

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Román Orús

University of Mainz (Germany)

K. Zapp, RO, Phys. Rev. D 95, 114508 (2017)

Goal of this talk

1) Show TN results with infinite-DMRG for (1+1)d QED

2) Show that we have all the necessary ingredients for a meaningful simulation of (2+1)d QED with infinite-PEPS

Fermions + U(1) gauge+ plaquette interactions + + improved optimization + contraction schemes + ...

Entanglement obeys area-law

key resource in quantum information

teleportation, quantum algorithms, quantum error correction, quantum cryptography...

Reduced density matrix $\rho_A = \operatorname{tr}_E(|\Psi\rangle\langle\Psi|)$ of subsystem A

> Entanglement entropy (von Neumann entropy)

 $\implies S(A) \sim \alpha L - S_{\gamma} \checkmark$

"topological entropy"

For many ground states

 $S(A) = -\mathrm{tr}(\rho_A \log \rho_A)$

In d dimensions

 $S(A) \sim L^d$ Generic state (volume)

Entanglement

2d system

Ground states of (most) local Hamiltonians

 $S(A) \sim L^{d-1}$ (area)

 $(L > \xi)$

Srednicki, Plenio, Eisert, Dreißig, Cramer, Wolf...

Locality of interactions \Leftrightarrow area-law \Leftrightarrow tensor network states

Hilbert space is a convenient illusion JGU Hilbert space of a N-body many-body system "Exploration" time ~ $O(10^{10^{23}})$ sec. Compare to... Age of the universe ~ $O(10^{17})$ sec. Most states here are not even reachable by a time evolution with a local Hamiltonian in polynomial time!!! Set of area-law states Poulin, Qarry, Somma, Verstraete, PRL 106 170501 (2011)

Set of product states (mean field)

We need a language to target the relevant corner of quantum states directly

Efficient O(poly(N)), satisfy area-law, low-energy eigenstates of local Hamiltonians

Massive Schwinger model

1) Lagrangian density

$$\mathcal{L} = \overline{\psi} \Big(i\partial_{\mu} \gamma^{\mu} - m \Big) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - g \overline{\psi} A_{\mu} \gamma^{\mu} \psi \Big) \begin{cases} F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \\ \overline{\nabla} \vec{E} = \rho & \text{Gauß' law} \end{cases}$$

1-flavour fermions, U(1) gauge field, coupling g

2) Lattice Hamiltonian, Kogut-Susskind staggered formulation

$$\begin{aligned} H &= -\frac{i}{2a} \sum_{n} \left(\phi_{n}^{+} e^{i\theta_{n}} \phi_{n+1} - h.c. \right) + m \sum_{n} \left(-1 \right)^{n} \phi_{n}^{+} \phi_{n} + \frac{ag^{2}}{2} \sum_{n} L_{n}^{2} \\ \left[\theta_{n}, L_{m} \right] &= i\delta_{nm} \qquad \qquad L_{n} - L_{n-1} = \phi_{n}^{+} \phi_{n} - \frac{1}{2} \left(1 - \left(-1 \right)^{n} \right) \quad \text{Gauß' law} \end{aligned}$$

- Fermionic and bosonic variables
- Local interactions
- Invariant under translations

Massive Schwinger model

JG

3) After Jordan-Wigner transformation

$$H = \frac{g}{2\sqrt{x}} \left(\sum_{n} L_{n}^{2} + \frac{\mu}{2} \sum_{n} (-1)^{n} \left(\sigma_{n}^{z} + (-1)^{n} \right) + x \sum_{n} \left(\sigma_{n}^{+} e^{i\theta_{n}} \sigma_{n+1}^{-} \right) + h.c. \right)$$

$$x \equiv 1/(g^{2}a^{2}) \qquad \mu \equiv 2m\sqrt{x}/g \qquad L_{n} - L_{n-1} = \frac{1}{2} \left(\sigma_{n}^{z} + (-1)^{n} \right) \text{ Gauß' law}$$
Good formulation for infinite-MPS (TDVP, iDMRG...)
B. Buyens, K. Van Acoleyen, J. Haegeman, F. Verstraete, PoS(LATTICE2014)308.

4) Integrating out Gauss' law (only in 1+1 dimensions)

$$H = x \sum_{n} \left(\sigma_{n}^{+} \sigma_{n+1}^{-} + \sigma_{n}^{-} \sigma_{n+1}^{+} \right) + \frac{\mu}{2} \sum_{n} \left(1 + \left(-1 \right)^{n} \sigma_{n}^{z} \right) + \sum_{n} \left(l + \frac{1}{2} \sum_{k=0}^{n} \left(\left(-1 \right)^{k} + \sigma_{k}^{z} \right) \right)^{2}$$

• Non-local interactions

Good formulation for finite-MPS (DMRG)

M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, H. Saito, PoS(LATTICE2013)332.

1-site iDMRG crash-course (technical)

Chiral condensate

Chiral condensate

FIG. 10: [Color online] Continuum extrapolation of the subtracted chiral condensate for m/g = 0, 0.125, 0.25, 0.5 attained from $x \in [10, 300]$. Dashed lines correspond to the fit, and squares at $1/\sqrt{x} = 0$ to the extrapolated value in the continuum.

			DMRG	iTDVP	
n	n/g	One-site iDMRG	Ref.[15]	Ref.[8]	exact
	0	0.15900	0.15993	0.15992	0.15992
0.	125	0.09425	0.09202	0.09201	-
0	.25	0.06838	0.06666	0.06664	-
	0.5	0.04293	0.04238	0.04234	-
0	.75	-	-	0.03062	-
	1	-	-	0.02385	-
	2	-	-	0.01246	-

TABLE II: Comparison: subtracted chiral condensate in the continuum. The extrapolation is in the regime $x \in [10, 300]$.

Similar results with 2-site iDMRG

A similar approach should be possible in (2+1)d

Why interesting? "True" fermions, chiral symmetry breaking, confinement, higher dimensions,...

Staggered fermions in (2+1)d

- Jordan-Wigner no longer useful
- Plaquette interaction
- Integrating out Gauß' law no longer useful
- Truncation of gauge-boson Hilbert space (quantum link model)
- Gauge U(1), global fermionic parity Z₂

 S_1

 h_x 0.1

0.05

0

 h_z

0.05

0.1

 $0.1 \quad 0.15$

0.2

 h_{y}

PRL 106, 107203 (2011)

0.3

0.4

e.g., S. Dusuel, M. Kamfor, RO, K. P. Schmidt, J. Vidal,

0.5

e.g., B. Bauer, P. Corboz, RO, M. Troyer, PRB 83 125106 (2011)

Efficient accurate schemes

Simple update, full update, fast full update, CTMs, TRG, TERG, boundary-MPS, TDVP, variational, imag.-time evolution, large unit cells, finite-D scaling...

We have all the ingredients to do this simulation (a priori)

An option:

(2+1)d variational ansatz

- Global fermionic Z₂
- Gauge U(1)

See also E. Zohar, M. Burrello, T. B. Wahl, J. I. Cirac, Ann. Phys. 385-439 (2015); E. Zohar, M. Burrello, NJP **18**, 043008 (2016); E. Zohar, T. B. Wahl, M. Burrello, J. I. Cirac, Ann. Phys. 84-137 (2016)

Discussion

• Compact or non-compact?

Both should be possible, change in plaquette gates (pure gauge term)

- Chiral condensate and number of flavours?
 More fermions, larger bond dimensions. Should be possible but costly
- Monopole density and number of flavours?
 Same as above
- Finite-temperature BKT confinement-deconfinement transition? Should be possible with iPEPOs and related approaches
- Which approach is better? Simple update, full update, variational... Depends on the regime. One needs to try.

