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Goal of this talk 

1) Show TN results with infinite-DMRG for (1+1)d QED 
 
 
2) Show that we have all the necessary ingredients for  
a meaningful simulation of (2+1)d QED with infinite-PEPS 

Fermions + U(1) gauge+ plaquette interactions +   
+ improved optimization + contraction schemes + ...  



Outline 

1) TN Basics  

2) (1+1)d QED with iDMRG 

3) (2+1)d QED: roadmap for iPEPS 



Entanglement key resource in quantum information 
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E

Reduced density matrix 
of subsystem A 

Entanglement entropy 
(von Neumann entropy) 

€ 

A
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E

2d system 

For many ground states  

teleportation, quantum algorithms,  
quantum error correction, quantum cryptography… 

€ 

S(A) ~ LdGeneric  
state (volume) 

€ 

S(A) ~ Ld−1Ground states  
of (most) local Hamiltonians (area) 

Srednicki, Plenio, Eisert, Dreißig, Cramer, Wolf…  

In d dimensions 

Entanglement obeys area-law 

€ 

(L > ξ)

„topological  
entropy“ 

Locality of interactions        area-law        tensor network states 



Set of product states (mean field) 

Most states here are not even 
reachable by a time evolution 

with a local Hamiltonian in 
polynomial time!!! 

 Poulin, Qarry, Somma, Verstraete, 
PRL 106 170501 (2011) 

Hilbert space is a convenient illusion 

O(1010
23

)“Exploration” time ~                     sec. 

O(1017 )Age of the universe ~                  sec.                        
Compare to… 

We need a language to target the relevant 
corner of quantum states directly 

Set of area-law states 
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Ψ = Ψi1i2 ...iN
i's
∑ i1 ⊗ i2 ⊗⊗ iN

p-level 
systems 

Tensor Networks 
e.g. RO,  Annals of Physics 349 (2014) 117–158 

Matrix Product States (MPS) 

DMRG, PWFRG, TEBD… 

Projected Entangled Pair States (PEPS),   
Tensor Product States (TPS) 

Tensor Product Variational Approach, PEPS & iPEPS 
algorithms, Tensor-Entanglement Renormalization, 
TRG/SRG/HOTRG/HOSRG… 

RG 

Multiscale Entanglement  
Renormalization Ansatz (MERA) 

AdS/CFT, Entanglement Renormalization 

A ⋅B
A B

1d 

2d, 3d... 
Scale-invariant 

physical 1…p  bond 1..D (entanglement)   

Efficient O(poly(N)), satisfy area-law, low-energy eigenstates of local Hamiltonians  
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Symmetric tensors and Schur’s lemma 
symmetric tensor 

degeneracy 

structural  
( ~ Clebsch-Gordan)  

degeneracy 

structural  
( ~ identity)  

2 legs 

3 legs 

Structural part depends only on the group properties (intertwiners)  

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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Massive Schwinger model  

L =ψ i∂µγ
µ −m( )ψ − 14 FµνF

µν − gψAµγ
µψ

Fµν = ∂µAν −∂νAµ

1) Lagrangian density  

1-flavour fermions, U(1) gauge field, coupling g  

2) Lattice Hamiltonian, Kogut-Susskind staggered formulation  

H = −
i
2a

φn
+eiθnφn+1 − h.c.( )+m −1( )nφn+φn +

ag2
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+φn −
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2
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!
∇
!
E = ρ Gauß‘ law 

Gauß‘ law 

•  Fermionic and bosonic variables 
•  Local interactions 
•  Invariant under translations 



Massive Schwinger model  
3) After Jordan-Wigner transformation  

4) Integrating out Gauss‘ law (only in 1+1 dimensions) 
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Good formulation for infinite-MPS (TDVP, iDMRG...)  

Gauß‘ law 

B. Buyens, K. Van Acoleyen, J. Haegeman, F. Verstraete, PoS(LATTICE2014)308.    

Good formulation for finite-MPS (DMRG) 
M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, H. Saito,  
PoS(LATTICE2013)332.  

•  Non-local interactions 



Gauge-invariant iDMRG 
Gauge-invariant iDMRG simulations 

H = translation invariant  
MPO, bond dimension = 4 

q,r indices for U(1) gauge 
symmetry sector (structural) 
 
Greek degeneracy indices   

fermion 
gauge  
boson 

degeneracy structural 
B. Buyens, K. Van Acoleyen, J. Haegeman,  
F. Verstraete, PoS(LATTICE2014)308.    

B+ C    
e+ 

B-  C    
e- 

A 



1-site iDMRG crash-course 

1) Get LH and RH environment tensors 

2) Define effective Hamiltonian 

3) Solve eigenvalue problem 

4) Odd step: absorb to the left 

5) Even step: absorb to the right 

Mixed canonical form, and 
2-site iDMRG also possible 

(technical) 



Chiral condensate  

m/g=0.25 



Chiral condensate  

m/g=0.25 

Similar results with 2-site 
iDMRG 
 
A similar approach should  
be possible in (2+1)d 

DMRG iTDVP 
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Lattice (2+1)d QED with PEPS 
Why interesting? „True“ fermions, chiral symmetry 
breaking, confinement, higher dimensions,... 

H = −
i
2a

φi
+eiθijφ j − h.c.( )+m −1( )s(i)φi+φi

i
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i, j
∑

+
ag2
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cos θ1 +θ2 −θ3 −θ4( )
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electric energy magnetic energy Lij − Li( j+1) = φi
+φi −

1
2
1− −1( )s(i)( ) Gauß‘ law 

•  Jordan-Wigner no longer useful  
•  Plaquette interaction 
•  Integrating out Gauß‘ law no longer useful 
•  Truncation of gauge-boson Hilbert space (quantum link model)  
•  Gauge U(1), global fermionic parity Z2 

Staggered fermions in (2+1)d  



Efficient accurate schemes 

e.g., P. Corboz, PRB 93 045116 (2016) 

Simple update, full update,  
fast full update, CTMs, TRG,  

TERG, boundary-MPS, TDVP,  
variational, imag.-time evolution,  
large unit cells, finite-D scaling...  

Plaquette interactions 

U(1) symmetry 

e.g., S. Dusuel, M. Kamfor, RO, K. P. Schmidt, J. Vidal,  
PRL 106, 107203 (2011) 

Fermions 

We have all the ingredients 
to do this simulation (a priori) 

Ok, so what do we need for this simulation? 

e.g., B. Bauer, P. Corboz, RO, M. Troyer, PRB 83 125106 (2011) 

Lattice (2+1)d QED with PEPS 



An option: 



fermion (site) 

fermionic and bosonic indices 
U(1) indices oriented 

Symmetric tensors 
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FIG. 11: [Color online] Labelling of the links around a pla-
quette p, according to the magnetic term in the Hamiltonian
of Eq.(50). The staggered structure of positrons e+ and elec-
trons e− is also shown.

gauge boson variables θn,m live on the link between sites
n and m, and the sum ⟨n,m⟩ runs over nearest neigh-
bours. The factor s(n) decides the +1 or −1 prefactor
for the mass term depending on the staggered pattern
of the fermionic field: +1 for positrons, and −1 for elec-
trons. Finally, the term with the cosinus is the curl of
the gauge variable around a plaquette, see Fig.11, and
corresponds therefore to the magnetic field energy.

In this setting, the Gauss’ law in (2 + 1)d reads

Ln,m − Ln,m+1 = φ†
nφn − 1

2

(
1− (−1)s(n)

)

Ln,m − Ln+1,m = φ†
mφm − 1

2

(
1− (−1)s(m)

)
, (51)

where the first equation is for horizontal links, and the
second for the vertical. Finally, in order to implement
a simulation, it is advisable to truncate again the local
dimension of the Hilbert space of the gauge boson, as we
did in the (1 + 1)d case.

B. Variational ansatz: a proposal

As a variational TN ansatz to approximate the ground
state of the above Hamiltonian we propose a 2d infinite
PEPS with the structure from Fig.12. There are two
types of tensors: on the sites, for the staggered fermionic
field (positrons and electrons), and on the links, for the
bosonic gauge field. The physical indices at the sites are
fermionic, as well as the unoriented bond indices. These
indices satisfy the fermionic PEPS rules [4], namely, ev-
ery time that two of such lines cross, one needs to include
a fermionic swap gate in the TN diagram. Additionally,
the physical indices at the links are purely bosonic and
correspond to the truncated Hilbert space of the gauge
variable for the corresponding link. Finally, bosonic bond
indices are introduced with an orientation (arrow), which
implement the U(1) gauge symmetry in the tensor com-
ponents.

In terms of equations, the non-zero components are the
following for the tensors at the sites:

(B±)
f
(pα,(q,αq)),(pβ ,(r,βr)),(pγ ,(s,γs)),(pδ,(t,δt))

(52)

= bfαq,βr,γs,δt
δmod(pα+pβ+pγ+pδ+f,2),0δ(q+r±f),(s+t),

(a) (b)

e+	
e+	

e+	

e-	

e-	θ

θ1

θ2

θ3

θ4

FIG. 12: [Color online] PEPS variational ansatz for QED in
(2 + 1)d. Tensors for fermionic variables are at the sites, and
for bosonic gauge variables at the links; (a) The upper tensor
is for a fermion, in fact a positron e+. Its physical index is
fermionic and oriented according to a U(1)-flux. Parity bond
indices pα, ..., pδ carry the fermionic parity, and are there-
fore fermionic and unoriented. Indices (q,α), ..., (t, δ) carry
the U(1) charge and are bosonic and oriented. The lower
tensor is for a gauge boson θ. Its physical index is bosonic
and unoriented. Its bond indices pα, pγ carry the fermionic
parity, and are therefore fermionic and unoriented. Indices
(q,α), (s, γ) are bosonic, carry the U(1) charge, and are ori-
ented; (b) Structure of a plaquette for the 2d infinite-PEPS.
Notice the opposite orientation of the (fermionic) physical
indices for positrons e+ and electrons e−, denoting their op-
posite U(1) charges.

where ± refers to a positron or an electron, tensor
bfαq,βr,γs,δt

corresponds to the free parameters, the first
delta implements fermionic Z2 parity symmetry, the sec-
ond delta implements the gauge U(1) symmetry, and
f = 0, 1 is the fermionic occupation number. Similarly,
for the tensors at the link the non-zero components are
given by

Cb
(pα,(q,αq)),(pγ ,(s,γs))

= cbαq,γs
δmod(pα+pγ ,2),0δq,bδs,b,

(53)
where cbαq,γs

are the free variational parameters, b is the
bosonic physical index, the first delta implements the
fermionic parity symmetry for the bond indices, and the
last two deltas take into account U(1) gauge symmetry.

As mentioned above, this ansatz can be optimized
in the thermodynamic limit to approximate the ground
state of the Hamiltonian in Eq.(50). Such an optimiza-
tion could be done variationally by using techniques re-
cently introduced [35], but it could also be optimized by
imaginary time evolution with usual iPEPS algorithms
[12]. In any case, at every step in the algorithm one
must carefully take into account (i) gauge invariance, as
we did for the (1 + 1)d case, but now also (ii) fermionic
swaps, coming from the crossings of fermionic wires in
the TN diagrams. The optimization of this ansatz by
imaginary-time evolution is currently work in progress,
and its results will be presented in a future publication.

fermionic Z2 gauge U(1) free param. 

(2+1)d variational ansatz 
•  Global fermionic Z2  
•  Gauge U(1) 

See also E. Zohar, M. Burrello, T. B. Wahl, 
J. I. Cirac, Ann. Phys. 385-439 (2015); E. 
Zohar, M. Burrello, NJP 18, 043008 (2016); 
E. Zohar, T. B. Wahl, M. Burrello, J. I. 
Cirac, Ann. Phys. 84-137 (2016)    

Lattice (2+1)d QED with PEPS 

gauge boson (link) 



Fermion-gauge boson  
interaction: 3-body gate 
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Trotterize, etc 

Lattice (2+1)d QED with PEPS 
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Fermionic mass term:  
1-body gate 

Lattice (2+1)d QED with PEPS 
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Electric field energy:  
1-body gate 

Lattice (2+1)d QED with PEPS 
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Lattice (2+1)d QED with PEPS 

Magnetic field energy:  
plaquette gate 



Discussion 



•  Compact or non-compact?  
Both should be possible, change in plaquette gates (pure gauge term) 
 
•  Chiral condensate and number of flavours?  
More fermions, larger bond dimensions. Should be possible but costly 
 
•  Monopole density and number of flavours?  
Same as above  
 
•  Finite-temperature BKT confinement-deconfinement transition?  
Should be possible with iPEPOs and related approaches 
 
•  Which approach is better? Simple update, full update, variational... 
Depends on the regime. One needs to try. 

Lattice (2+1)d QED with PEPS 
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