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Time-Reversal Invariance is Violated

Violation is seen in decay of K-mesons (direct) and B-mesons
(through CP violation).

And we strongly believe that T (≡ CP) violation played an
important role in the early universe, causing excess of matter
over antimatter.



What is the Source of T-Violation?

K and B phenomena almost certainly due to a phase in the
3× 3 CKM matrix, which connects (d, s, b) to flavor eigenstates
that couple toW and Z.

But this violation is too weak to cause baryogenesis, which must
arise outside the standard model, e.g. through

supersymmetry
heavy neutrinos
Higgs sector . . .

To complicate things more, there’s the strong CP problem.

In short. . .

We need to see T-violation outside mesonic systems to under-
stand its sources. EDM’s are not sensitive to CKM T violation,
but are to other sources. They’ve already put extreme pressure
on supersymmetry.
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Connection Between EDMs and T Violation
Consider non-degenerate ground state |g.s. : J,M〉. Symmetry
under rotations Ry(π) for vector operator like ~d ≡∑i ei~ri implies:

〈g.s. : J,M| dz |g.s. : J,M〉 = − 〈g.s. : J,−M|dz |g.s. : J,−M〉 .

R−1R R−1R

T takesM to −M, like Ry(π). But ~d is odd under Ry(π) and even
under T , so for T conserved

〈g.s. : J,M| dz |g.s. : J,M〉 = + 〈g.s. : J,−M|dz |g.s. : J,−M〉 .

T−1T T−1T

Together with the first equation, this implies

〈dz〉 = 0 .

If T is violated, argument fails because T takes |g : JM〉 to states
with J,−M, but different energy.
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One Way Things Get EDMs

Starting at fundamental level and working up:

Underlying fundamental theory
generates three T-violating πNN
vertices in chiral PT:

Then neutron gets EDM from
chiral-PT diagrams like this:
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How Diamagnetic Atoms Get EDMs

Nucleus gets one from nucleon EDM
and T-violatingNN interaction: π

ḡ

γ

VPT ∝
{[

g0τ1 · τ2 −
g1
2

(τz1 + τ
z
1) + g2 (3τ

z
1τ
z
2 − τ1 · τ2)

]
(σ1 − σ2)

−
g1
2

(τz1 − τ
z
2) (σ1 + σ2)

}
· (∇1 −∇2)

exp (−mπ|r1 − r2|)

mπ|r1 − r2|

+ contact term

Finally, atom gets one from nucleus. Electronic shielding makes relevant
nuclear object the “Schiff moment” 〈S〉 ≈ 〈∑p r2pzp + . . .〉.

Job of nuclear theory: calculate dependence of 〈S〉 on
the gi (and on the contact term and nucleon EDM).
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How Does Shielding Work?

Theorem (Schiff)
The nuclear dipole moment causes the atomic electrons to rearrange
themselves so that they develop a dipole moment opposite that of the
nucleus. In the limit of nonrelativistic electrons and a point nucleus the
electrons’ dipole moment exactly cancels the nuclear moment, so that
the net atomic dipole moment vanishes.



How Does Shielding Work?

Proof
Consider atom with non-relativistic constituents (with dipole mo-
ments ~dk) held together by electrostatic forces. The atom has a
“bare” edm ~d ≡

∑
k

~dk and a Hamiltonian

H =
∑
k

p2k
2mk

+
∑
k

V(~rk)︸ ︷︷ ︸ −
∑
k

~dk · ~Ek

= H0 +
∑
k

(1/ek)~dk · ~∇V(~rk)

= H0 + i
∑
k

(1/ek)
[
~dk · ~pk, H0

]

K.E. + Coulomb dipole perturbation



How Does Shielding Work?

The perturbing Hamiltonian

Hd = i
∑
k

(1/ek)
[
~dk · ~pk, H0

]

shifts the ground state |0〉 to

|0̃〉 = |0〉+
∑
m

|m〉 〈m|Hd |0〉
E0 − Em

= |0〉+
∑
m

|m〉 〈m| i
∑
k(1/ek)

~dk · ~pk |0〉 (E0 − Em)

E0 − Em

=

(
1+ i

∑
k

(1/ek)~dk · ~pk
)
|0〉
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How Does Shielding Work?
The induced dipole moment ~d ′ is

~d ′ = 〈0̃|
∑
j

ej~rj |0̃〉

= 〈0|
(
1− i

∑
k

(1/ek)~dk · ~pk
) ∑

j

ej~rj


×
(
1+ i

∑
k

(1/ek)~dk · ~pk
)
|0〉

= i 〈0|

∑
j

ej~rj,
∑
k

(1/ek)~dk · ~pk

 |0〉

= − 〈0|
∑
k

~dk |0〉 = −
∑
k

~dk

= − ~d

So the net EDM is zero!
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Recovering from Shielding
The nucleus has finite size. Shielding is not complete, and nuclear T
violation can still induce atomic EDMDA.
Post-screening nucleus-electron interaction proportional to Schiff
moment:

〈S〉 ≡
〈∑
p

ep

(
r2p −

5

3
〈R2ch〉

)
zp

〉
+ . . .

If, as you’d expect, 〈S〉 ≈ R2Nuc 〈DNuc〉, thenDA is down from
〈DNuc〉 by

O
(
R2Nuc/R

2
A

)
≈ 10−8 .

Fortunately, the large nuclear charge and relativistic wave functions
offset this factor by 10Z2 ≈ 105.

Overall suppression ofDA is only about 10−3.
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Theory for Heavy Nuclei

〈S〉 largest for large Z , so experiments are in heavy nuclei.

Ab initio methods are making rapid progress, but
Interaction (from chiral EFT) has problems beyondA = 50.
Many-body methods not quite ready to tackle soft nuclei such
as 199Hg, or even those with rigid deformation such as 225Ra.

so

for now we must rely on nuclear density-functional theory:
mean-field theory with phenomenological “density-dependent
interactions” (Skyrme, Gogny, or successors) plus corrections, e.g.:

projection of deformed wave functions onto states with good
particle number, angular momentum
inclusion of small-amplitude zero-point motion (RPA)
mixing of mean fields with different character (GCM)
. . .
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Nuclear Deformation



Skyrme DFT

"#"$#%&! '()*+,!-.+,/0*+,1!'/23+,.4)5! F!

Zr-102: normal density and pairing density  

HFB, 2-D lattice, SLy4 + volume pairing 
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005) 

G=HI!β"
JKLM&N76! +OKI!β"
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Applied Everywhere

Nuclear ground state deformations (2-D HFB) 

 Ref: Dobaczewski, Stoitsov & Nazarewicz (2004)    arXiv:nucl-th/0404077 

"#"$#%&! %V!'()*+,!-.+,/0*+,1!'/23+,.4)5!



Varieties of “Recent” Schiff-Moment Calculations

Need to calculate

〈S〉 ≈
∑
m

〈0|S |m〉 〈m|VPT |0〉
E0 − Em

+ c.c.

whereH = Hstrong + VPT .

Hstrong represented either by Skyrme density functional or by
simpler effective interaction, treated on top of separate mean
field.
VPT either included nonperturbatively or via the explicit sum
over intermediate states above.
Nucleus either forced artificially to be spherical or allowed to
deform.



199Hg via Explicit RPA in Spherical Mean Field

1. Skyrme HFB (mean-field theory with pairing) in 198Hg.

2. Polarization of core by last neutron and action of VPT , treated
as explicit corrections in quasiparticle RPA, which sums over
intermediate states.

Figure 3.11: Class–A diagram with core polarization in the RPA. The filled bubble repre-
sents an infinite sum of diagrams like the ones in Figure 3.10.

v

v

k l

diag–A with RPA

Table 3.12: Total contributions from class–A diagrams to the nuclear Schiff moment of
209Pb taking into account nuclear collective effects and assuming a finite–range P– and
T–violating interaction and five different Skyrme interaction. The units are e fm3.

λ0 λ1 λ2

SkM? −0.0115 −0.0278 −0.0295
SkP −0.0109 −0.0350 −0.0291
SIII −0.0148 −0.0165 −0.0331
SLy4 −0.0117 −0.0232 −0.0286
SkO′ −0.0140 −0.0276 −0.0286

ation among the five cases is larger for the isovector channel where there is a factor

of two difference between the larger (-0.0350 for SkP) and the smaller (-0.0165 for

SIII) values. I haven’t made yet any statement concerning the ability of the dif-

ferent Skyrme interactions to reproduce experimental data like the giant resonances

discussed previously. If we go back to Table 2.1, we see that SIII and SkP give the

extremes for the peak energies of the lower component of the isoscalar E1 resonance:

11.6 MeV and 10.0 MeV, respectively. The resonance—which is yet not very well

known experimentally—was measured at 12.2 ± 0.6 MeV [Dav97]. So, it looks that

SIII does the best job in fitting the experimental result. However, SkM?, SLy4, and

SkO′ seem to be pretty consistent on the results they provide for this class of diagrams:

the spread in the results is never larger than a factor of 1.2.

70

Figure 3.12: Class–B diagram with core polarization in the RPA. The filled bubble repre-
sents an infinite sum of diagrams like the ones in Figure 3.10.
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k l

c

diag–B2 with RPA

When compared to the HF calculations (see Table 3.3), the inclusion of the RPA

effects reduce the strength of the first by as much as a factor of five. This is a con-

siderably large effect. However, it is easily explained by the suppression of the Schiff–

strength distributions we addressed in Section 2.2.4. By looking at Figure 2.4, we see

that when RPA effects are included to describe the inverse–energy–weighted Schiff–

strength distributions in even–nuclei, the overall effect is to reduce these strengths by

a factor of order unity.

For class–B diagrams (see Figure 3.12), the RPA effects were included only on

diagrams B–1, B–2, B–4 and B–5. This is because diagrams B–3 and B–6 are much

smaller in size than the other four. Even if these effects are not as large as in class–A,

I expect that diagrams B–3 and B–6 will remain much smaller than the others. The

diagram rules of Appendix C.1 allow us to write

〈Ψv|Sz|Ψv〉diag−B1 = −2
∑

λ

∑

ik>F

∑

cl<F

〈vc|W |ic〉Zλ∗
kl 〈il|F |vk〉Zλ

kl〈k|Sz|l〉 ×

× (εv − εi)
−1ε−1

n δmvjv , (3.30)

〈Ψv|Sz|Ψv〉diag−B2 = −2
∑

λ

∑

ik>F

∑

cl<F

〈vc|W |ic〉Zλ∗
kl 〈il|F |vk〉Zλ

kl〈k|Sz|l〉 ×

× (εv − εi)
−1(εn − εv + εi)

−1δmvjv ,

The inclusion of core–polarization effects in class–C diagrams is more subtle. Be-

cause the weak tadpole is attached to one of the lines in the particle–hole bubble, the

71

v = last neutron Blob = core-particle

× = Schiff operator ring sum

Looped line = Vstrong

Sawtooth = VPT
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Results

〈S〉Hg ≡ a0 gg0 + a1 gg1 + a2 gg2 (e fm3)

a0 a1 a2
SkM? 0.009 0.070 0.022

SkP 0.002 0.065 0.011

SIII 0.010 0.057 0.025

SLy4 0.003 0.090 0.013

SkO′ 0.010 0.074 0.018

Dmitriev & Senkov RPA 0.0004 0.055 0.009

Range of variation here doesn’t look too bad. But these
calculations are not the end of the story. . .



Deformation and Angular-Momentum Restoration
If deformed state |ΨK〉 has good intr. Jz = K, one averages over angles
to get:

|J,M〉 = 2J+ 1

8π2

∫
dΩDJ∗MK(Ω)R(Ω) |ΨK〉

Matrix elements (with more detailed notation):

〈J,M|Sm |J ′,M ′〉 ∝
∫ ∫∑

n

dΩdΩ ′ × (some D-functions)

× 〈ΨK|R−1(Ω ′)Sn R(Ω) |ΨK〉
rigid defm.−−−−−−→
Ω≈Ω ′

(Geometric factor)× 〈ΨK|Sz|ΨK〉︸ ︷︷ ︸
〈S〉intr.For expectation value in J = 1

2 state:

〈S〉 = 〈Sz〉J= 1
2 ,M= 1

2
=⇒
{
〈S〉intr. spherical nucleus
1
3 〈S〉intr. rigidly deformed nucleus

Exact answer somewhere in between.



Deformed Mean-Field Calculation Directly in 199Hg
Deformation actually small and soft — perhaps worst case scenario
for mean-field. But in heavy odd nuclei, that’s the best that has
been done1. VPT included nonperturbatively and calculation done
in one step. Includes more physics than RPA (deformation), plus
economy of approach. Otherwise should be more or less
equivalent.

 0  1  2  3  4  5r⊥   (fm)  0
 1

 2
 3

 4
 5

z  (fm)-4

-2

 0

 2

 4

 6

δ 
ρ p

  (
ar

b.
)

Oscillating PT-odd
density distribution
indicates delicate
Schiff moment.

1Has some “issues”: doen’t get ground-state spin correct, limited for now to axially-
symmetric minima, which are sometimes a little unstable, true minimum probably not axially
symmetric . . .



Results of “Direct” Calculation

Like before, use a number of Skyrme functionals:

Egs β Eexc. a0 a1 a2

SLy4 HF -1561.42 -0.13 0.97 0.013 -0.006 0.022

SIII HF -1562.63 -0.11 0 0.012 0.005 0.016

SV HF -1556.43 -0.11 0.68 0.009 -0.0001 0.016

SLy4 HFB -1560.21 -0.10 0.83 0.013 -0.006 0.024

SkM* HFB -1564.03 0 0.82 0.041 -0.027 0.069

Fav. RPA QRPA — — — 0.010 0.074 0.018

Hmm. . .



What to Do About Discrepancy

Revisit/recheck existing calculations.

Try intermediate calculation: effects of odd neutron treated
directly in deformed mean-field approximation (like in the
second calculation) but effects of VPT treated in linear
response (like in the first).

Improve treatment further:
Variation after projection
Triaxial deformation

Ultimate goal: mixing of many mean fields, aka “generator
coordinates”

Still a ways off because of difficulties marrying generator
coordinates to density functionals.
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Schiff Moment with Octupole Deformation
Here we treat always VPT as explicit
perturbation:

〈S〉 =
∑
m

〈0|S |m〉 〈m|VPT |0〉
E0 − Em

+ c.c.

where |0〉 is unperturbed ground state.
Calculated 225Ra density

Ground state has nearly-degenerate partner |0〉 with same
opposite parity and same intrinsic structure, so:

〈S〉 −→ 〈0|S |0〉 〈0|VPT |0〉
E0 − E0

+ c.c. ∝ 〈S〉intr. 〈VPT 〉intr.
E0 − E0

Why is this? See next slide.

〈S〉 is large because 〈S〉intr. is collective and E0 − E0 is small.
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A Little on Parity Doublets
When intrinsic state | 〉 is asymmetric, it breaks parity.

In the same way we get good J, we average over orientations to get
states with good parity:

|±〉 = 1√
2

(
| 〉 ± | 〉

)

These are nearly degenerate if deformation is rigid. So with
|0〉 = |+〉 and |0〉 = |−〉, we get

〈S〉 ≈ 〈0|Sz |0〉 〈0|VPT |0〉
E0 − E0

+ c.c.

And in the rigid-deformation limit

〈0|O|0〉 ∝ 〈 |O| 〉= 〈O〉intr.

again like angular momentum.
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Spectrum of 225Ra
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Fig. 5. Proposed grcxxping of the low-lying states OF 2zSRa into rotation& bands. T’ke two members of 
tke f? = $- band have been reported in a study of the ‘%?r decay 2oj; they are not observed in the 

present study. 

of the favored K * = z* band. (We have chosen to show in fig. 4 the M 1 multipolarity 
for the 134 keV y so that this apparent con%& in the data will not be overlooked 
by the reader.) 

Definitive I” assignments for the remaining levels above 236 keV are difficult to 
make fram the available data, although the y-ray multipolarities and o-transition 
hindrance factors provide at least some insight. Again, the low value (23) of the 
hindrance factor of the rw-transition to the 394.7 keV Ievel is quite interesting, but 
no definite conclusion can be drawn regarding the I” assignment of this fevei. 

Parity doublet|0〉

|0〉



225Ra Results

Hartree-Fock calculation with our favorite interaction SkO’ gives

〈S〉Ra = −1.5 gg0 + 6.0 gg1 − 4.0 gg2 (e fm3)

Larger by over 100 than in 199Hg!

Variation a factor of 2 or 3. But, as you’ll see, we should be able to
do better!



Current “Assessment” of Uncertainties

Judgment in 2013 review article (based on spread in reasonable
calculations):

Nucl. Best value Range

a0 a1 a2 a0 a1 a2

199Hg 0.01 ±0.02 0.02 0.005 – 0.05 -0.03 – +0.09 0.01 – 0.06

129Xe -0.008 -0.006 -0.009 -0.005 – -0.05 -0.003 – -0.05 -0.005 – -0.1

225Ra -1.5 6.0 -4.0 -1 – -6 4 — 24 -3 – -15

Uncertainties pretty large, particularly for a1 in 199Hg (range
includes zero). How can we reduce them?



Reducing Uncertainty: Hg

Improving many-body theory to handle soft deformation, though
probably necessary, is tough. But can also try to optimize density
functional.
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Isoscalar dipole operator contains
r2z just like Schiff operator. Can
see how well functionals
reproduce measured
distributions, e.g. in 208Pb.



More on Reducing Uncertainty in Hg

VPT probes spin density;
functional should have good
spin response. Can adjust
relevant terms in, e.g. SkO’, to
Gamow-Teller resonance
energies and strengths.

More generally, examine correlations between Schiff moment and
lots of other observables.



Reducing Uncertainty: Ra

Important new developments here.
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More on Reducing Uncertainty in Ra
What about matrix element of VPT ?

In one-body approximation

VPT ≈ ~σ · ~∇ρ .

The closest simple one body operator is

OAC = ~σ ·~r .

Q: Can we measure 〈0|OAC |O〉 or something like it?

Doesn’t occur in electron scattering, but does occurs in weak
neutral current. Neutrino scattering on Ra?



The Future
Calculations have become sophisticated, but we still have a lot of
work to do.

In the near future, that work involve nuclear DFT.

In Hg, need to decide which, if either, a1 is correct and
eventually account for “softness” of nucleus.

And need correlation analysis, good proxies for Schiff
distributions (e.g. isoscalar dipole distribution), VPT distribution.

In ocutpole-deformed nuclei, improved techniques probably
won’t change things drastically.

But again, need correlation analysis. Have good proxy for
〈S〉int., need one for 〈VPT 〉int..

THE END.
Thanks for your kind attention.
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