Dual variable representations

 for (two) bosonic field theories at nonzero densityFalk Bruckmann
(U Regensburg)

DiMoCa, Mainz, Sept. 2017
with C. Gattringer, T. Kloiber, T. Sulejmanpašić; J. Wellnhofer [1507.04253, 1509.05189, 1607.02457; 1611.05643]

The setting

- thermodynamic partition function

$$
Z=\operatorname{tr} \exp (-\beta \hat{H}[\phi])
$$

as a field theory path integral

$$
Z=\int D \phi \exp \left(-\int d \vec{x} \int_{0}^{\beta} d \tau \mathcal{L}_{\text {Eucl. }}\left(\phi, \partial_{\tau} \phi, \partial_{\vec{x}} \phi\right)\right)
$$

and corresponding lattice formulations = hoppings

$$
\phi(x)^{*} \phi(x+\hat{\nu})+c . c .
$$

The setting

- thermodynamic partition function

$$
Z=\operatorname{tr} \exp (-\beta(\hat{H}[\phi]-\mu \hat{N}))
$$

as a field theory path integral

$$
Z=\int D \phi \exp \left(-\int d \vec{x} \int_{0}^{\beta} d \tau \mathcal{L}_{\text {Eucl. }}\left(\phi,\left(\partial_{\tau}-i \mu\right) \phi, \partial_{\vec{x}} \phi\right)\right)
$$

and corresponding lattice formulations = hoppings

$$
\phi(x)^{*} \phi(x+\hat{\nu}) e^{-\mu}+\text { c.c. } e^{\mu} \quad \text { for temporal } \hat{\nu}
$$

- ϕ complex and action invariant under $\mathrm{U}(1)$ phase rotations conserved charge to which a chemical potential μ can be coupled

The setting

- thermodynamic partition function

$$
Z=\operatorname{tr} \exp (-\beta(\hat{H}[\phi]-\mu \hat{N}))
$$

as a field theory path integral

$$
Z=\int D \phi \exp \left(-\int d \vec{x} \int_{0}^{\beta} d \tau \mathcal{L}_{\text {Eucl. }}\left(\phi,\left(\partial_{\tau}-i \mu\right) \phi, \partial_{\vec{x}} \phi\right)\right)
$$

and corresponding lattice formulations = hoppings

$$
\begin{array}{r}
\phi(x)^{*} \phi(x+\hat{\nu}) e^{-\mu}+\begin{array}{r}
\text { c.c. } e^{\mu} \\
\\
\uparrow \text { not c.c. anymore }
\end{array} \text { for temporal } \hat{\nu} \\
\text { c. }
\end{array}
$$

- ϕ complex and action invariant under $\mathrm{U}(1)$ phase rotations
conserved charge to which a chemical potential μ can be coupled
\Rightarrow generically a sign problem (in the second repr. only)

The models

relativistic bosons on lattices

- $\mathrm{CP}(\mathrm{N}-1)$ models in $1+1 \mathrm{~d}$:
$S=$
$J \sum_{x, \nu} \sum_{f=1}^{N}[\phi_{f}^{*}(x) U_{\nu}(x) \phi_{f}(x+\hat{\nu}) e^{-\mu_{f} \delta_{\nu, 0}}+\underbrace{\phi_{f}(x) U_{\nu}^{*}(x) \phi_{f}^{*}(x+\hat{\nu}) e^{\mu_{f} \delta_{\nu, 0}}}_{\text {not c.c. unless imag. } \mu}]$
$|\phi|^{2}=1$: nontrivial theory, e.g. dynamical mass gap
$U_{\nu}(x) \in U(1)$: no Maxwell term \Rightarrow auxiliary integrate out \Rightarrow action quartic in ϕ
global 'flavor' symmetry $U(N) \ni U(1)^{N}$: conserved charges $\Rightarrow \mu_{f}$ local (gauge) symmetry $U(1)_{\text {diag }}$: total charge vanishes
- $O(N)$ models similar: invariant under $S O(2) \cong U(1)$
- QCD in 3+1d with scalar quarks:
$S=$
$\beta \sum_{x, \nu} \sum_{f=1}^{N}[\phi_{f}^{\dagger}(x) U_{\nu}(x) \phi_{f}(x+\hat{\nu}) e^{-\mu_{f} \delta_{\nu, 0}}+\underbrace{\phi_{f}(x) U_{\nu}^{\dagger}(x) \phi_{f}^{\dagger}(x+\hat{\nu}) e^{\mu_{f} \delta_{\nu, 0}}}_{\text {not c.c. unless imag. } \mu}]$
ϕ integrated with mass term = gaussian measure
$U_{\nu}(x) \in S U(3)$: 'gluons', no kinetic term yet = strong coupling each $\phi_{f}(x) \in \mathbb{C}^{3}$: colored
again global flavor symmetry $U(N)$
local (gauge) symmetry $S U(3)$
- other models where dual variables solved sign problems
C. Gattringer and his group, 2011-last weak

Idea of dual variables

(ii) integrate out original fields
especially the $\mathbf{U}(1)$ angles to which μ 's couple
(i) at the expense of expanding the weight e^{-S} first
expansion variables = dual variables/occup. numbers: integers

- exact mapping (up to interchanging integrals and infinite sums) to new degrees of freedom
\triangleright with some luck: new weight positive \leadsto num. simulations

Idea of dual variables

(ii) integrate out original fields
especially the $\mathbf{U}(1)$ angles to which μ 's couple
(i) at the expense of expanding the weight e^{-S} first
expansion variables = dual variables/occup. numbers: integers

- exact mapping (up to interchanging integrals and infinite sums) to new degrees of freedom
\triangleright with some luck: new weight positive \leadsto num. simulations
- indeed solves the sign problem in $\mathrm{CP}(\mathrm{N}-1)$ and $\mathrm{O}(\mathrm{N})$ models almost obvious from $\mathrm{O}(2)$ model but other dualizations in the literature
- not so for the fermionic sign problem in QCD, even at strong coupl.

Karsch, Mütter 89, Unger

Dualizing $\mathrm{CP}(\mathrm{N}-1)$

(i) expand each term in e^{-S}

$$
e^{J\left[\phi^{*} U \phi\right] e^{-\mu \delta_{\nu, 0}}} e^{J\left[\phi U^{*} \phi^{*}\right] e^{\mu \delta_{\nu, 0}}}=\sum_{k, \bar{k}=0}^{\infty} \frac{J^{k+\bar{k}}}{k!\bar{k}!} \underbrace{\left[\phi^{*} U \phi\right]^{k}\left[\phi U^{*} \phi^{*}\right]^{\bar{k}}} e^{-\mu(k-\bar{k})_{\nu=0}}
$$

$$
\text { used } \phi=r e^{i \varphi} \text { and } U=e^{i A}
$$

(ii) integrate out original fields

- radii: doable (ratio of gamma functions) \Rightarrow positive weight
- angles: $\int_{0}^{2 \pi} d \varphi e^{i \varphi X}=2 \pi \delta_{\text {Kronecker }}(X)$ with $X=\sum_{\nu}\left[m_{\nu}^{f}(x)-m_{\nu}^{f}(x-\hat{\nu})\right]=\nabla_{\nu} m_{\nu}^{f}(x)$ and $m=k-\bar{k}$ explicit conservation of symmetry currents $m^{f} \Rightarrow$ world lines
- μ 's couple to the conserved charges: $e^{-\beta \mu_{f} \sum_{\vec{x}} m_{0}^{f}(\vec{x})}$
as in the energy representation of the grand canonical ensemble conserved charge is the net number of m-loops winding in time
- μ 's do not cause minus signs in the weight
\Rightarrow sign problem solved if there was none at vanishing μ
cancellations in $\int_{0}^{2 \pi} d \varphi e^{i \varphi X} \sim \delta(X)$: either positive or zero $\underset{\uparrow \text { neglect }}{ }$
- gauge fields:
$\int_{0}^{2 \pi} d A_{\nu}(x) e^{i A_{\nu}(x) \sum_{f} m_{\nu}^{f}(x)}=\delta\left(\sum_{f} m_{\nu}^{f}(x)\right)$
total charge (over all flavors) vanishes
- constraint systems \Rightarrow lattice simulations with worm algorithm

Physics of the $\mathrm{O}(3)=\mathrm{CP}(2)$ modelat nonzero μ

- low T : no particle/charge density until μ reaches the dyn. mass

\Rightarrow quantum phase transition at $\mu=m$ for $T=0$, else crossover
- for $\mu \gtrsim m$ contact to Bethe ansätze for repulsive 1d bosons
\approx free 1d fermions
Lieb-Liniger model
- $T \rightarrow 0$ \& thermod. limit need $N_{t}, N_{s} \rightarrow \infty$, up to 6400×160 or 320^{2}

Physics of the $\mathrm{O}(3)=\mathrm{CP}(2)$ model at nonzero μ

SS/SD

- susc. of FE wrt. spatially TBC

$$
\varphi\left(x_{0}, x_{1}+L\right)=\varphi\left(x_{0}, x_{1}\right)+\alpha \quad \Rightarrow \quad \sigma:=\left.L \partial_{\alpha}^{2} F\right|_{\alpha=0} \sim\left\langle w_{\text {spat }}(x)^{2}\right\rangle
$$

- FSS

$$
\sigma=L^{1-z} \text { func }\left(L^{1 / \nu}\left(\frac{\mu}{\mu_{c}}-1\right), T L^{z}\right)
$$

z... DCE

Fisher et al. 89

- found a universal σ curve if $T L^{2}$ kept constant
$\Rightarrow z \simeq 2$ (and $\nu \simeq 1 / 2)$ in agreement with free 1 d fermions

Physics of the $\mathrm{O}(3)=\mathrm{CP}(2)$ model at nonzero μ

Spin Stiffness/Superfluid Density

- susc. of Free Energy wrt. spatially Twisted Boundary Conditions

$$
\varphi\left(x_{0}, x_{1}+L\right)=\varphi\left(x_{0}, x_{1}\right)+\alpha \quad \Rightarrow \quad \sigma:=\left.L \partial_{\alpha}^{2} F\right|_{\alpha=0} \sim\left\langle w_{\text {spat }}(x)^{2}\right\rangle
$$

- Finite Size Scaling

$$
\sigma=L^{1-z} \operatorname{func}\left(L^{1 / \nu}\left(\frac{\mu}{\mu_{c}}-1\right), T L^{z}\right)
$$

z... Dynamical Critical Exponent

Fisher et al. 89

- found a universal σ curve if $T L^{2}$ kept constant
$\Rightarrow z \simeq 2$ (and $\nu \simeq 1 / 2$) in agreement with free 1 d fermions

Physics of the $\mathrm{O}(3)=\mathrm{CP}(2)$ model at nonzero μ

- low T and small sizes L (but $>1 / m$)

$$
L m=4.4
$$

\Rightarrow plateaus and sharp jumps in particle number as function of μ

- $\mu_{c, 1}=m$: mass threshold as for large L above
$\mu_{c, 2}=E_{\min }^{Q=2} \Rightarrow$ particle interaction \Rightarrow phase shifts $\delta \quad$ a la Lüscher

Physics of the $\mathrm{O}(3)=\mathrm{CP}(2)$ model at nonzero μ

- on $Q=2$ plateaus
distribution (histogram) of two unit m_{0} 's \leftarrow particle world lines
$=$ probability $\left|\psi\left(\Delta x_{1}\right)\right|^{2}$:

different L's
\Rightarrow perfect standing waves, up to a cusp at the origin
\Rightarrow two particle potential is Dirac-delta like \Rightarrow phase shifts again
- results for phase shifts δ as a function of momentum k Charge Condensation and Dual Wave Function method:

- agrees with analytical result from S-matrix:

Zamolodchikov ${ }^{2} 78$

$$
\delta(k)=-\arctan \frac{\pi}{2 \operatorname{arsinh}(\mathrm{k} / \mathrm{m})}
$$

and lattice spectroscopy data

Dualizing scalar QCD

- action again, for simplicity same μ for all flavors:

$$
S=\beta \sum_{x, \nu} \operatorname{tr}[\overbrace{\sum_{f} \phi_{f}(x+\hat{\nu}) \phi_{f}(x)^{\dagger}}^{J_{\nu}(x) \text { (matrix) }} U_{\nu}(x) e^{-\mu \delta_{\nu, 0}}+J_{\nu}(x)^{\dagger} U_{\nu}(x)^{\dagger} e^{\mu \delta_{\nu, 0}}]
$$

- $U_{\nu}(x) \in S U(3)$: group integrals not so simple fortunately a closed expression exists: Eriksson, Svartholm, Skagerstam 81

$$
\begin{aligned}
& \int d U \exp \left(\operatorname{tr}\left[J U e^{-\mu}+J^{\dagger} U^{\dagger} e^{-\mu}\right]\right)=\sum_{a, b, c, k, \bar{k}=0}^{\infty} \frac{\beta^{2 a+. .+3 \bar{k}} \operatorname{pos}(a, . ., \bar{k})}{a!. . \bar{k}!} \\
& \times\left(\operatorname{tr} J J^{\dagger}\right)^{a} \times \mathcal{O}\left(\left(J J^{\dagger}\right)^{2}\right)^{b} \times\left(\operatorname{det} J J^{\dagger}\right)^{c} \times\left(\operatorname{det} J e^{-\mu}\right)^{k} \times\left(\operatorname{det} J^{\dagger} e^{\mu}\right)^{\bar{k}}
\end{aligned}
$$

- upon integrating the link fields (step ii) we have expanded e^{-S} into a five-fold sum (step i) with dual variables/occup. numbers ($a, . ., \bar{k}$)

Interpreting dualized scalar QCD

$$
\left(\operatorname{tr} J J^{\dagger}\right)^{a} \times \mathcal{O}\left(\left(J J^{\dagger}\right)^{2}\right)^{b} \times\left(\operatorname{det} J J^{\dagger}\right)^{c} \times e^{-3 \mu(k-\bar{k})_{\nu=0}} \times(\operatorname{det} J)^{k} \times\left(\operatorname{det} J^{\dagger}\right)^{\bar{k}}
$$

- first three terms μ-independent: ‘mesons’ since quark-antiquark positive functions of the positive operator $J J^{\dagger}$
- next term: 3μ couples to the charge of the current $k-\bar{k}=m$ \uparrow baryon chemical potential \checkmark
current conserved? yes, by the remaining integral over ϕ-integral, schematically:

$$
\int_{\mathbb{C}} d \phi e^{- \text {mass }^{2}|\phi|^{2}} \phi^{A} \phi^{\dagger B} \neq 0 \quad \text { iff } A=B \quad \text { (angle integration!) }
$$

constrains the last two terms exactly such that m conserved

- last two terms: '(anti)baryons’ since three (anti)quarks
- example configuration

- differences to fermionic QCD:
k, \bar{k} from 0 to $\infty \leftarrow$ bosonic occup. numbers (empty sites possible) intersections of mesons and baryons possible

Sign problem in scalar QCD

depends crucially on the number of flavors:

- $N=1,2: \mu$-independent
no (anti)baryons: $\operatorname{det} J=\operatorname{det}_{3 \times 3}\left(\phi_{f=1}^{\text {shifted }} \otimes \phi_{f=1}^{\dagger}+\phi_{f=2}^{\text {shifted }} \otimes \phi_{f=2}^{\dagger}\right)=0$
matrix has at most two indep. rows/columns
no sign problem
- $N=3: \mu$-dependent
'scalar baryon needs 3 flavors'
note that:
$\operatorname{det} J=\operatorname{det}_{3 \times 3}\left(\sum_{f=1}^{3} \phi_{f}(x+\hat{\nu}) \otimes \phi_{f}(x)^{\dagger}\right)=\operatorname{det}\left(\phi_{1}\left|\phi_{2}\right| \phi_{3}\right)_{x+\hat{\nu}} \operatorname{det}\left(\phi_{1}\left|\phi_{2}\right| \phi_{3}\right)_{x}^{*}$
along a loop $\operatorname{det}(\ldots)_{x}^{*}$ meets $\operatorname{det}(\ldots)_{x}$ from the next (anti)baryon positive \Rightarrow sign problem solved
- $N \geq 4$: μ-dependent
sign problem unsolved
a similar formula for the decomposition of the determinant exists, but $\operatorname{det}(\ldots)_{x}^{*}$ does not only meet $\operatorname{det}(\ldots)_{x}$
- this case would be interesting for going beyond strong coupling if plaquette action linearized to $\exp \left(\operatorname{tr}\left[K_{\nu}(x) U_{\nu}(x)+K_{\nu}^{\dagger}(x) U_{\nu}^{\dagger}(x)\right]\right)$ then U and U^{\dagger} can again be integrated out
e.g. via Hubbard-Stratonovich bosons

Vairinhos, de Forcrand 14
or 'induced QCD' (= bosons for each plaquette) Budczies, Zirnbauer 03 Brandt, Lohmayer, Wettig 16

Revisit fermionic QCD

- action, to be dualized

$$
S=\beta \sum_{x, \nu} \eta_{\nu}(x) \operatorname{tr}\left[\sum_{f} \psi_{f}(x+\hat{\nu}) \psi_{f}(x)^{\dagger} U_{\nu}(x) e^{-\mu \delta_{\nu, 0}}-\ldots e^{\mu \delta_{\nu, 0}}\right]
$$

- sources of minus signs:
- staggered fermion factors $\eta \in\{-1,1\}$
- minus in front of second term: Dirac operator is first order
- reordering Grassmannians in final integration: - 1 per quark loop
- antiperiodic boundary conditions: -1 per winding quark loop
$\Rightarrow \exists$ configurations with negative weights, at $\mu=0$ already (!) example
- all sources absent for scalar quarks: 'separated μ-sign problem from fermionic sign problem'

Instead of conclusions

Thanks to Shailesh, Christof and Dean!

