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Motivation

Numerical simulation of fermion-boson models
is very challenging:

•DMRG and ED are limited by the unbound
bosonic Hilbert space that needs a truncation;

•QMC su↵ers from long autocorrelation times
as only local boson updates are available [1].

We solve the autocorrelation problem by

• integrating out the bosons in the path integral
to obtain a retarded fermionic interaction [2];

•generalizing the directed-loop algorithm [3] to
the case of retarded interactions.

Retarded interactions

Consider the 1D spinless Holstein model
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where B̂i,i+1 = (ĉ†i ĉi+1 + H.c.) and ⇢̂i = (ĉ†i ĉi � 1/2).
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mediated by the free boson propagator P (⌧ ).

Formulation of the directed-loop algorithm

Stochastic series expansion from the path integral

The SSE representation corresponds to an
expansion of Z =

R
D(c̄, c) e�S0�S1 around

S0 =
R
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P
i c̄i(⌧ ) @⌧ ci(⌧ ). We write S1 as a

sum over vertices,
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X
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A vertex is specified by a superindex ⌫, a
weight w⌫, and the Grassmann representa-
tion h⌫ of an operator. Z becomes
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where Cn = {⌫1, . . . , ⌫n} encodes a configura-
tion of order n.
For problems without retardation, we
have a local vertex S1 = �

R
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P
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i.e., ⌫ = {a, b, ⌧} with operator type a, bond
variable b, and time ⌧ , w⌫ = d⌧ , and h⌫ =
Ha,b(⌧ ). We can map to an operator string
X

Sn

Z0 hh⌫1 . . . h⌫ni0 =
X
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where time labels become obsolete. Up-
dates are based on the diagonal and
directed-loop updates depicted in Fig 1.

FIG. 1. (a) Graphical representation of the two vertex types and
(b–d) example for a directed loop in a world-line configuration.

Vertex structure

FIG. 2. Diagonal and o↵-diagonal vertices for the Holstein model.

For retarded interactions, each vertex
consists of two local subvertices. We write

S1 = �
ZZ

d⌧1d⌧2P (⌧1 � ⌧2)
X

a1,a2,b

ha1a2,b(⌧1, ⌧2) .

The o↵-diagonal hopping vertices are pro-
moted to retarded interactions by exploitingR �

0 d⌧2P (⌧1 � ⌧2) = 1 and read

h10,b(⌧1, ⌧2) =
t

2
Bb(⌧1) 1b(⌧2) ,

h01,b(⌧1, ⌧2) =
t

2
1b(⌧1)Bb(⌧2) ,

whereas the diagonal vertices are given by

h22,b(⌧1, ⌧2) = �t
⇥
C + ⇢i(b)(⌧1)⇢i(b)(⌧2) + (i $ j)

⇤

with j(b) = i(b) + 1. As a result, w(⌧1, ⌧2) =

P (⌧1 � ⌧2) d⌧1d⌧2 irrespective of a1, a2.

Updates

Diagonal updates involve adding and re-
moving single vertices h22,b(⌧1, ⌧2):

•Weights can be accessed e�ciently from a
world-line configuration by constructing an
ordered list containing the time arguments
of operators Bb(i)(⌧ ) for each i.

•Sampling ⌧1, ⌧2 according to P (⌧1�⌧2) by in-
verse transform sampling ensures high ac-
ceptance rates for any !0.

The directed-loop updates work as usual,
but at the level of subvertices:

•Because P (⌧1� ⌧2) is independent of a1, a2,
it drops out of the directed-loop equations.

•The weight depends on the total vertex,
but subvertices are updated individually.
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Application

•Bosonic observables are obtained from the ver-
tex distribution via generating functionals [4].

•With the directed-loop updates, autocorrela-
tion times are of order 1 (see Fig. 3).

FIG. 3. Autocorrelation time ⌧int for the total energy, as determined from
a rebinning analysis, for the spinless and the spinful Holstein model. Here,
L = 18, �t = 2L. Arrows indicate Peierls critical values �c(!0).

•Our algorithm reaches system sizes of L =

�t/2 = 1282, as demonstrated in Fig. 4.

FIG. 4. Results for the spinless Holstein model (!0 = 0.4t). (a) Real-
space density correlator for even distances as a function of the conformal
distance ⇠ = L sin(⇡rL ) on chains of up to L = 1282 sites (�t = 2L).
The dashed line indicates the 1/⇠ decay expected at �c. Inset: Luttinger
parameter K extracted from fits of C⇢(L/2) to a/r2K using L = 162 – 562.
(b) Finite-size scaling of the density correlations at distance L/2, indicating
long-range order beyond �c = 0.68(1). Here, �t = 2L and the key is the
same as in (a). (c) Fidelity susceptibility for �t = 4L. The dashed line
indicates �c.

Conclusions & outlook

•For fermion-boson models, our method out-
performs any other existing method.

•Our method is not restricted to diagonal in-
teractions like the worm algorithm [5].

•The SSE representation is very e�cient for
simulating models with long-ranged interac-
tions in space and time.

•Bosonic and spin systems with retardation can
be simulated e�ciently in any dimension.

References

[1] M. Hohenadler and T. C. Lang: Autocorrelations in Quantum
Monte Carlo Simulations of Electron-Phonon Models, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 357–366 (2008).

[2] F. F. Assaad and T. C. Lang: Diagrammatic determinantal

quantum Monte Carlo methods: Projective schemes and ap-
plications to the Hubbard-Holstein model. Phys. Rev. B 76,
035116 (2007).

[3] O. Syljuasen and A. W. Sandvik: Quantum Monte Carlo with
directed loops. Phys. Rev. E 66, 046701 (2002).

[4] M. Weber, F. F. Assaad, and M. Hohenadler: Continuous-time

quantum Monte Carlo for fermion-boson lattice models: Im-
proved bosonic estimators and application to the Holstein model.
Phys. Rev. B 94, 245138 (2016).
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1D Holstein model:

Simulation of fermion-boson models is challenging because:
• unbound bosonic Hilbert space (ED, DMRG)
• long autocorrelation times (QMC)

Our solution to the autocorrelation problem:
• integrate out the phonons in action-based formulation

Sret = �2�t
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d⌧1d⌧2

X
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⇢i(⌧1)P (⌧1 � ⌧2)⇢i(⌧2)

• generalize the directed-loop algorithm (SSE) to the case 
of retarded interactions
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i

B̂i,i+1 + !0

X

i

â†i âi + �
X

i

⇢̂i (â
†
i + âi)

where B̂i,i+1 = (ĉ†i ĉi+1 + H.c.) and ⇢̂i = (ĉ†i ĉi � 1/2).
Integrating out the bosons in

Z =

Z
D(c̄, c) e�Sf[c̄,c]

Z
D(ā, a) e�Sb[ā,a]�Sfb[ā,a,c̄,c]

| {z }
=N e�Sret[c̄,c]

leads to the retarded interaction

Sret = �2�t

ZZ
d⌧1d⌧2

X

i

⇢i(⌧1)P (⌧1 � ⌧2)⇢i(⌧2)

mediated by the free boson propagator P (⌧ ).

Formulation of the directed-loop algorithm

Stochastic series expansion from the path integral

The SSE representation corresponds to an
expansion of Z =

R
D(c̄, c) e�S0�S1 around

S0 =
R
d⌧

P
i c̄i(⌧ ) @⌧ ci(⌧ ). We write S1 as a

sum over vertices,

S1 = �
X

⌫

w⌫h⌫ . (1)

A vertex is specified by a superindex ⌫, a
weight w⌫, and the Grassmann representa-
tion h⌫ of an operator. Z becomes

Z =

1X

n=0

X

Cn

Z0

n!
w⌫1 . . . w⌫n hh⌫1 . . . h⌫ni0 ,

where Cn = {⌫1, . . . , ⌫n} encodes a configura-
tion of order n.
For problems without retardation, we
have a local vertex S1 = �

R
d⌧

P
a,b Ha,b(⌧ ),

i.e., ⌫ = {a, b, ⌧} with operator type a, bond
variable b, and time ⌧ , w⌫ = d⌧ , and h⌫ =
Ha,b(⌧ ). We can map to an operator string
X

Sn

Z0 hh⌫1 . . . h⌫ni0 =
X

Sn

X

↵

h↵|
Y

p

Ĥap,bp |↵i ,

where time labels become obsolete. Up-
dates are based on the diagonal and
directed-loop updates depicted in Fig 1.

FIG. 1. (a) Graphical representation of the two vertex types and
(b–d) example for a directed loop in a world-line configuration.

Vertex structure

FIG. 2. Diagonal and o↵-diagonal vertices for the Holstein model.

For retarded interactions, each vertex
consists of two local subvertices. We write

S1 = �
ZZ

d⌧1d⌧2P (⌧1 � ⌧2)
X

a1,a2,b

ha1a2,b(⌧1, ⌧2) .

The o↵-diagonal hopping vertices are pro-
moted to retarded interactions by exploitingR �

0 d⌧2P (⌧1 � ⌧2) = 1 and read

h10,b(⌧1, ⌧2) =
t

2
Bb(⌧1) 1b(⌧2) ,

h01,b(⌧1, ⌧2) =
t

2
1b(⌧1)Bb(⌧2) ,

whereas the diagonal vertices are given by

h22,b(⌧1, ⌧2) = �t
⇥
C + ⇢i(b)(⌧1)⇢i(b)(⌧2) + (i $ j)

⇤

with j(b) = i(b) + 1. As a result, w(⌧1, ⌧2) =

P (⌧1 � ⌧2) d⌧1d⌧2 irrespective of a1, a2.

Updates

Diagonal updates involve adding and re-
moving single vertices h22,b(⌧1, ⌧2):

•Weights can be accessed e�ciently from a
world-line configuration by constructing an
ordered list containing the time arguments
of operators Bb(i)(⌧ ) for each i.

•Sampling ⌧1, ⌧2 according to P (⌧1�⌧2) by in-
verse transform sampling ensures high ac-
ceptance rates for any !0.

The directed-loop updates work as usual,
but at the level of subvertices:

•Because P (⌧1� ⌧2) is independent of a1, a2,
it drops out of the directed-loop equations.

•The weight depends on the total vertex,
but subvertices are updated individually.
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Application

•Bosonic observables are obtained from the ver-
tex distribution via generating functionals [4].

•With the directed-loop updates, autocorrela-
tion times are of order 1 (see Fig. 3).
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FIG. 3. Autocorrelation time ⌧int for the total energy, as determined from
a rebinning analysis, for the spinless and the spinful Holstein model. Here,
L = 18, �t = 2L. Arrows indicate Peierls critical values �c(!0).

•Our algorithm reaches system sizes of L =

�t/2 = 1282, as demonstrated in Fig. 4.
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FIG. 4. Results for the spinless Holstein model (!0 = 0.4t). (a) Real-
space density correlator for even distances as a function of the conformal
distance ⇠ = L sin(⇡rL ) on chains of up to L = 1282 sites (�t = 2L).
The dashed line indicates the 1/⇠ decay expected at �c. Inset: Luttinger
parameter K extracted from fits of C⇢(L/2) to a/r2K using L = 162 – 562.
(b) Finite-size scaling of the density correlations at distance L/2, indicating
long-range order beyond �c = 0.68(1). Here, �t = 2L and the key is the
same as in (a). (c) Fidelity susceptibility for �t = 4L. The dashed line
indicates �c.

Conclusions & outlook

•For fermion-boson models, our method out-
performs any other existing method.

•Our method is not restricted to diagonal in-
teractions like the worm algorithm [5].

•The SSE representation is very e�cient for
simulating models with long-ranged interac-
tions in space and time.

•Bosonic and spin systems with retardation can
be simulated e�ciently in any dimension.
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