\mathcal{P}, \mathcal{T} -Odd Interactions in Atoms and Molecules

Timo Fleig

Département de Physique LCPQ, I.R.S.A.M.C. Université Paul Sabatier Toulouse III France

May 11, 2017

Outline

- Relativistic many-body methods
- Atomic EDMs : Hg and TI
- $\bullet\,$ Molecular EDMs : HfF^+ and TaO^+

Outline

- Relativistic many-body methods
- Atomic EDMs : Hg and TI
- $\bullet\,$ Molecular EDMs : HfF^+ and TaO^+

Atomic and Molecular Correlated Wavefunctions

- Solve relativistic equation of motion (yields wavefunctions)
- Dirac-Coulomb Hamiltonian operator (molecules)

$$\hat{H}^{DC} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} + \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{A,B>A}^{N} V_{AB}$$

- Dirac-Coulomb-Gaunt Hamiltonian operator (molecules) $\hat{H}^{DCG} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} + \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \left(\frac{1}{r_{ij}} \mathbb{1}_{4} - \frac{1}{2} \frac{\vec{\alpha}_{i} \vec{\alpha}_{j}}{r_{ij}} \right) + \sum_{A,B>A}^{N} V_{AB}$
- Dirac-Coulomb Hamiltonian + external electric field (atoms) $\hat{H}^{\text{Dirac-Coulomb}} + \hat{H}^{\text{Int-Dipole}} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} + \frac{Z}{r_{i}} \mathbb{1}_{4} \right] + \sum_{i,j>j}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{i}^{n} \mathbf{r}_{i} \cdot \mathbf{E}_{\text{ext}} \mathbb{1}_{4}$

Atomic and Molecular Correlated Wavefunction

• All-electron Dirac-Coulomb Hartree-Fock (DC(G)HF) calculation set of time-reversal paired 4-spinors $\hat{K}\varphi_i = \varphi_{\bar{i}}$ and $\hat{K}\varphi_{\bar{i}} = -\varphi_i$

$$\hat{K}(n) := e^{-\frac{i}{2}\pi \left(\sum_{j=1}^{n} \boldsymbol{\sigma} \otimes \mathbb{1}_{2}(j)\right) \cdot \vec{e}_{y}} \prod_{j=1}^{n} \hat{K}_{0}(j)$$

• Expansion and variation¹ in *n*-electron sector of Fock space

 $|\psi_k\rangle = \sum_{I=1}^{\dim \mathcal{F}^{t}(M,n)} c_{kI} \left(\mathcal{S}\overline{\mathcal{T}} \right)_{I} | \rangle \qquad \text{unbarred (Kramers up) string } \mathcal{S} = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots \\ \text{barred (Kramers down) string } \overline{\mathcal{S}} = a_{\overline{l}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots$

Linear expansion: Configuration Interaction

Exponential expansion: Coupled Cluster

¹S. Knecht, H.J.Aa. Jensen, T.F., *J Chem Phys* **132** (2010) *014108*

\mathcal{P} , $\mathcal{T}\text{-}odd$ Property Calculations

using correlated wavefunctions

Expectation values over relativistic Configuration Interaction wavefunctions² $\left\langle \hat{H}' \right\rangle_{\psi_{k}^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^{t}(M,n)} c_{kI}^{*} c_{kJ} \left\langle \left| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{I}^{\dagger} \right| \hat{H}' \right| (\mathcal{S}\overline{\mathcal{T}})_{J} \right| \right\rangle$

Property operator in basis of Kramers-paired molecular spinors

$$\hat{H}' = \sum_{p,q=1}^{P_u} h'_{pq} a_p^{\dagger} a_q + \sum_{p=1}^{P_u} \sum_{q=P_u+1}^{P} h'_{p\overline{q}} a_p^{\dagger} a_{\overline{q}} + \sum_{p=P_u+1}^{P} \sum_{q=1}^{P_u} h'_{\overline{p}q} a_{\overline{p}}^{\dagger} a_q + \sum_{p,q=P_u+1}^{P} h'_{\overline{p}\overline{q}} a_{\overline{p}}^{\dagger} a_{\overline{q}}$$

First-term contribution to expectation value

$$W'(\Psi_k)_1 = \sum_{\substack{I,J=1\\I,J=1}}^{\dim \mathcal{F}^{\mathsf{t}}(\mathbf{P},\mathbf{N})} c_{kI}^* c_{kJ} \sum_{\substack{m,n=1\\m,n=1}}^{P_u} h_{mn}^M$$
$$\begin{pmatrix} N_p \in \mathcal{S}_I \ N_p \in \mathcal{S}_I + N_{\overline{p}} \in \overline{\mathcal{T}}_I \\ \langle \mid \prod_{p=1}^{N_p \in \mathcal{S}_I} \prod_{\overline{p}=N_p+1}^{N_p \in \overline{\mathcal{T}}_I} a_{\overline{p}} a_p \ a_m^{\dagger} a_n \prod_{q=1}^{N_p \in \mathcal{S}_J} N_p \in \mathcal{S}_J + N_{\overline{p}} \in \overline{\mathcal{T}}_J \\ \prod_{p=1}^{T_p \in N_p+1} a_q^{\dagger} a_{\overline{q}}^{\dagger} \mid \rangle$$

² S. Knecht, Dissertation, HHU Düsseldorf 2009

Generalized Active Spaces

Parameterization of the correlated wavefunction

# o	f Kramers pairs	accumulated # of electrons min. max.
Virtual	81	20 20
Hg: 6p 7s 7p 6d 8p 8s 9p 9s 10p 10s	24	20-р 20
Hg: 6s 5d	6	20–(m+n) 20
Hg : 5s 5p	4	8-m 8
Frozen core	(34)	Best model: m=1,n=2,p=2

Low-Energy Probes of New Physics, Mainz, May 11, 2017

Outline

- Relativistic many-body methods
- Atomic EDMs : Hg and TI
- $\bullet\,$ Molecular EDMs : HfF^+ and TaO^+

More Stringent Bounds³

$$\Delta E_{\mathcal{P},\mathcal{T}} = -\langle \mathbf{d}_{\mathsf{sys}} \cdot \mathbf{E}_{\mathsf{ext}} \rangle$$
$$= \frac{1}{2} \left(\alpha_{d_e} \, d_e + \alpha_{C_S} \, C_S \right) \, \langle \mathbf{n} \cdot \mathbf{z} \rangle \, (E_{\mathsf{ext}})$$

- Diamagnetic systems (probably) give rise to "orthogonal" constraints⁴ $\alpha_{d_e}(\text{Hg}) > 0 \qquad \alpha_{C_S}(\text{Hg}) < 0$
- Yields much more stringent bounds on \mathcal{CP} -violating parameters

³ "Seed Money" Project 2016, M. Jung (Munich), TF

⁴ A. M. Mårtensson-Pendrill and P. Öster, *Phys. Scr.* **36** (1987) 444

⁵M. Jung, A. Pich J. High En. Phys. 5 (2014) 076

Hg EDM

Motivation from BSM scenarios⁶

BSM Model	Relative importance of \mathcal{P}, \mathcal{T} -odd interactions
multi Higgs	$V_S \approx 5 V_P$
	$V_T = 0$
vector/scalar leptoquark	$V_S \approx 5 V_P$
	$V_T = 0$

- \bullet In multi-Higgs BSM V_S and effect due to electron EDM can be equally important
- \Rightarrow Direct calculation of α_{C_S} is of interest

⁶S. M. Barr, *Phys. Rev. D* **45** (1992) *4148*

EDMs in paramagnetic atoms:

Nucleon-electron SPS interaction

- Effective interaction Hamiltonian $\hat{H}_{\text{ne-SPS}}(S) = \frac{iG_F}{\sqrt{2}} AC_S \sum_{e} \gamma_e^0 \gamma_e^5 \rho(\mathbf{r}_e)$
- To first order in perturbation theory

$$\left(\Delta\varepsilon\right)_{J} = \left\langle \imath \frac{G_{F}}{\sqrt{2}} A C_{S} \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \right\rangle_{\psi_{J}^{(1)}}$$

- Atomic EDM is defined as $d_a = -\lim_{E_{\text{ext}} \to 0} \left[\frac{\partial(\Delta \varepsilon)}{\partial E_{\text{ext}}} \right]$
- Definition of an ne-SPS ratio

$$S := \frac{d_a}{AC_S \frac{G_F}{\sqrt{2}}}$$

• from which follows

$$S = -\lim_{E_{\text{ext}}\to 0} \left[\frac{\partial}{\partial E_{\text{ext}}} \left\langle i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \right\rangle_{\psi_{J}^{(1)}(E_{\text{ext}})} \right]$$

 ψ_J : atomic many-particle state

$\mathcal{P}, \mathcal{T}\text{-}\text{odd}$ Effects in Closed-Shell States ?

- Atomic electronic state in $E_{\text{ext}} \neq 0$: $|M_J\rangle$
- In the closed-shell subcase ($p_{1/2}^2 \neq$ closed shell) it follows: $|M_S=0\rangle$
- Then it is straightfoward to show that $\langle M_S = 0 | \sum_j \gamma^0(j) \Sigma_3(j) E_3 | M_S = 0 \rangle = 0$ and $\langle M_S = 0 | \sum_j \gamma^0(j) \Sigma_{\pm}(j) E_{\pm} | M_S = 0 \rangle = 0$
- The electron EDM Hamiltonian can be reformulated as $-\left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \mathbf{\Sigma}_{j} \cdot \mathbf{E}_{j} \right\rangle_{\psi^{(0)}} \approx \frac{2ic}{e\hbar} \left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \gamma_{j}^{5} \vec{p}_{j}^{2} \right\rangle_{\psi^{(0)}}$
- which has the same transformation properties as the ne-SPS Hamiltonian.
- No \mathcal{P}, \mathcal{T} -odd effects in closed-shell states (in $E_{\text{ext}} \neq 0$).

Magnetic-Hyperfine Perturbed (Atomic) States

- Basis: Cl eigenstates $\left\{ \left| \psi_{K}^{(0)} \right\rangle \right\}$ of $\hat{H}^{(0)} := \hat{H}^{\text{Dirac-Coulomb}} + \sum_{j} \hat{\mathbf{r}}_{j} \cdot \mathbf{E}_{\text{ext}} \mathbb{1}_{4}$
- We take the hyperfine-perturbed electronic wavefunction to first order: $\left|\psi_{J}^{(1)}\right\rangle = \left|\psi_{J}^{(0)}\right\rangle + \sum_{K \neq J} \frac{\left\langle\psi_{K}^{(0)} \middle| \hat{H}_{\mathsf{HF}}^{(1)} \middle| \psi_{J}^{(0)}\right\rangle}{\varepsilon_{L}^{(0)} - \varepsilon_{K}^{(0)}} \left|\psi_{K}^{(0)}\right\rangle$

• where for nucleus A in atomic units:⁷ $\hat{H}_{HF}^{(1)} = \frac{g m_e}{2c I m_p} \sum_{k=1}^{3} \sum_{i=1}^{n} \left(\frac{\alpha_i \times r_{iA}}{r_{iA}^3}\right)_k$ g: nuclear g-factor for isotope ${}^A X$

- *I*: nuclear spin quantum number
- In the following, we exploit rotational invariance: $\hat{R}^{\dagger}_{SU(2)} \imath \gamma^{0} \gamma^{5} \boldsymbol{p}^{2}(\rho(\boldsymbol{r})) \hat{R}_{SU(2)} = \imath \gamma^{0} \gamma^{5} \boldsymbol{p}^{2}(\rho(\boldsymbol{r})) \text{ with }$ $\hat{R}_{SU(2)} = e^{\imath \boldsymbol{\Theta} \cdot \left(\hat{\boldsymbol{L}} + \hat{\boldsymbol{S}}\right)}$

⁷TF and M.K. Nayak, *J. Mol. Spectrosc.* **300** (2014) *16*

The first direct calculation⁸ of α_{C_S} for a **diamagnetic atom**

$$\begin{split} S &:= -\frac{\left\langle i \sum_{J} \gamma_{J}^{0} \gamma_{J}^{5} \rho_{N}(\mathbf{r}_{J}) \right\rangle_{\Psi}}{E_{\text{ext}}} \qquad \alpha_{C_{S}} = S \, A \frac{G_{F}}{\sqrt{2}} \\ W_{c} &= \frac{1}{\left\langle \psi_{J}^{(1)} \middle| \psi_{J}^{(1)} \right\rangle} \left\langle \psi_{J}^{(1)} \middle| i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \middle| \psi_{J}^{(1)} \right\rangle \\ &= \frac{1}{\left\langle \psi_{J}^{(1)} \middle| \psi_{J}^{(1)} \right\rangle} \left[\left\langle \psi_{J}^{(0)} \middle| i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \middle| \psi_{J}^{(0)} \right\rangle \\ &+ \sum_{K \neq J} \frac{\left\langle \psi_{K}^{(0)} \middle| \hat{H}_{\text{HF}}^{(1)} \middle| \psi_{J}^{(0)} \right\rangle}{\varepsilon_{J}^{(0)} - \varepsilon_{K}^{(0)}} \left\langle \psi_{J}^{(0)} \middle| i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \middle| \psi_{K}^{(0)} \right\rangle \\ &+ \sum_{K \neq J} \frac{\left\langle \psi_{J}^{(0)} \middle| \hat{H}_{\text{HF}}^{(1)} \middle| \psi_{K}^{(0)} \right\rangle}{\varepsilon_{J}^{(0)} - \varepsilon_{K}^{(0)}} \left\langle \psi_{K}^{(0)} \middle| i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \middle| \psi_{J}^{(0)} \right\rangle \\ &+ \sum_{K,L \neq J} \frac{\left\langle \psi_{K}^{(0)} \middle| \hat{H}_{\text{HF}}^{(1)} \middle| \psi_{J}^{(0)} \right\rangle}{\left(\varepsilon_{J}^{(0)} - \varepsilon_{K}^{(0)} \right) \left(\varepsilon_{J}^{(0)} - \varepsilon_{L}^{(0)} \right)} \left\langle \psi_{L}^{(0)} \middle| i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \middle| \psi_{K}^{(0)} \right\rangle \right] \end{split}$$

⁸TF, unpublished work.

Hg excited-state energies

ψ model : cvTZ/6p7s7p6d8p8s9p9s10p10sSDT12_SD12_50au

Excited state	configuration	theory $[\mathrm{cm}^{-1}]$	experiment ⁹ $[cm^{-1}]$
$^{-3}P_{0}$	$5d^{10}6s6p$	36229	37645
${}^{3}P_{1}$	$5d^{10}6s6p$	38050	39412
${}^{3}P_{2}$	$5d^{10}6s6p$	42619	44043
${}^{1}P_{1}$	$5d^{10}6s6p$	54299	54069
$^{3}{S}_{1}$	$5d^{10}6s7s$	67310	62350
•••		• • •	• • •
3P_0	$5d^{10}6s7p$	74279	$\boldsymbol{69517}$
••••	•••	• • •	• • •
${}^{3}P_{0}$	$5d^{10}6s8p$		76447

Mean deviation: $\approx 6.2\%$

⁹A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD team *NIST Atomic Spectra Database* (2015) *173001*

Hg excited-state energies

- Symmetry interplay in ME product: $\left\langle \psi_{k}^{(0)} \middle| \hat{H}_{\text{HF}}^{(1)} \middle| \psi_{j}^{(0)} \right\rangle \left\langle \psi_{j}^{(0)} \middle| \imath \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \middle| \psi_{k}^{(0)} \right\rangle$
- ³ P_0 and $M_J = 0$ components of ³ S_1 strongest contributors Scenario 1: $\left\langle \psi_k^{(0)} \middle| \hat{H}_{\mathsf{HF}}^{(1)} \middle| \psi_j^{(0)} \right\rangle$ large, $\left\langle \psi_j^{(0)} \middle| \imath \sum_e \gamma_e^0 \gamma_e^5 \rho(\mathbf{r}_e) \middle| \psi_k^{(0)} \right\rangle$ small ³ S_1 contribution Scenario 2: $\left\langle \psi_k^{(0)} \middle| \hat{H}_{\mathsf{HF}}^{(1)} \middle| \psi_j^{(0)} \right\rangle$ small, $\left\langle \psi_j^{(0)} \middle| \imath \sum_e \gamma_e^0 \gamma_e^5 \rho(\mathbf{r}_e) \middle| \psi_k^{(0)} \right\rangle$ large ³ P_0 contribution

Atomic off-diagonal Hyperfine MEs

Low-Energy Probes of New Physics, Mainz, May 11, 2017

Hg ne-SPS ratio via magnetic hyperfine interaction

Basis/cutoff	$\# M_J = 0/\# $ el./X	M. d. [%]	$W_c \ [10^{-6} \ {\it a.u.}]$	$S \; [10^{-2} \; {\it a.u.}]$	$lpha_{C_S} \ [10^{-22} e \; { m cm}]$
DZ/150 au.	4/12/6p7d		7.88	-3.26	-5.39
DZ/150 au.	16/12/6p7d		5.55	-2.31	-3.82
TZ/50 au.	4/12/6p7s	8.4	-9.46	3.94	6.53
TZ/50 au.	6/12/6p7s7p	6.1	-2.45	1.02	1.69
TZ/50 au.	12/12/6p7s7p	6.1	5.01	-2.09	-3.46
TZ/50 au.	12/20/6p7s7p		5.1	-2.1	-3.5
TZ/50 au.	12/12/6p8s	5.4	5.3	-2.2	-3.7
TZ/50 au.	29/12/6p10s	6.2	5.3	-2.2	-3.7

• Among > 100 singly-excited states $(M_J = 0)$ one more non-negligible contribution: ${}^3P_0(5d^{10}6s8p)$

• Trend: α_{C_S} will drop on the absolute

ne-SPS Interaction Ratio in Hg

Method	Ref.	$\alpha_{C_S}[10^{-22}e\mathrm{cm}]$
CI+MBPT	[dzuba_flambaum ¹⁰]	(-5.1)
MCDHF	[Radziute ¹¹]	(-5.5)
PRCC	[Latha ¹²]	(-4.3)
$\mathrm{CCSD}_{\mathrm{p}}\mathrm{T}(+)$	[Singh ¹³]	(-4.4)
$\mathrm{CCSD}_{\mathrm{p}}^{\mathrm{-}}\mathrm{T}(+)$	[B. K. Sahoo ¹⁴]	(-3.2)
Chupp <i>et al.</i> ¹⁵ (est.)		(-5.9)
Engel $et \ al.^{16}$ (est.)		(-8.12)
This work		-3.7

Rough estimate for high-lying state: $+1.7 [10^{-22} e \text{ cm}]$ (uncertainty 50%)

Current result $\alpha_{C_S} = -2.0$ [10⁻²²e cm], uncertainty of 35%

¹⁰ Phys. Rev. A 80 (2009) 032120
¹¹ Phys. Rev. A 90 (2014) 012528
¹² Phys. Rev. Lett. 103 (2009) 083001
¹³ Phys. Rev. A 91 (2015) 030501
¹⁴ (2016)
¹⁵ Phys. Rev. C 91 (2015) 035502
¹⁶ Prog. Part. Nuc. Phys. 71 (2013) 21

TI EDM

Leading contributions to EDM of a paramagnetic atom

$d_a = R d_e + lpha_{C_S} C_S \qquad \qquad lpha_{C_S} = S A rac{G_F}{\sqrt{2}}$		
Enhancement factor and S ratio:		
$R := \frac{\left\langle \sum_{j} \gamma_{j}^{0} \Sigma_{j} \cdot \mathbf{E}_{j} \right\rangle_{\Psi}}{E_{\text{ext}}} \qquad \qquad S := -\frac{\left\langle i \sum_{j} \gamma_{j}^{0} \gamma_{j}^{5} \rho_{N}(\mathbf{r}_{j}) \right\rangle_{\Psi}}{E_{\text{ext}}}$	$_{j}) ightarrow _{\Psi}$	
Model for TI atom	R	S [a.u.]
vDZ/SD18_CAS_3in4_SDT21/10au	-473	-331
vDZ/SD18_CAS_3in4_SDT21/20au	-479	-335
vDZ/SD8_SDT10_CAS_3in4_SDT21/10au	-471	-331
vDZ/SD10_SDT8_CAS3in4_SDTQ21/10au	≈ -480	
vDZ/SD18_CAS_3in4_SDTQ21/10au	-469	-329
vTZ/SD18_CAS_3in4_SDT21/10au	-542	-383
vTZ/SD18_CAS_3in4_SDT21/20au	-541	-383
vQZ/SD18_CAS_3in4_SDT21/10au	-555	-391
Literature values		
Porsev et al., Phys. Rev. Lett. 108 (2012) 173001	-573	-411
Nataraj et al., Phys. Rev. Lett. 106 (2011) 200403	-470	
Dzuba et al., Phys. Rev. A 80 (2009) 062509	-582	
Liu et al., Phys. Rev. A 45 (1992) R4210	-585	

Outline

- Relativistic many-body methods
- Atomic EDMs : Hg and TI
- \bullet Molecular EDMs : HfF^+ and TaO^+

Electron EDM Interaction

 $d_e = \frac{\Delta \epsilon}{E_{\text{off}}} \begin{array}{c} (\text{Experiment}) \\ (\text{Theory}) \end{array}$

Single-particle \mathcal{P} - and \mathcal{T} -odd eEDM Hamiltonian¹⁷: $\hat{H}_{\text{EDM}} = -\frac{d_e}{4} \gamma^0 \gamma^5 \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu}\right) F_{\mu\nu} = -d_e \gamma^0 \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B}\right]$ Internal electric field contributions

$$\mathbf{E}_{\text{int}}(i) = \sum_{A=1}^{N} \frac{Ze \ (\vec{r_i} - \vec{r_A})}{||\vec{r_i} - \vec{r_A}||^3} - \sum_{j=1}^{n} \frac{e \ (\vec{r_i} - \vec{r_j})}{||\vec{r_i} - \vec{r_j}||^3}$$

Expectation value in many-body system in accord with stratagem II^{18}

$$-\left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \mathbf{\Sigma}_{j} \cdot \mathbf{E}_{j} \right\rangle_{\psi^{(0)}} \approx \frac{2ic}{e\hbar} \left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \gamma_{j}^{5} \vec{p}_{j}^{2} \right\rangle_{\psi^{(0)}} := E_{\text{eff}}$$

¹⁷E. Salpeter, *Phys Rev* **112** (1958) *1642*

¹⁸E. Lindroth, E. Lynn, P.G.H. Sandars, J Phys B: At Mol Opt Phys 22 (1989) 559

\mathcal{P} , $\mathcal{T}\text{-}odd$ Properties as Expectation Values

Interaction constants for n-electron system

• Electron eEDM interaction constant

 $W_d := \frac{2ic}{\Omega e\hbar} \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \vec{p}_j^2 \right\rangle_{\psi_k^{(0)}}$

$$\left\langle \hat{H}_{\mathsf{eEDM}} \right\rangle = d_e \, \Omega \, W_d$$

• S-PS nucleon-electron interaction constant

 $W_{\mathcal{S}} := \frac{i}{\Omega} \frac{G_F}{\sqrt{2}} A \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \rho_N(\vec{r}_j) \right\rangle_{\psi_k^{(0)}}$

$$\left\langle \hat{H}_{\text{en-S-PS}} \right\rangle = k_s \,\Omega \, W_{\mathcal{S}}$$

• Nuclear magnetic quadrupole - electronic magnetic field interaction

$$W_M = \frac{3}{2\Omega} \left\langle \sum_{j=1}^n \left(\frac{\boldsymbol{\alpha}_j \times \mathbf{r}_{jA}}{r_{jA}^5} \right)_z (r_{jA})_z \right\rangle_{\psi_k^{(0)}}$$

HfF⁺ Electronic Structure and EDM Interaction Constant

GAS-CI definitions

HfF⁺ electronic states and spectroscopic constants

	R_{e} [a.u.]			$\omega_e ~[{ m cm}^{-1}]$				
Model	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$
CAS-CI(10)	3.400	3.436	3.434	3.431	796	774	775	778
MR-CISD(10)	3.506	3.558	3.557	3.552	656	643	643	644
MR-CISD+T(10)	3.510	3.560			654	643		
MR-CISD(20)	3.401	3.438	3.437	3.434	800	768	769	772
Experiment ¹⁹					790.76	760.9		
Experiment ²⁰	3.374	3.407			791.2	761.3	762.3	761.5

^sK. Cossel et al., Chem. Phys. Lett. **546** (2012) 1

^tB.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

HfF⁺ **spectroscopy**; **excitation energies**

		T_{e} [c	m^{-1}]		${\sf T}_v^{3.4[{ m a.u}]}$	$[cm^{-1}]$
Model	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$	$\Omega = 0$	$\Omega = 1$
CAS-CI(10)	1543	0	1058	2480	1488	0
MR-CISD(10)	65	0	1007	2487	0	358
MR-CISD+T(10)	0	25			0	442
MR-CISD(20)	0	387	1521	3166	0	451
MR-CISD+T(20)					0	679
Experiment ²¹	0	993	2166	3951		

- Active-space triples correction gives important contribution.
- Estimated MR-CISD+T(20) value for $T_e \approx 1180 \text{ cm}^{-1}(\Omega = 1)$
- Ongoing investigation of full PECs, transition dipole moments, and vibrational states

²¹B.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

HfF⁺: E_{eff} in the $\Omega = 1$ science state²²

Model	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$
CAS-CI(10)	24.1
MR-CISD(10)	22.4
MR-CISD(20)	23.3
MR-CISD+T(20)	23.7
MR-CISD(34)	22.9
MR-CISD(34)+T	23.3
Estimate, Meyer et al. ²³	≈ 30
$20 e^-$ corr., Petrov et al. ²⁴	24.2

(+) All-electron calculation

- (+) No configuration selection
- (+) Spinors as one-particle basis functions
- (+) Dirac-Coulomb Hamiltonian

- (-) Basis-set incompleteness
 - \rightarrow vQZ corrections
- (-) Higher excitations
 - \rightarrow CC expectation values

²²T. Fleig and M. K. Nayak, *Phys Rev A* **88** (2013) *032514*

²³E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

²⁴A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

The eEDM in a molecular framework

 $\left<\hat{H}_{
m edm}
ight>_{\psi_{\Omega=1}}$ as a function of R

Low-Energy Probes of New Physics, Mainz, May 11, 2017

HfF⁺: E_{eff} in the $\Omega = 1$ science state²⁵

CI Wavefunction model	$W_M \; [\frac{10^{33} \text{Hz}}{e \text{cm}^2}]$	$G_{ }$ [a.u.]	au [s]	$W_S \; [{\sf kHz}]$
vTZ/MR_{12} -CISD(20)	0.493	0.01274	2.679	20.0

Latest measurement from JILA group²⁶

PT-violating frequency shift $\Delta f = (0.1 \pm 0.87 \text{stat} \pm 0.20 \text{syst}) \text{ mHz}$ Using $E_{\text{eff}} = 23.3 \left[\frac{\text{GV}}{\text{cm}}\right] \Rightarrow d_e = (0.9 \pm 7.7 \text{stat} \pm 1.7 \text{syst}) \times 10^{-29} e \text{ cm}.$ Resulting 90% confidence limit: $d_e < 1.3 \times 10^{-28} e \text{ cm}$

²⁵M. Denis and T. Fleig, (2017) *in preparation*

²⁶Private communication (2017), W. Cairncross, J. Ye, E. A. Cornell, *et al.*

TaO⁺: Prospective system for EDM measurement²⁷

$^{2S+1}\Lambda_{\Omega}$	$\lambda^o_{n\ell(\omega)_{Atom}}, \omega = m_j , o$: occupation	$R_e\ [{\sf a.u.}]$	$\omega_e [\mathrm{cm}^{-1}]$	$B_e \ [\mathrm{cm}^{-1}]$	$T_e \ [\mathrm{cm}^{-1}]$
$^{3}\Delta_{1}$	88% $\sigma_{6s(1/2)_{T_2}}^1 \delta_{5d(3/2)_{T_2}}^1$	3.161	1091	0.410	0
$^{3}\Delta_{2}$	59% $\sigma_{6s(1/2)_{Ta}}^1 \delta_{5d(3/2)_{Ta}}^1$, 29% $\sigma_{6s(1/2)_{Ta}}^1 \delta_{5d(5/2)_{Ta}}^1$	3.160	1092	0.410	1318
$^{3}\Delta_{3}$	88% $\sigma_{6s(1/2)_{Ta}}^1 \delta_{5d(5/2)_{Ta}}^1$	3.160	1093	0.410	3270
$^{1}\Sigma_{0}^{+}$	52% $\sigma_{6s(1/2)_{Ta}}^2$, 32% $\delta_{5d(3/2)_{Ta}}^2$, 2% $\delta_{5d(5/2)_{Ta}}^2$	3.165	1086	0.409	3759
${}^{3}\Sigma_{0}^{+}$	$12\% \sigma_{6s(1/2)_{Ta}}^2$, 40% $\delta_{5d(3/2)_{Ta}}^2$, 35% $\delta_{5d(5/2)_{Ta}}^2$	3.170	1071	0.408	8265
$^{3}\Sigma_{1}^{+}$	88% $\delta^1_{5d(3/2)_{Ta}}\delta^1_{5d(5/2)_{Ta}}$	3.174	1061	0.407	8409
$^{1}\Delta_{2}$	$27\% \sigma_{6s(1/2)}^{1} \sigma_{5d(3/2)}^{1} \sigma_{5d(3/2)}^{1} \sigma_{6s(1/2)}^{1} \sigma_{5d(5/2)}^{1} \sigma_{5d(5/$	3.149	1101	0.413	11458

- Combines all advantages of ${}^3\Delta_1$ molecules
- Electronic ground state is ${}^{3}\Delta_{1} \Rightarrow$ infinite measurement time

²⁷TF, *Phys Rev A* **95** (2017) *022504*

TaO⁺

Cl Model, R	D [Debye]	$E_{\rm eff} \left[{{\rm GV}\over{ m cm}} ight]$	$A_{ }$ [MHz]	$W_S \; [{\sf kHz}]$	$W_M \; [\frac{10^{33} \text{Hz}}{e \text{cm}^2}]$	$G_{ }$ [a.u.]
$MR_{12}^{+T} extsf{-}CISD(10)$, 3.1 a $_0$	-3.91	17.6	-4537	15.7	0.38	0.0024
$MR_{12}^{+T} extsf{-}CISD(18)$, 3.1 a $_0$	-3.85	20.7	-4593	18.4	0.46	0.0025
$MR_{12}^{+T} extsf{-}CISD(10)$, 3.1609 a $_0$	-4.08	17.0	-4492	15.1	0.37	0.0030
$MR_{12}^{+T} extsf{-}CISD(18)$, 3.1609 a $_0$	-4.01	20.2	-4544	17.7	0.45	0.0032

Molecular electric dipole moment, EDM effective electric field, magnetic hyperfine interaction constant, scalar-pseudoscalar electron-nucleon interaction constant, nuclear magnetic quadrupole interaction constant and parallel g-tensor component at two internuclear distances R and with two different wavefunction models for the electronic ground state ${}^{3}\Delta_{1}$ ($\Omega = 1$)

- Extremely small magnetic moment in science state
- Favorable ratio $W_d/W_S \Rightarrow$ Potentially stronger constraints

Collaboration and Funding

Malika Denis LCPQ, Toulouse, France

Malaya K. Nayak BARC, Mumbai, India

EDM e⁻DM

