Beyond the Standard Model: The Low & High Energy Interface

M.J. Ramsey-Musolf U Mass Amherst

http://www.physics.umass.edu/acfi/

Collaborators: Carlos Arguelles, Chien-Yi Chen, Xiao-Gang He, Haolin Li, Grigory Ovanesyan, Tao Peng, Peter Winslow

LEPONP Workshop, Mainz May 2017

Outline

- I. The BSM Context
- II. The Dark Portal
- III. The Higgs Portal
- IV. Outlook
- V. Backup: The Neutrino Portal

I. The BSM Context

Fundamental Questions

SHOULD answer

Origin of m_{v}

Low-Energy / High-Energy Interplay

Low-Energy / High-Energy Interplay

Low-Energy / High-Energy Interplay

II. The Dark Portal

The Dark Portal

$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_D$

The Hunt for a Dark Z

The Hunt for a Dark Z

Curtin et al, '14

$$\mathcal{L} \subset -\frac{1}{4} \, \hat{B}_{\mu\nu} \, \hat{B}^{\mu\nu} - \frac{1}{4} \, \hat{Z}_{D\mu\nu} \, \hat{Z}_D^{\mu\nu} + \frac{1}{2} \, \frac{\epsilon}{\cos\theta} \, \hat{Z}_{D\mu\nu} \, \hat{B}^{\mu\nu} + \frac{1}{2} \, m_{D,0}^2 \, \hat{Z}_D^\mu \, \hat{Z}_{D\mu\nu} \, \hat{Z}_D^\mu \, \hat{Z$$

 $V_0(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$

$$\mathcal{L} \subset -\frac{1}{4} \,\hat{B}_{\mu\nu} \,\hat{B}^{\mu\nu} - \frac{1}{4} \,\hat{Z}_{D\mu\nu} \,\hat{Z}_D^{\mu\nu} + \frac{1}{2} \,\frac{\epsilon}{\cos\theta} \,\hat{Z}_{D\mu\nu} \,\hat{B}^{\mu\nu} + \frac{1}{2} \,m_{D,0}^2 \,\hat{Z}_D^\mu \,\hat{Z}_{D\mu}$$

Kinetic Mixing

Mass Mixing

$$V_0(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$$

Higgs Mixing

The Hunt for a Dark Z

The Hunt for a Dark Z

The Hunt for a Dark Z: PVES

24

$$\mathcal{L} \subset -\frac{1}{4} \, \hat{B}_{\mu\nu} \, \hat{B}^{\mu\nu} - \frac{1}{4} \, \hat{Z}_{D\mu\nu} \, \hat{Z}_D^{\mu\nu} + \frac{1}{2} \, \frac{1}{\cos^2 \theta} \, \frac{1}{2} \, \frac{1}{2} \, \frac{1}{\cos^2 \theta} \, \frac{1}{2} \, \frac{1}{$$

$$\frac{\epsilon}{\cos\theta}\,\hat{Z}_{D\mu\nu}\,\hat{B}^{\mu\nu} + \frac{1}{2}\,m_{D,0}^2\,\hat{Z}_D^\mu\,\hat{Z}_{D\mu}$$

Abelian Kinetic Mixing

Non-Abelian Kinetic Mixing

$$\mathcal{O}_{WX}^{(5)} = -rac{eta}{\Lambda} \operatorname{Tr} \left(W_{\mu\nu} \Sigma
ight) X^{\mu
u}$$

$$\Sigma \sim (1,3,0)$$

Non-Abelian Kinetic Mixing

$$\mathcal{O}_{WX}^{(5)} = -\frac{\beta}{\Lambda} \operatorname{Tr} \left(W_{\mu\nu} \Sigma \right) X^{\mu\nu}$$

$$\overset{V^{\mu a}}{\longrightarrow} \overset{\Sigma^{a}}{\longrightarrow} \overset{V^{\mu a}}{\longrightarrow} \overset{V^{\mu a}}{\longrightarrow} \overset{\Sigma^{a}}{\longrightarrow} \overset{\Sigma^{a}}{\longrightarrow} \overset{V^{\mu}}{\longrightarrow} \overset{V^{\mu}}{\to} \overset{V^{\mu}}{\to} \overset{V^{\mu}}{\to} \overset{V^{\mu}}{\to} \overset$$

 $\Sigma \sim (1,3,0)$

 $SU(2)_L \times U(1)_D$ mediators

Non-Abelian Kinetic Mixing

 $SU(2)_L \times U(1)_D$ mediators

Small ε from scale ratio; $\beta \sim O(1)$

Non-Abelian Kinetic Mixing

 $SU(2)_L \times U(1)_D$ mediators

Small ε from scale ratio; $\beta \sim O(1)$

All pheno except W-X mixing not ε suppressed

Non-Abelian Mechanism: Production

Pair production O_{WX} production \downarrow^{l+} l^{+} \downarrow^{l+} l^{+} \downarrow^{l+} l^{+} \downarrow^{l+} l^{+} \downarrow^{l+} \downarrow^{l+} <t

Non-Abelian Mechanism: Decay

Pair production O_{WX} production \downarrow^{l+} \downarrow^{r+} \downarrow^{l+} \downarrow^{l+} \downarrow^{r-} \downarrow^{l+} \downarrow^{l+}

 $\Gamma (H^+ \rightarrow SM) : \varepsilon$ dependent due to mixing w/ Higgs doublet

 $V(H,\Sigma) \sim a_1 H^+\Sigma H$ + $a_2 H^+H \Sigma^2$

Non-Abelian Mechanism: Signatures

- Two displaced vertex lepton jets (dLJ)
- 1 or 2 Prompt V's

Non-Abelian Mechanism: Signatures

Pair production O_{WX} production \downarrow^{l+} l^+ \downarrow^{l+} l^+ \downarrow^{l+} l^+ \downarrow^{l+} \downarrow^{l+} <td

- Two displaced vertex lepton jets (dLJ)
- 1 or 2 Prompt V's

Displaced Lepton Jets

ATLAS JHEP11 (2014) 88

Displaced Lepton Jets

ATLAS JHEP11 (2014) 88

ATLAS Recast

Recast ATLAS '14 w/o prompt V

Arguelles, He, Ovaneysan, Peng, MRM '16

Non-Abelian Kinetic Mixing

$$\mathcal{O}_{WX}^{(5)} = -rac{eta}{\Lambda} \operatorname{Tr} \left(W_{\mu\nu} \Sigma
ight) X^{\mu
u}$$

Prompt V + 2 displaced LJ's

Recast ATLAS '14 (no prompt V)

Improving the LHC Reach

A. Policicchio, CERN LLP workshop, April 17

Trigger on prompt W

Improving the LHC Reach

- Going to smaller ε ?
- Going below $2 m_{\mu}$?

III. The Higgs Portal

III. The Higgs Portal

BSM CPV ?

What is the CP Nature of the Higgs Boson ?

• Interesting possibilities if part of an extended scalar sector

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Not shown: muon

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

 $h, H^0, A^0 \rightarrow h_{1,2,3}$

$\left(-s_{\alpha}c_{\alpha_{b}}\right)$	$c_{lpha}c_{lpha_b}$	s_{α_b}
$s_{\alpha}s_{\alpha_b}s_{\alpha_c} - c_{\alpha}c_{\alpha_c}$	$-s_{\alpha}c_{\alpha_c}-c_{\alpha}s_{\alpha_b}s_{\alpha_c}$	$c_{\alpha_b}s_{\alpha_c}$
$\left\langle s_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}}+c_{\alpha}s_{\alpha_{c}}\right.$	$s_{\alpha}s_{\alpha_c} - c_{\alpha}s_{\alpha_b}c_{\alpha_c}$	$c_{\alpha_b}c_{\alpha_c}$

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

CP mixing: $\alpha_b \& \alpha_c$ not independent

Future Reach: Higgs Portal CPV

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Present	Future:	Future:
	d _n x 0.1	d _n x 0.01
	d _A (Hg) x 0.1	d _A (Hg) x 0.
sin a · CPV	d _{ThO} x 0.1	d _{ThO} x 0.1
scalar mixing	d _A (Ra)	d _A (Ra)

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

 $sin \alpha_b$: CPV scalar mixing

 Future:
 Future:

 $d_n \ge 0.1$ $d_n \ge 0.01$
 $d_A(Hg) \ge 0.1$ $d_A(Hg) \ge 0.1$
 $d_{ThO} \ge 0.1$ $d_{ThO} \ge 0.1$
 $d_A(Ra)$ $d_A(Ra)$

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Inoue, R-M, Zhang: 1403.4257

68

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

1100011

 $sin \alpha_b$: CPV scalar mixing

Future:	Future:
d _n x 0.1	<i>d_n</i> x 0.01
d _A (Hg) x 0.1	<i>d_A(Hg)</i> x 0.
d _{ThO} x 0.1	<i>d_{ThO} x 0.1</i>
d _A (Ra)	d _A (Ra)

Inoue, R-M, Zhang: 1403.4257

Chien-Yi Chen, Haolin Li, MJRM 1705.XXXX

$$h_{2,3}
ightarrow Z \ h_1
ightarrow bb \ \ell\ell$$

 $Z h_a h_b$ couplings

$$g_{2z1} \propto -\alpha_b + O(\alpha_b \theta) \quad \longleftarrow \quad \text{Vanishes in CP conserving limit}$$
$$g_{3z1} \propto -\theta + O(\alpha_b^2) \quad \longleftarrow \quad \text{Vanishes in alignment limit}$$

 $\theta = \beta - \alpha - \pi/2$

"Alignment": $\theta = 0$

Chien-Yi Chen, Haolin Li, MJRM 1705.XXXX

$$h_{2,3}
ightarrow Z \ h_1
ightarrow bb \ \ell\ell$$

50

LHC Future

- Blue: 300 fb⁻¹
- Magenta: 3 ab⁻¹

- Validated vs. ATLAS 8 TeV: 1502.04478
- Apply BDT for 14 TeV

$$g_{2z1} \propto -\alpha_b + O(\alpha_b \theta)$$
$$g_{3z1} \propto -\theta + O(\alpha_b^2)$$

2HDM Type- I, cos(β- α)=0.1 2HDM Type- Ι, cos(β- α)=0.1 1. 0.5 0.5 $\cos \theta = 0.1$ 0.1 0.1 $\sin \alpha_b$ $|\sin \alpha_b|$ 0.05 0.05 0.01 0.01 0.005 0.005 0.001 0.001 0.5 1 2 5 10 20 50 0.5 1 2 5 10 20 50 tan β tan β

Chien-Yi Chen, Haolin Li, MJRM 1705.XXXX

$$h_{2,3} o Z \ h_1 o bb \ \ell\ell$$

50

LHC & EDM Future

- Orange: LHC 8 TeV ٠
- Blue: 300 fb⁻¹ •
- Magenta: 3 ab⁻¹ ٠

- Validated vs. ATLAS 8 • TeV: 1502.04478
- Apply BDT for 14 TeV

$$g_{2z1} \propto -\alpha_b + O(\alpha_b \theta)$$
$$g_{3z1} \propto -\theta + O(\alpha_b^2)$$

2 HDM Type-I, $\cos(\beta - \alpha) = 0.1$ 2 HDM Type-I, $\cos(\beta - \alpha) = 0.1$ 1. 1. 0.5 0.5 $\cos \theta = 0.1$ 0.1 0.1 $\sin \alpha_b$ $\sin \alpha_b$ 0.05 0.05 0.01 0.01 0.005 0.005 0.001 0.001 20 5 10 20 0.5 1 2 5 10 50 0.5 1 2 50 $\tan \beta$ tan β

IV. Outlook

- Tests of fundamental symmetries & neutrino properties provide powerful windows into key open questions in fundamental physics
- There exists a rich interplay with BSM searches at the high energy frontier & both frontiers are essential
- Exciting opportunities for discovery and insight lie at the frontier interface
- Fully realizing them poses new challenges for hadronic & nuclear structure theory

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

Challenge

 $sin \alpha_b$: CPV scalar mixing

Inoue, R-M, Zhang: 1403.4257