Revisiting the Hybrid Monte Carlo Method for Hubbard and Electron-Phonon Models

Stefan Beyl, Florian Goth, Fakher F. Assaad

Reference Model

Hubbard type model:

$$H = -t \sum_{\langle i,j \rangle,\sigma} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \hat{c}_{j,\sigma}^{\dagger} \hat{c}_{i,\sigma} \right) + U \sum_{i} \left(\hat{n}_{i,\uparrow} - \frac{1}{2} \right) \left(\hat{n}_{i,\downarrow} - \frac{1}{2} \right)$$

Partition Function with Trotter Decomposition:

$$Z = \operatorname{tr} e^{-\beta H} = \operatorname{tr} \left(e^{-\Delta_{\tau} H} \right)^{N_{\tau}} \simeq \operatorname{tr} \left(e^{-\Delta_{\tau} H_K} e^{-\Delta_{\tau} H_V} \right)^{N_{\tau}}$$

Introduce auxiliary field:

$$\exp\left[-\triangle_{\tau} U\left(\hat{n}_{i,\uparrow} - \frac{1}{2}\right)\left(\hat{n}_{i,\downarrow} - \frac{1}{2}\right)\right] =$$

$$= \left(\triangle_{\tau} / \pi \right)^{1/2} \mathrm{e}^{-\triangle_{\tau} U / 4} \int_{-\infty}^{\infty} \mathrm{d}x_{i,l} \exp \left\{ -\triangle_{\tau} \left[x_{i,l}^2 + \sqrt{2U} x_{i,l} \left(\hat{n}_{i,\uparrow} - \hat{n}_{i,\downarrow} \right) \right] \right\}$$

27.09.17

Ergodicity (HQMC)

$$Z = \int [\delta x \, \delta \phi_{\uparrow} \, \delta \phi_{\downarrow} \, \delta p] \exp \left\{ -S_B(x) - \sum_{\sigma} \phi_{\sigma} \left(M_{\sigma}^T(x) \, M_{\sigma}(x) \right)^{-1} \phi_{\sigma} - \sum_{i,l} p_{i,l}^2 \right\}$$

= $\int [\delta x \, \delta p] \, e^{-S_B(x) - p^2} \det M_{\uparrow}(x) \, \det M_{\downarrow}(x)$
= $\int [\delta x \, \delta p] \, e^{-S_B(x) - p^2} \det M_{\uparrow}(x) \, \det M_{\downarrow}(x)$
$$\det M_{\sigma}(x) = 0 \longrightarrow$$

Domain walls that cannot be crossed by the leapfrog method

us-Maxi

Benchmark Plot

Julius-Maxin UNIVERSI WÜRZBUR

27.09.17

Comparison Between HQMC and BSS QMC Algorithms in Condensed Matter

27.09.17

Introduction of Complex Fields (cHQMC)

Rewrite the interaction part of the Hamiltonian:

$$H'_{V} = \sum_{i} \alpha \frac{U}{2} \left(\hat{n}_{i,\uparrow} + \hat{n}_{i,\downarrow} - 1 \right)^{2} - \sum_{i} \left(1 - \alpha \right) \frac{U}{2} \left(\hat{n}_{i,\uparrow} - \hat{n}_{i,\downarrow} \right)^{2}$$

Double Hubbard-Stratonovich-transformation:

$$e^{-\Delta_{\tau}H'_{V}} \propto \int dx_{i,l} dy_{i,l} \quad \exp\left\{-\Delta_{\tau}\sum_{i} \left[x_{i,l}^{2} + y_{i,l}^{2} + \left(\sqrt{2U(1-\alpha)}x_{i,l} + i\sqrt{2U\alpha}y_{i,l}\right)\left(\hat{n}_{i,\uparrow} - \frac{1}{2}\right)\right. \\ \left. - \left(\sqrt{2U(1-\alpha)}x_{i,l} - i\sqrt{2U\alpha}y_{i,l}\right)\left(\hat{n}_{i,\downarrow} - \frac{1}{2}\right)\right]\right\}$$

At half filling:

 $\det \left[\mathcal{M}_{\uparrow}\left(x,y\right)\right] = \overline{\det \left[\mathcal{M}_{\downarrow}\left(x,y\right)\right]} \Rightarrow \text{ no sign problem}$

det $[\mathcal{M}_{\sigma}(x,y)] \in \mathbb{C} \Rightarrow$ no problems with ergodicity

Benchmark Plot

27.09.17

Benchmark Plot

Julius-Maximilians JNIVERSITÄT WÜRZBURG

27.09.17

Comparison: cHQMC and BSS-QMC

 $G\left(r=0,\tau=\beta/2\right)$ -2 BSS 04x04 + $\beta t = 6$ U/t = 4BSS 06x06 ж BSS 08x08 -4 BSS 12x12 BSS 16x16 -6 cHQMC 04x04 \sim cHQMC 06x06 $\widehat{\mathfrak{G}}$ CHQMC 08x08 $N_{\rm Bins}$ -8 -cHQMC 12x12 O $\langle G^2 \rangle$ -10 \ln -12 -14 -16 12 16 14 18 10 20 $\ln (\text{CPU time}) \propto \ln (N_{\text{Bins}})$

alf.physik.uni-wuerzburg.de

Su-Schrieffer-Heeger model (SSH)

$$H = -t \sum_{\langle i,j \rangle,\sigma} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \hat{c}_{j,\sigma}^{\dagger} \hat{c}_{i,\sigma} \right) + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}_{\langle i,j \rangle}^2}{2m} + \frac{k}{2} \hat{Q}_{\langle i,j \rangle}^2 \right] + g \sum_{\langle i,j \rangle,\sigma} \hat{Q}_{\langle i,j \rangle} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \hat{c}_{j,\sigma}^{\dagger} \hat{c}_{i,\sigma} \right)$$

 $\hat{Q}_b |x_b\rangle = x_b |x_b\rangle$ $b := \langle i, j\rangle$ $K_b := \left(\hat{c}_i^{\dagger}\hat{c}_j + \hat{c}_j^{\dagger}\hat{c}_i\right)$

27.09.17

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

27.09.17

THANKS FOR YOUR ATTENTION

27.09.17