

Manuel Weber, Fakher F. Assaad, and Martin Hohenadler Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Germany

1D Holstein model:

$$\hat{H} = -t\sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{H.c.} \right) + \omega_0 \sum_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} + \gamma \sum_{i} \hat{\rho}_{i} \left(\hat{a}_{i}^{\dagger} + \hat{a}_{i} \right)$$

Simulation of fermion-boson models is challenging because:

- unbound bosonic Hilbert space (ED, DMRG)
- long autocorrelation times (QMC)

Our solution to the autocorrelation problem:

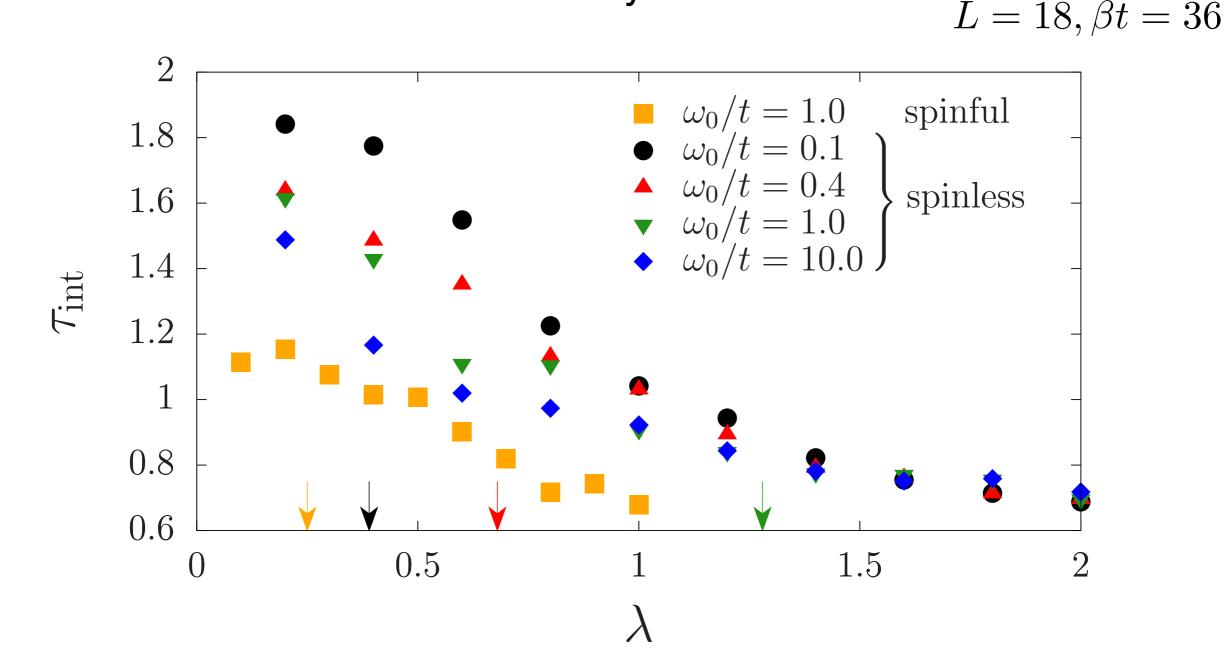
integrate out the phonons in action-based formulation

$$S_{\rm ret} = -2\lambda t \iint d\tau_1 d\tau_2 \sum_i \rho_i(\tau_1) P(\tau_1 - \tau_2) \rho_i(\tau_2)$$

 generalize the directed-loop algorithm (SSE) to the case of retarded interactions

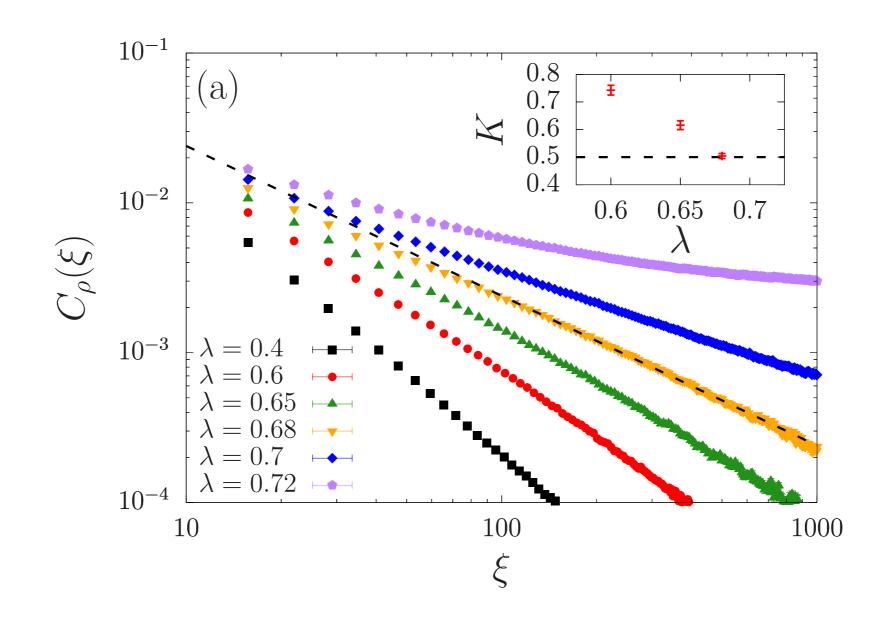
Manuel Weber, Fakher F. Assaad, and Martin Hohenadler Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Germany

Autocorrelation times are always small!



Manuel Weber, Fakher F. Assaad, and Martin Hohenadler Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Germany

We reach system sizes up to: $L = 1282, \beta t = 2L$



Manuel Weber, Fakher F. Assaad, and Martin Hohenadler Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Germany

Motivation

Numerical simulation of fermion-boson models is very challenging:

- **DMRG** and **ED** are limited by the unbound bosonic Hilbert space that needs a truncation;
- QMC suffers from long autocorrelation times as only local boson updates are available [1]. We solve the **autocorrelation problem** by
- integrating out the bosons in the path integral to obtain a retarded fermionic interaction [2];
- generalizing the directed-loop algorithm [3] to the case of retarded interactions.

Retarded interactions

Consider the 1D spinless Holstein model

$$\hat{H} = -t\sum_{i}\hat{B}_{i,i+1} + \omega_0\sum_{i}\hat{a}_i^{\dagger}\hat{a}_i + \gamma\sum_{i}\hat{\rho}_i\left(\hat{a}_i^{\dagger} + \hat{a}_i\right)$$

where $\hat{B}_{i,i+1} = (\hat{c}_i^{\dagger}\hat{c}_{i+1} + \text{H.c.})$ and $\hat{\rho}_i = (\hat{c}_i^{\dagger}\hat{c}_i - 1/2)$. Integrating out the bosons in

$$Z = \int \mathcal{D}(\bar{c}, c) \, e^{-\mathcal{S}_{\mathrm{f}}[\bar{c}, c]} \underbrace{\int \mathcal{D}(\bar{a}, a) \, e^{-\mathcal{S}_{\mathrm{b}}[\bar{a}, a] - \mathcal{S}_{\mathrm{fb}}[\bar{a}, a, \bar{c}, c]}}_{\Lambda(\bar{c}, -\bar{S}_{\mathrm{tr}}[\bar{c}, c]}$$

leads to the retarded interaction

$$\mathcal{S}_{\text{ret}} = -2\lambda t \iint d\tau_1 d\tau_2 \sum_i \rho_i(\tau_1) P(\tau_1 - \tau_2) \rho_i(\tau_2)$$

mediated by the free boson propagator $P(\tau)$.

Formulation of the directed-loop algorithm

Stochastic series expansion from the path integral

The SSE representation corresponds to an expansion of $Z = \int \mathcal{D}(\bar{c}, c) e^{-\mathcal{S}_0 - \mathcal{S}_1}$ around $\mathcal{S}_0 = \int d\tau \sum_i \bar{c}_i(\tau) \partial_\tau c_i(\tau)$. We write \mathcal{S}_1 as a sum over vertices,

$$\mathcal{S}_1 = -\sum_{\nu} w_{\nu} h_{\nu} \,. \tag{1}$$

A **vertex** is specified by a superindex ν , a weight w_{ν} , and the Grassmann representation h_{ν} of an operator. Z becomes

$$Z = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \frac{Z_0}{m!} w_{\nu_1} \dots w_{\nu_n} \langle h_{\nu_1} \dots h_{\nu_n} \rangle_0 ,$$

i.e., $\nu = \{a, b, \tau\}$ with operator type a, bond variable b, and time τ , $w_{\nu} = d\tau$, and $h_{\nu} = H_{a,b}(\tau)$. We can map to an operator string

$$\sum_{S_n} Z_0 \left\langle h_{\nu_1} \dots h_{\nu_n} \right\rangle_0 = \sum_{S_n} \sum_{\alpha} \left\langle \alpha \right| \prod_p \hat{H}_{a_p, b_p} \left| \alpha \right\rangle$$

where time labels become obsolete. Updates are based on the diagonal and directed-loop updates depicted in Fig 1.

Application

- Bosonic observables are obtained from the vertex distribution via generating functionals [4].
- With the directed-loop updates, autocorrelation times are of order 1 (see Fig. 3).

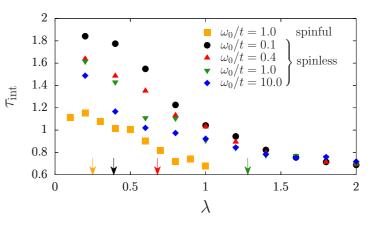


FIG. 3. Autocorrelation time $\tau_{\rm int}$ for the total energy, as determined from a rebinning analysis, for the spinless and the spinful Holstein model. Here, $L=18,~\beta t=2L.$ Arrows indicate Peierls critical values $\lambda_c(\omega_0).$

• Our algorithm reaches system sizes of $L = \beta t/2 = 1282$, as demonstrated in Fig. 4.

