushed beyond the edge. The
upper edge can be roughly determined to within 5− 10%
of the location of the sharp decay in weight at ω ≈ 3.0
in the BA spectrum. The χ2 minimum becomes more
prominent for large N (hence making it easier to deter-
mine the bounds), in accord with the entropic scenario.
When determining the spectral bounds it is safe to

allow χ2 to deviate by a statistically insignificant amount
∝ M1/2 from the best value χ2

min [given that the width of
the χ2 distribution is (2Ndof)1/2 and M ∼ Ndof ], going
toward higher ω1 where χ2 grows very rapidly, and also
toward higher ωN where the spectrum is less sensitive to
the exact location of the bound. For the lower bound in
the case of a spectrum with a sharp edge, as is the case
here, one should not push ω1 beyond the point where
the peak of the spectrum is at the lower bound. One
may also determine ω1 by separately analyzing the large-
τ behavior, though that is not always an easy task unless
the lower edge is a well isolated δ-function.
A faster way to identify the spectral bounds is to begin

with high upper edge (beyond what is expected for the
true spectrum) and identify the best lower bound under
that condition. With the lower bound fixed at its opti-
mum, the upper bound can be optimized next. Iterating
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FIG. 3: (Color online) T → 0 dynamic structure factor at
q = 0.8π for an L = 500, obtained after two adjustments of
the spectral bounds (black curve). The BA result [18, 19] is
shown with the red curve.

this procedure once or twice typically leads to excellent
bounds very close to those obtained in a two-dimensional
search. The results of such a procedure for a small spac-
ing, ∆ω = 0.001, is shown in Fig. 3. The agreement with
the BA calculation (which for q = 0.8π misses about 2%
of the known total spectral weight) is remarkably good,
to the author’s knowledge unprecedented in QMC stud-
ies. The peak location is off by only 1%, the lower bound
slightly below it deviates by less than 0.5% from the true
edge, and the non-trivial profile is reproduced.
Constrained sampling at T>0.—In addition to the

entropy-driven leakage of spectral weight outside the cor-
rect bounds, there is another entropic effect in the sam-
pling of the single-peak spectrum at high (physical) tem-
perature. In such a spectrum the volume of the accessible
configuration space as a function of the peak height am
(located at the m:th δ-function) is given by

V (am) =
(am − a0)m−1

(m− 1)!

aN−m
m

(N −m)!
, (7)

where a0 is a floor imposed on the spectrum at the low-
frequency bound, a1 ≥ a0, which again is regarded as
an adjustable parameter to be optimized by monitoring
χ2(a0). The floor at the high-frequency bound does not
appear explicitly, being at 0 since the spectrum always
decays to 0 when ω → ∞, unlike at w → 0. Sampling
a spectrum (6) without any data, i.e., with χ2 = 0 in
Eq. (2), the fact that the configurational entropy ln(V )
increases rapidly with am will drive the peak to infinite
height (since no normalization is imposed). Sampling
with χ2 will of course counter-act this effect, but still the
entropy will unduly favor a sharp peak when N is large.
This is not a serious issue in the T = 0 case discussed
above (unless N is much larger than in Fig. 3), because
this spectrum has a very sharp peak. However, at high T
the peak entropy will cause problems, unless this version
of the entropic catastrophe is counteracted by dividing
the probability (2) by V (am).
In order to obtain continuity as a function of T , con-

Referee comment:  
“Of course if you know the answer you can cook up a method”

With the lower edge fixed the spectrum is very good 
- important: single maximum also imposed in sampling  
   (further reduces entropy)



Improved SAC scheme Hui Shao & A. Sandvik (work in progress)

Problem with all SAC schemes so far: slow sampling: 
it can take several hours to find optimal sampling temp or optimal  
frequency bounds and obtain a final smooth average
 New parametrization: Delta-functions of equal amplitude in continuum 
- use histogram to collect “hits”

Use monotonically increasing distances for an edge

Can also build in “prominent feature”, e.g., dominant delta-fktn



Determination of sampling temperature

Use simulated annealing to find lowest chi-squared value 
- the data is then overfitted
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More delta-functions → 
lower temperature 
- overcomes some of the entropy problems

P (S|G) / exp
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Raise the temperature  
such that 𝜒2 is above the 
minimum value by ~ one 
standard deviation of  
the 𝜒2 distribution 

- the spectrum fluctuates  
  and data not overfitted

h�2i = �2
min + a

q
�2
min, a ⇡ 1



uniform grid

no grid

Dependence on the sampling temperature, ⇥ = 10⇥ 1.1�n

L=16 Heisenberg chain, S(𝜋/2,𝜔), T/J=0.5
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1/3 of weight in delta function

Delta-function and continuum, test with synthetic data 
- noise level 2*10-5 (20 𝜏 points, 𝛥𝜏=0.1)
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Free sampling cannot resolve the delta function very well 
- high-energy peak is also distorted



Delta function as prominent feature 
- use one main delta function with adjustable weight a0 
- other delta functions can not go below its energy 𝜔0

Motivation: Moving weight  
into the main delta function  
reduces the entropy; detected  
in 𝜒2 vs amplitude a0
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C. Tests on synthetic data
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III. SPECTRAL FUNCTIONS OF THE HAFM

A. Spectral Functions

For a quantum spin system, the spectral function
S(q,!) , namely the dynamic structure factor, measured
in inelastic neutron scattering experiment is directly re-
lated to the correlations of the operator S↵

q (↵ = x, y, z),
which is the Fourier transform of the spin operator S↵

r .
In this paper we focus on the isotropic case, so correla-
tions of the z-component are measured. With su�ciently
large inversed temperature � = 4L in the SSE sampling
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[41], our QMC measurement is taken from ⌧ = 0 to �/2
and the absolute error of the data is up to 10�4.

G(q, ⌧) =

Z 1

�1
S(q,!)e�⌧!d!, (13)

i.e., to solve the spectral functions S(q,!) numerically
from the imaginary-time dependent correlation functions
G(q, ⌧) computed with quantum Monte Carlo simula-
tions. We will briefly introduce the improved SAC
method in below and more details can be found in [40].
For the square-lattice Heisenberg antiferromagnet, the

spectral function contains a dominating �-function repre-
senting the lowest single-magnon excitation and a high-
energy continuum

S(q,!) = S
0

(q)�(! � !
0

(q)) + Sc(q,!), (14)

where !
0

(q) is the single-magnon dispersion and S
0

(q) is
the associated spectral weight. So in the parametrization
of S(q,!), we include an isolated �-function with variable
amplitude and location as the prominent spectral feature,
while the continuum is traded as a set, with the number
2000, of equal amplitude �-functions at higher frequen-
cies. In the sampling procedure, the spectral function is
normalized by setting G(⌧ = 0) = 1, and the relative
spectral weight of the single-magnon excitation, defined
as

A
0

(q) =
S
0

(q)R
d!S(q,!)

, (15)

is firstly decided by finding the lowest h�2i. The spectral
function is an accumulation in a histogram with bin size
0.001.
As a overview, we show the spectral functions for L =

48 system in a 2D color plot (FIG. 5), where the x axis

�rel = 10�5

�rel = 10�6

Synthetic spectrum with 
- 𝜔0 = 0.4 
- a0 = 1.0

QMC data can 
reach error level 10-6
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Appendix C: F-transform

By applying the Fourier transform
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Appendix D: Spectral Functions from the E↵ective
Hamiltonian
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k = 2⇡/L
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FIG. 5. The dynamic structure factor of the 2D Heisenberg
model computed on an L = 48 lattice along the path in the
BZ indicated on the x-axis. The y-axis is the energy transfer
! in units of the coupling J . The magnon peak (�-function) at
the lower edge of the spectrum is marked in white irrespective
of its weight, while the continuum is shown with color coding
on an arbitrary scale where the highest value is 1. The upper
white curve corresponds to the location where, for given q,
5% of the spectral weight remains above it.

sible for the continuum. We will argue later that the
particularly large continuum at (⇡, 0) is actually due to
nearly deconfined spinons.

It is not clear whether the small maximum to the right
of the �-function, which we see consistently through the
BZ, are real spectral features or whether they reflect the
statistical errors of the QMC data in a way similar to the
most common distortion resulting from noisy synthetic
data, as seen in the tests presented in Fig. 4. The error
level of the QMC data in all cases is a bit below 10�5,
i.e., similar to Fig. 4(a). The behavior does not suggest
any gap between the �-functions and the continuum.

B. Finite-size e↵ects

It is important to investigate the size dependence of
the spectral functions. For very small lattices at T = 0,
S(q,!) computed according to Eq. (1) for each q con-
tains only a rather small number of �-functions and it
is not possible to draw a curve approximating a smooth
continuum following a leading �-functions. Therefore,
the SAC procedure does not reproduce exact Lanczos
results very well—we obtain a single broad continuum
following the leading �-function, instead of several small
peaks. Because the continuum also has weight close to
the leading �-function, between it and the second peak
of the actual spectrum, the SAC method also slightly
underestimates the weight in the first �-function. If the
continuum emerging as the system size increases indeed
is, as expected, broad and does not exhibit any unresolv-
able fine-structure, the tests in Sec. II suggest that our
methods should be able to reproduce it.

For the 6 ⇥ 6 lattice at q = (⇡, 0), our SAC result
underestimates the weight in the magnon pole by about
5%, while the energy deviates by less than 1%. We ex-
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FIG. 6. Dynamic structure factor for L = 48 system at four
di↵erent momenta. The smallest momentum increment 2⇡/L
is denoted by k in (a) and (d). The relative amplitude of the
magnon pole is indicated in each panel.

pect these systematic errors to decrease with increasing
system size, for the reasons explained above. Fig. 7 shows
the size dependence of the single-magnon weight and en-
ergy at wavevectors q = (⇡, 0), (⇡/2,⇡/2), and (⇡,⇡).
At (⇡,⇡) we only have Lanczos results, but even with
the small systems accessible with this method it can be
seen that indeed the energy decays toward zero. The
magnon weight is large, converging rapidly toward about
97%, which is similar to the series-expansion result [20].
The energies at q = (⇡, 0) and (⇡/2,⇡/2) also converge
rapidly, with no detectable di↵erences between L = 32
and L = 48, and a smooth transition between the ED re-
sults for small systems and QMC results for larger sizes.
The magnon weight at these wavevectors show more sub-
stantial size dependence, though again the results for
the two largest sizes agree within error bars. Here the
connection between the ED and QMC results does not
appear completely smooth at (⇡, 0), due to the di�cul-
ties for the SAC method to deal with a spectrum with a
small number of �-functions. Nevertheless, even the ED
results indicate a drop in the amplitude for the larger
system sizes. The trends in 1/L for the QMC results
suggest that the weight converges to slightly below 40%
at q = (⇡, 0) and slightly below 70% at q = (⇡/2,⇡/2),
both in very good agreement with the series-expansion
results [20]. This agreement with a completely di↵erent
method provides strong support to the accuracy of the
QMC-SAC procedures. The energies also agree very well
with the previous QMC results where particular func-

Small pole at (𝜋,0) related to 
almost deconfined spinons  
(from study of J-Q model)
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Below we will report our results of the dispersion and
relative spectral weight of the single-magnon excitation
extracted from the spectral functions.

B. Single-magnon Dispersion

The single-magnon dispersion, which is !0(q) in Eq
(2), is shown FIG. 4. In Appendix B convergence with
the system size L is checked, and within error bar (es-
timated by bootstraps of the QMC data) the L = 48
case is converged. The linear SWT dispersion is shown
in FIG. 4 with the black line as a reference, while the ve-
locity is modified to be c = 1.65847[42], which is the most
precise value as far as we know. Our SAC results agree
well with the SWT and the CFTD experimental data
from [43] (blue square in FIG. 4) in the long wave-length
region. But in the short wave-length range, comparing
to !0(⇡/2,⇡/2) = 2.37(1) and !0(⇡, 0) = 2.21(3) in the
experiment, our simulation results with !0(⇡/2,⇡/2) =
2.412(2) and !0(⇡, 0) = 2.136(5) are several error bars
away. Di↵erence between the two momenta is about 11%
in our case.

C. Single-magnon Spctral Weight

As shown in Appendix A, the relative spectral weight
A0(q) of the single-magnon excitation is decided by find-
ing the lowest h�2i. Results along the representative cut
of the magnetic Brillouin zone with L = 48 system are
shown in FIG. 5 and convergence is checked in Appendix
B. For q ! (0, 0) and q ! (⇡,⇡), A0 approaches 1 in-
dicating the single-magnon completely exhausts the to-
tal spectral weight in these limits. At q = (⇡/2,⇡/2),
it is reduced to 72.4(5)%, in consistent with the series
expansion results 69(10)% [24]; at q = (⇡, 0) the reduc-
tion of A0 is the largest, resulting in only 0.417(5)%,
which is about one error bar lower than the series expan-
sion results 60(15)% [24]. The fact that A0 is reduced
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in the short wave-length region indicates that the quan-
tum fluctuation suppresses the classical magnetic order
significantly and this e↵ect is much stronger at q = (⇡, 0)
than at q = (⇡/2,⇡/2). In the CFTD experiment, this
phenomena is observed at q = (⇡, 0) with A0 = 60(12)%
but not at q = (⇡/2,⇡/2) [43].
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III. EFFECTIVE HAMILTONIAN OF THE
QUASI-PARTICLE EXCITATIONS

In the well-known spin wave theory (SWT), excitations
of the spin-1/2 square-lattice Heisenberg antiferromagnet
are described by the quasi-particle magnon, while the
long-range Néel ordered ground-state is considered as the
vacuum. It is already a good description of in the whole
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We study the spin excitation spectrum (dynamic structure factor) of the spin-1/2 square-lattice
Heisenberg antiferromagnet. Using an improved method for analytic continuation of the correspond-
ing imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can
treat the sharp (�-function) contribution expected from spin-wave (magnon) excitations in addi-
tion to a continuum above the magnon energy. The results are in excellent agreement with recent
neutron scattering experiments on the almost ideal Heisenberg system Cu(DCOO)2·4D2O, where it
was argued that no magnon �-function exists at wave-number q = (⇡, 0) and this was interpreted
as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results
instead show a significant reduction—not complete suppression—of the magnon weight and a large
continuum. The excitation continuum has traditionally been ascribed to multi-magnon processes,
but we show here that an alternative interpretation is that it originates from virtual spinons. We
introduce a simple e↵ective model of the excitations in which a magnon can decay into two spinons
that do not separate but fluctuate in and out of the magnon space. The model can reproduce the re-
duction of magnon weight and lowered excitation energy at q = (⇡, 0) as well as the energy increase
and smaller continuum (also seen experimentally) at q = (⇡/2,⇡/2). Based on these results, we
re-interpret the picture of deconfined spinons at q = (⇡, 0) in the experiments as nearly deconfined
spinons. This interpretation is further supported by calculations for a model where the Heisenberg
exchange J is supplemented by a multi-spin interaction Q (the J-Q model) that can bring the
system to a deconfined quantum-critical point. In the analytically-continued spectrums we observe
that the magnon �-function vanishes at q = (⇡, 0), but not at q = (⇡/2,⇡/2), even with a weak
Q-coupling, much before the deconfinement transition (wich is the point at which the low-energy
magnons deconfine). Our conclusion is that spinons play an important role in Heisenberg systems
such as Cu(DCOO)2·4D2O even though they are not fully deconfined, and also suggest that com-
plete deconfinement close to (⇡, 0) may be possible in other materials where higher-order interaction
e↵ects, such as longer-range couplings or multi-spin cyclic exchange terms, are more prominent.

I. INTRODUCTION

The spin S = 1/2 antiferromagnetic (AFM) Heisen-
berg model is the natural starting point for describing the
magnetic properties of many electronic insulators with
localized spins [1]. The two-dimensional (2D) square-
lattice variant of the model came to particular promi-
nence due to its relevance to the undoped parent com-
pounds of the cuprate high-temperature superconductors
[2, 3], e.g., La2CuO4, and it has remained a fruitful test-
ing grounds for quantum magnetism also more broadly.
Though there is no rigorous proof of the existence of AFM
long-range at temperature T = 0 in the case of S = 1/2
spins (while for S � 1 there is such a proof [4]), series-
expansion [5] and quantum Monte Carlo (QMC) calcula-
tions [6–10] have convincingly demonstrated a sublattice
magnetization in close agreement with the simple linear
spin-wave theory. Thermodynamic properties and spin
correlations at T > 0 [11–13] also conform very nicely to
the expectations [14, 15] for a “renormalized classical”
system with exponentially divergent correlation length
when T ! 0. Thus, at first sight it may appear that the
case is settled and the system lacks ’exotic’ quantum-
mechanical features. However, it has been known for

some time that the dynamical properties of the model
at short wave-lengths cannot be fully described by spin-
wave theory. Along the line q = (⇡, 0) to (⇡/2,⇡/2) in the
Brillouin zone (BZ) (the un-folded one, corresponding to
the square lattice with one spin per unit cell) the magnon
energy is maximal and constant within linear spinwave
theory. Various numerical calculations have pointed to
an anomalously large continuum of excitations in the dy-
namic spin structure factor S(q,!) around q = (⇡, 0) and
a significant suppression of the magnon energy [20–24].
At q = (⇡/2,⇡/2) the energy is instead enhanced and the
continuum is smaller. Spin-wave theory can only capture
a small fraction of these e↵ects, even when pushed to high
orders in the 1/S expansion [16–19]. A large continuum
at high energies for q close to (⇡, 0) were also observed in
neutron scattering experiments on La2CuO4, but an op-
posite trend in the energy shifts is apparent; a reduction
at q = (⇡/2,⇡/2) and increase at q = (⇡, 0) [25, 26]. It
was realized that this is due to the fact that the exchange
constant J is large in this case (J ⇡ 100meV), and,
when considering its origin from an electronic Hubbard
model, higher-order exchange processes, play an impor-
tant role [27–29]. Interestingly, in Cu(DCOO)2 · 4D2O,
which is considered the best realization of the square-
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Fractional excitations in the square-lattice
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Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real
materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of
interacting spin-1/2 particles is far from complete. The quantum square-lattice Heisenberg antiferromagnet, for example,
exhibits a striking anomaly of hitherto unknown origin in itsmagnetic excitation spectrum. This quantum e�ectmanifests itself
for excitations propagating with the specific wavevector (⇡ ,0). We use polarized neutron spectroscopy to fully characterize
the magnetic fluctuations in the metal-organic compound Cu(DCOO)2·4D2O, a known realization of the quantum square-
lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which
we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the
existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous
wavevector, these fractional excitations are bound and form conventional magnons. Our results establish the existence
of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence
of frustration.

A fascinating manifestation of quantum mechanics is the
emergence of elementary excitations carrying fractional
quantum numbers. Fractional excitations were a central

ingredient to understand the fractional quantum Hall e�ect1,
and have been investigated in a range of systems, including
conducting polymers2, bilayer graphene3, cold atomic gases4 and
low-dimensional quantum magnets5,6. Among the latter class of
systems, the spin-1/2 Heisenberg antiferromagnet chain (HAFC)
is perhaps the simplest model for which the ground state and the
excitations are known exactly7–9. Excitations of the spin-1/2 HAFC
created by an elementary1S=1 process are radically di�erent from
spin waves, the coherent propagation of a flipped spin, and are
pairs of unbound fractional quasiparticles known as spinons, each
carrying a S=1/2 quantum number. The existence of spinons in the
spin-1/2 HAFC has been confirmed experimentally in a number of
quasi-1D materials10,11, but observing their 2D and 3D analogues is
an ongoing challenge6. So far, the main candidate systems comprise
geometrically frustrated magnets on the triangular12 or kagome13–15
lattices. In this work, we take a frustration-free route and focus on
the quantum (spin-1/2) square-lattice Heisenberg antiferromagnet
(QSLHAF), one of the most fundamental models in magnetism. It
is defined by the Hamiltonian

H= J
X

hi,ji
Si ·Sj (1)

where J is the antiferromagnetic exchange interaction between
nearest-neighbour spins described by spin S = 1/2 operators Si
and Sj. We provide experimental and theoretical evidence that

even in this simplest of 2D models deconfined fractional S=1/2
quasiparticles can be identified at high energies, where they
modify the short-wavelength spin dynamics and are responsible
for a significant quantum anomaly that cannot be captured by
conventional spin-wave theory.

It may seem surprising that the QSLHAF is a candidate for
hosting fractional excitations, as at a superficial level its long-
range magnetic order resembles that of a classical system. The
elementary excitations of this ‘Néel state’, when calculated using
semi-classical spin-wave theory (SWT), are bosonic quasiparticles,
known as magnons: the one-magnon spectrum is gapless, with two-
magnon excitations occupying a continuum at higher energy. The
interaction between magnons is relatively weak and leads to an
upward renormalization of the magnon energy and to scattering
between two-magnon states16,17. One- and two-magnon excitations,
respectively, correspond to fluctuations perpendicular (transverse)
and parallel (longitudinal) to the direction of the ordered moments.

Although none of the above properties suggest the existence of
quasiparticle fractionalization, quantum e�ects are nevertheless far
fromnegligible in theQSLHAF. This is evidenced by the observation
that quantum zero-point fluctuations reduce the staggered moment
to only 62% of its fully ordered value S = 1/2 (refs 18,19).
This suggests that the QSLHAF may in fact be close to a state
preserving spin-rotation symmetry, such as the resonating-valence-
bond (RVB) state proposed byAnderson20 for the cuprate realization
of this model. In particular, fractional spin excitations present
in the RVB state may be relevant for the spin dynamics in the
Néel state, especially at high energies. Indeed, analytical theories
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FIG. 3. Comparison between the CFTD experimental data
[43] and the SAC spectral functions with the Gaussian broad-
ened �-functions at q = (⇡, 0) and q = (⇡/2,⇡/2). The width
of the broadening is set to be � = 0.12J and the units of
y-axis are fixed to be 50 times larger in both cases.

Below we will report our results of the dispersion and
relative spectral weight of the single-magnon excitation
extracted from the spectral functions.

B. Single-magnon Dispersion

The single-magnon dispersion, which is !0(q) in Eq
(2), is shown FIG. 4. In Appendix B convergence with
the system size L is checked, and within error bar (es-
timated by bootstraps of the QMC data) the L = 48
case is converged. The linear SWT dispersion is shown
in FIG. 4 with the black line as a reference, while the ve-
locity is modified to be c = 1.65847[42], which is the most
precise value as far as we know. Our SAC results agree
well with the SWT and the CFTD experimental data
from [43] (blue square in FIG. 4) in the long wave-length
region. But in the short wave-length range, comparing
to !0(⇡/2,⇡/2) = 2.37(1) and !0(⇡, 0) = 2.21(3) in the
experiment, our simulation results with !0(⇡/2,⇡/2) =
2.412(2) and !0(⇡, 0) = 2.136(5) are several error bars
away. Di↵erence between the two momenta is about 11%
in our case.

C. Single-magnon Spctral Weight

As shown in Appendix A, the relative spectral weight
A0(q) of the single-magnon excitation is decided by find-
ing the lowest h�2i. Results along the representative cut
of the magnetic Brillouin zone with L = 48 system are
shown in FIG. 5 and convergence is checked in Appendix
B. For q ! (0, 0) and q ! (⇡,⇡), A0 approaches 1 in-
dicating the single-magnon completely exhausts the to-
tal spectral weight in these limits. At q = (⇡/2,⇡/2),
it is reduced to 72.4(5)%, in consistent with the series
expansion results 69(10)% [24]; at q = (⇡, 0) the reduc-
tion of A0 is the largest, resulting in only 0.417(5)%,
which is about one error bar lower than the series expan-
sion results 60(15)% [24]. The fact that A0 is reduced

Linear SWT
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ω
0
/J
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(π/2,π/2)

(π,0)
(π,π)

(π/2,π/2)

(0,0)
(π,0)

Experiment

Linear SWT

FIG. 4. Single-magnon dispersion !0(q) along the represen-
tative cut of the magnetic Brillouin zone extracted from the
SAC calculated spectral functions (red solid circle). Error
bars estimated by the bootstraps of the QMC data are in-
cluded. Comparisons are made with the linear SWT where
the velocity is modified to be c = 1.65847 [42] (black line) and
the CFTD experimental data from [43] (blue square).

in the short wave-length region indicates that the quan-
tum fluctuation suppresses the classical magnetic order
significantly and this e↵ect is much stronger at q = (⇡, 0)
than at q = (⇡/2,⇡/2). In the CFTD experiment, this
phenomena is observed at q = (⇡, 0) with A0 = 60(12)%
but not at q = (⇡/2,⇡/2) [43].
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FIG. 5. Relative spectral weight A0(q) of the single-magnon
excitation along the representative cut of the magnetic Bril-
louin zone for L = 48 system. Results are presented as circles
with error bars estimated by the bootstraps of the QMC data
and directly connected by the solid line.

III. EFFECTIVE HAMILTONIAN OF THE
QUASI-PARTICLE EXCITATIONS

In the well-known spin wave theory (SWT), excitations
of the spin-1/2 square-lattice Heisenberg antiferromagnet
are described by the quasi-particle magnon, while the
long-range Néel ordered ground-state is considered as the
vacuum. It is already a good description of in the whole

Our picture: Nearly deconfined spinons 
- small but non-zero (𝜋,0) magnon pole 
- deconfinement at (𝜋,0) when weak    

multi-spin interactions added
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In principle one can optimize 
any feature within some 
parametrization, and also 
extend to more than one 
feature.



Conclusions

Good parameterizations of the spectrum can 
- reduce detrimental entropic pressures 
- produce better results

Further developments of stochastic analytic continuation method

Some of these insights can also be used with Max-Ent

Lower-edge delta-function (magnon pole) confirmed for 2D Heisenberg 
- good agreement with experiments 
- calculations + theory suggest nearly deconfined spinons

One or more parameters (“features”) can be optimized by 
using entropy-related signal.


