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2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1

4
ẐDµν Ẑ

µν
D +

1

2

ϵ

cos θ
ẐDµν B̂

µν +
1

2
m2

D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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µν
D +

1

2

ϵ

cos θ
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Lagrangian are
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Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Σ ~ (1,3,0)	
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Non-Abelian Kinetic Mixing 

SU(2)L x U(1)D mediators 

Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Σ ~ (1,3,0)	
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Non-Abelian Kinetic Mixing 

SU(2)L x U(1)D mediators Small ε from scale ratio; 

 β ~ O(1) 

Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Σ ~ (1,3,0)	



Dark Z: Non-Abelian Mechanism 

31 

Non-Abelian Kinetic Mixing 

SU(2)L x U(1)D mediators Small ε from scale ratio; 

 β ~ O(1) 

Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Σ ~ (1,3,0)	

All pheno except W-X mixing not ε suppressed 
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Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Pair production OWX  production  
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Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Pair production OWX  production  

Γ (H+ ! SM) : ε 
dependent due to 
mixing w/ Higgs 
doublet  	

V(H,Σ) ~ a1 H+Σ H 
+ a2 H+H Σ 2 
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Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Pair production OWX  production  

•  Two displaced vertex 
lepton jets (dLJ) 

•  1 or 2 Prompt V’s 
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Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  

Pair production OWX  production  

•  Two displaced vertex 
lepton jets (dLJ) 

•  1 or 2 Prompt V’s 

Prompt W 

 dLJ 
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ATLAS JHEP11 (2014) 88 

H. Russell, CERN LLP 
workshop, April 17 
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ATLAS JHEP11 (2014) 88 

H. Russell, CERN LLP 
workshop, April 17 
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Arguelles, He, Ovaneysan, Peng, MRM ’16 

Our recast 

Recast ATLAS ’14 w/o prompt V 
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Non-Abelian Kinetic Mixing 

Arguelles, He, Ovaneysan, Peng, MRM ’16 

Prompt V + 2 displaced LJ’s 

Recast ATLAS ’14 
(no prompt V)  
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ATLAS-CONF-2016-042 

Prompt W 

Trigger on prompt W 

A. Policicchio, CERN LLP 
workshop, April 17 
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•  Going to smaller ε ? 
•  Going below 2 mµ ? 
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III. The Higgs Portal 

BSM CPV ? 



44 

 What is the CP Nature of the Higgs Boson ? 

•  Interesting possibilities if part of an 
extended scalar sector 
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 to 
103 more sensitive 

•  CPV needed for 
BAU?  

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 

ThO 

n 

3.1 x 10-29 

8.7 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** e- equivalent 

10-33 

10-38 

10-31 

10-29 

10-28 

10-26 

neutron 

 proton 
& nuclei 

atoms 

~ 100 x better 
sensitivity Not shown: 

muon 



Higgs Portal CPV 
CPV & 2HDM: Type I & II 

22

work, only the scalar loop could contribute to C12 and eventually to EDMs. A representative diagram is shown in
the right panel of Fig. 12. It is proportional to

Im(�5m
2⇤
12v

⇤
1v2) = �

�

��5m
2
12v1v2

�

� sin �2 . (A10)

Using the relation in Eq. (13), the above quantity is indeed related to the unique CPV source in the model.
The fermionic loops do not contribute because the physical charge Higgs and quark couplings have the structure

proportional to the corresponding CKM element. As a result, the coe�cients Cij are purely real and C̃ij are purely
imaginary. They contribute to magnetic dipole moments instead of EDMs.

f f � f

�

H0/H+
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FIG. 12: Left: quark or lepton EDM from W ±H⌥ exchange and CPV Higgs interactions. Right: a scalar loop contribution
to �†

1
�a

2 W a
µ⌫�2B

µ⌫ e↵ective operator, which then contributes to EDM as the upper loop of the left panel.

The gauge invariant contributions to EDM from this class of diagrams have been calculated recently in [42],

(�f )
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512⇡4
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, (A11)

where the functions I4,5(m2
1,m

2
2) are given in the Appendix B. The coe�cient sf = �1 for up-type quarks, and

sf = +1 for down-type quarks and charged leptons.

To summarize, the total contribution to fermion EDM is the sum of Eqs (A3,A4,A5,A6,A7,A8,A11),
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HW�
H . (A12)

3

II. 2HDM FRAMEWORK

A. Scalar potential

In this work, we consider the flavor-conserving 2HDM in order to avoid problematic flavor-changing neutral currents
(FCNCs). As observed by Glashow and Weinberg (GW) [12], one may avoid tree-level FCNCs if diagonalization of the
fermion mass matrices leads to flavor diagonal Yukawa interactions. One approach2 to realizing this requirement is to
impose a Z2 symmetry on the scalar potential together with an appropriate extension to the Yukawa interactions (see
below). In this scenario, however, one obtains no sources of CPV beyond the SM CKM complex phase. Consequently,
we introduce a soft Z2-breaking term that yields non-vanishing CPV terms in the scalar sector [16].

To that end, we choose a scalar field basis in which the two Higgs doublets �1,2 are oppositely charged under the
the Z2 symmetry:

�1 ! ��1 and �2 ! �2 , (1)

though this symmetry will in general have a di↵erent expression in another basis obtained by the transformation
�j = Ujk�

0
k. For example, taking

U =
1p
2

✓

�1 1
1 1

◆

, (2)

the transformation (1) corresponds to

�0
1 $ �0

2 . (3)

We then take the Higgs potential to have the form

V =
�1

2
(�†

1�1)
2 +

�2

2
(�†

2�2)
2 + �3(�

†
1�1)(�

†
2�2) + �4(�

†
1�2)(�

†
2�1) +

1

2

h

�5(�
†
1�2)

2 + h.c.
i

�1

2

n

m2
11(�

†
1�1) +

h

m2
12(�

†
1�2) + h.c.

i

+m2
22(�

†
2�2)

o

. (4)

The complex coe�cients in the potential are m2
12 and �5. In general, the presence of the �†

1�2 term, in conjunction
with the Z2-conserving quartic interactions, will induce other Z2-breaking quartic operators at one-loop order. Simple
power counting implies that the responding coe�cients are finite with magnitude proportional tom2

12�k/(16⇡2). Given
the 1/16⇡2 suppression, we will restrict our attention to the tree-level Z2-breaking bilinear term.

It is instructive to identify the CPV complex phases that are invariant under a rephasing of the scalar fields. To
that end, we perform an SU(2)L⇥U(1)Y transformation to a basis where the vacuum expectation value (vev) of the
neutral component of �1 is real while that associated with the neutral component of �2 is in general complex:

�1 =

✓

H+
1

1p
2
(v1 +H0

1 + iA0
1)

◆

, �2 =

✓

H+
2

1p
2
(v2 +H0

2 + iA0
2)

◆

, (5)

where v =
p

|v1|2 + |v2|2 = 246GeV, v1 = v⇤1 and v2 = |v2|ei⇠. It is apparent that in general ⇠ denotes the relative
phase of v2 and v1. Under the global rephasing transformation

�j = ei✓j �0
j , (6)

the couplings m2
12 and �5 can be redefined to absorb the global phases

(m2
12)

0 = ei(✓2�✓1)m2
12, �0

5 = e2i(✓2�✓1)�5 , (7)

so that the form of the potential is unchanged. It is then straightforward to observe that there exist two rephasing
invariant complex phases:

�1 = Arg
⇥

�⇤
5(m

2
12)

2
⇤

,

�2 = Arg
⇥

�⇤
5(m

2
12)v1v

⇤
2

⇤

. (8)

2 Another approach is to have 2HDM at the electroweak scale without the Z2 symmetry is to assume minimal flavor violation, flavor
alignment or other variants. We do not discuss this possibility, but refer to [13–15] for recent phenomenological studies.
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For future purposes, we emphasize that the value of ⇠ is not invariant.
Denoting tan� = |v2|/|v1|, the minimization conditions in the H0

k and A0
k directions give us the relations

m2
11 = �1v

2 cos2 � + (�3 + �4)v
2 sin2 � � Re(m2

12e
i⇠) tan� +Re(�5e

2i⇠)v2 sin2 � , (9)

m2
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2 sin2 � + (�3 + �4)v
2 cos2 � � Re(m2

12e
i⇠) cot� +Re(�5e

2i⇠)v2 cos2 � , (10)

Im(m2
12e

i⇠) = v2 sin� cos�Im(�5e
2i⇠) . (11)

From the last equation, it is clear that the phase ⇠ can be solved for given the complex parameters m2
12 and �5. It is

useful, however, to express this condition in terms of the �k:

|m2
12| sin(�2 � �1) = |�5v1v2| sin(2�2 � �1) . (12)

In the limit that the �k are small but non-vanishing that will be appropriate for our later phenomenological discussion,
Eq. (12) then implies
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�1 , (13)

so that there exists only one independent CPV phase in the theory after EWSB.
A special case arises when �1 = 0. In this case, Eq. (12) implies that

|m2
12| sin(�2) = |�5v1v2| sin(2�2) , (14)

or

cos �2 =
1

2
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�

�

�

. (15)

When the right-hand side is less than 1, �2 has solutions two solutions of equal magnitude and opposite sign, corre-
sponding to the presence of spontaneous CPV (SCPV) [17, 18]:

�2 = ± arccos
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To the extent that the vacua associated with the two opposite sign solutions are degenerate, one would expect the
existence of cosmological domains [19] associated with these two vacua. Persistence of the corresponding domain walls
to late cosmic times is inconsistent with the observed homogeneity of structure and isotropy of the cosmic microwave
background. Consequently, parameter choices leading to �1 = 0 but �2 6= 0 should be avoided. In practice, we will
scan over model parameters when analyzing the EDM and LHC constraints. As a check, we have performed a scan
with 106 points and find less than ten that give �1 = 0. We are, thus, confident that the general features of our
phenomenological analysis are consistent with the absence of problematic SCPV domains.

Henceforth, for simplicity, we utilize the rephasing invariance of the �k and work in a basis where ⇠ = 0. In this
basis, the phases of m2

12 and �5 are redefined and related by Eq. (11). As we discuss below, we will trade the resulting
dependence of observables on �1 [and �2 via �1 in Eq. (13)] for one independent angle in the transformation that
diagonalizes the neutral scalar mass matrix.

B. Scalar spectrum

After EWSB, the diagonalization of the 2 ⇥ 2 charged Higgs mass matrix yields the physical charged scalar and
Goldstone modes,
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work, only the scalar loop could contribute to C12 and eventually to EDMs. A representative diagram is shown in
the right panel of Fig. 12. It is proportional to
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Using the relation in Eq. (13), the above quantity is indeed related to the unique CPV source in the model.
The fermionic loops do not contribute because the physical charge Higgs and quark couplings have the structure

proportional to the corresponding CKM element. As a result, the coe�cients Cij are purely real and C̃ij are purely
imaginary. They contribute to magnetic dipole moments instead of EDMs.
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The gauge invariant contributions to EDM from this class of diagrams have been calculated recently in [42],
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where the functions I4,5(m2
1,m

2
2) are given in the Appendix B. The coe�cient sf = �1 for up-type quarks, and

sf = +1 for down-type quarks and charged leptons.

To summarize, the total contribution to fermion EDM is the sum of Eqs (A3,A4,A5,A6,A7,A8,A11),
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3

II. 2HDM FRAMEWORK

A. Scalar potential

In this work, we consider the flavor-conserving 2HDM in order to avoid problematic flavor-changing neutral currents
(FCNCs). As observed by Glashow and Weinberg (GW) [12], one may avoid tree-level FCNCs if diagonalization of the
fermion mass matrices leads to flavor diagonal Yukawa interactions. One approach2 to realizing this requirement is to
impose a Z2 symmetry on the scalar potential together with an appropriate extension to the Yukawa interactions (see
below). In this scenario, however, one obtains no sources of CPV beyond the SM CKM complex phase. Consequently,
we introduce a soft Z2-breaking term that yields non-vanishing CPV terms in the scalar sector [16].

To that end, we choose a scalar field basis in which the two Higgs doublets �1,2 are oppositely charged under the
the Z2 symmetry:

�1 ! ��1 and �2 ! �2 , (1)

though this symmetry will in general have a di↵erent expression in another basis obtained by the transformation
�j = Ujk�

0
k. For example, taking

U =
1p
2

✓

�1 1
1 1

◆

, (2)

the transformation (1) corresponds to

�0
1 $ �0

2 . (3)

We then take the Higgs potential to have the form
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The complex coe�cients in the potential are m2
12 and �5. In general, the presence of the �†

1�2 term, in conjunction
with the Z2-conserving quartic interactions, will induce other Z2-breaking quartic operators at one-loop order. Simple
power counting implies that the responding coe�cients are finite with magnitude proportional tom2

12�k/(16⇡2). Given
the 1/16⇡2 suppression, we will restrict our attention to the tree-level Z2-breaking bilinear term.

It is instructive to identify the CPV complex phases that are invariant under a rephasing of the scalar fields. To
that end, we perform an SU(2)L⇥U(1)Y transformation to a basis where the vacuum expectation value (vev) of the
neutral component of �1 is real while that associated with the neutral component of �2 is in general complex:
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2
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1 + iA0
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(v2 +H0

2 + iA0
2)

◆

, (5)

where v =
p

|v1|2 + |v2|2 = 246GeV, v1 = v⇤1 and v2 = |v2|ei⇠. It is apparent that in general ⇠ denotes the relative
phase of v2 and v1. Under the global rephasing transformation

�j = ei✓j �0
j , (6)

the couplings m2
12 and �5 can be redefined to absorb the global phases

(m2
12)

0 = ei(✓2�✓1)m2
12, �0

5 = e2i(✓2�✓1)�5 , (7)

so that the form of the potential is unchanged. It is then straightforward to observe that there exist two rephasing
invariant complex phases:
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. (8)

2 Another approach is to have 2HDM at the electroweak scale without the Z2 symmetry is to assume minimal flavor violation, flavor
alignment or other variants. We do not discuss this possibility, but refer to [13–15] for recent phenomenological studies.
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2 Another approach is to have 2HDM at the electroweak scale without the Z2 symmetry is to assume minimal flavor violation, flavor
alignment or other variants. We do not discuss this possibility, but refer to [13–15] for recent phenomenological studies.
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For future purposes, we emphasize that the value of ⇠ is not invariant.
Denoting tan� = |v2|/|v1|, the minimization conditions in the H0

k and A0
k directions give us the relations
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From the last equation, it is clear that the phase ⇠ can be solved for given the complex parameters m2
12 and �5. It is

useful, however, to express this condition in terms of the �k:

|m2
12| sin(�2 � �1) = |�5v1v2| sin(2�2 � �1) . (12)

In the limit that the �k are small but non-vanishing that will be appropriate for our later phenomenological discussion,
Eq. (12) then implies
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so that there exists only one independent CPV phase in the theory after EWSB.
A special case arises when �1 = 0. In this case, Eq. (12) implies that
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When the right-hand side is less than 1, �2 has solutions two solutions of equal magnitude and opposite sign, corre-
sponding to the presence of spontaneous CPV (SCPV) [17, 18]:
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To the extent that the vacua associated with the two opposite sign solutions are degenerate, one would expect the
existence of cosmological domains [19] associated with these two vacua. Persistence of the corresponding domain walls
to late cosmic times is inconsistent with the observed homogeneity of structure and isotropy of the cosmic microwave
background. Consequently, parameter choices leading to �1 = 0 but �2 6= 0 should be avoided. In practice, we will
scan over model parameters when analyzing the EDM and LHC constraints. As a check, we have performed a scan
with 106 points and find less than ten that give �1 = 0. We are, thus, confident that the general features of our
phenomenological analysis are consistent with the absence of problematic SCPV domains.

Henceforth, for simplicity, we utilize the rephasing invariance of the �k and work in a basis where ⇠ = 0. In this
basis, the phases of m2

12 and �5 are redefined and related by Eq. (11). As we discuss below, we will trade the resulting
dependence of observables on �1 [and �2 via �1 in Eq. (13)] for one independent angle in the transformation that
diagonalizes the neutral scalar mass matrix.

B. Scalar spectrum

After EWSB, the diagonalization of the 2 ⇥ 2 charged Higgs mass matrix yields the physical charged scalar and
Goldstone modes,

H+ = � sin�H+
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The charged scalar has a mass
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work, only the scalar loop could contribute to C12 and eventually to EDMs. A representative diagram is shown in
the right panel of Fig. 12. It is proportional to
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2
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� sin �2 . (A10)

Using the relation in Eq. (13), the above quantity is indeed related to the unique CPV source in the model.
The fermionic loops do not contribute because the physical charge Higgs and quark couplings have the structure

proportional to the corresponding CKM element. As a result, the coe�cients Cij are purely real and C̃ij are purely
imaginary. They contribute to magnetic dipole moments instead of EDMs.
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FIG. 12: Left: quark or lepton EDM from W ±H⌥ exchange and CPV Higgs interactions. Right: a scalar loop contribution
to �†

1
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2 W a
µ⌫�2B

µ⌫ e↵ective operator, which then contributes to EDM as the upper loop of the left panel.

The gauge invariant contributions to EDM from this class of diagrams have been calculated recently in [42],
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where the functions I4,5(m2
1,m

2
2) are given in the Appendix B. The coe�cient sf = �1 for up-type quarks, and

sf = +1 for down-type quarks and charged leptons.

To summarize, the total contribution to fermion EDM is the sum of Eqs (A3,A4,A5,A6,A7,A8,A11),
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3

II. 2HDM FRAMEWORK

A. Scalar potential

In this work, we consider the flavor-conserving 2HDM in order to avoid problematic flavor-changing neutral currents
(FCNCs). As observed by Glashow and Weinberg (GW) [12], one may avoid tree-level FCNCs if diagonalization of the
fermion mass matrices leads to flavor diagonal Yukawa interactions. One approach2 to realizing this requirement is to
impose a Z2 symmetry on the scalar potential together with an appropriate extension to the Yukawa interactions (see
below). In this scenario, however, one obtains no sources of CPV beyond the SM CKM complex phase. Consequently,
we introduce a soft Z2-breaking term that yields non-vanishing CPV terms in the scalar sector [16].

To that end, we choose a scalar field basis in which the two Higgs doublets �1,2 are oppositely charged under the
the Z2 symmetry:

�1 ! ��1 and �2 ! �2 , (1)

though this symmetry will in general have a di↵erent expression in another basis obtained by the transformation
�j = Ujk�

0
k. For example, taking

U =
1p
2
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, (2)

the transformation (1) corresponds to
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We then take the Higgs potential to have the form
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The complex coe�cients in the potential are m2
12 and �5. In general, the presence of the �†

1�2 term, in conjunction
with the Z2-conserving quartic interactions, will induce other Z2-breaking quartic operators at one-loop order. Simple
power counting implies that the responding coe�cients are finite with magnitude proportional tom2

12�k/(16⇡2). Given
the 1/16⇡2 suppression, we will restrict our attention to the tree-level Z2-breaking bilinear term.

It is instructive to identify the CPV complex phases that are invariant under a rephasing of the scalar fields. To
that end, we perform an SU(2)L⇥U(1)Y transformation to a basis where the vacuum expectation value (vev) of the
neutral component of �1 is real while that associated with the neutral component of �2 is in general complex:
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where v =
p

|v1|2 + |v2|2 = 246GeV, v1 = v⇤1 and v2 = |v2|ei⇠. It is apparent that in general ⇠ denotes the relative
phase of v2 and v1. Under the global rephasing transformation

�j = ei✓j �0
j , (6)

the couplings m2
12 and �5 can be redefined to absorb the global phases

(m2
12)

0 = ei(✓2�✓1)m2
12, �0

5 = e2i(✓2�✓1)�5 , (7)

so that the form of the potential is unchanged. It is then straightforward to observe that there exist two rephasing
invariant complex phases:
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2 Another approach is to have 2HDM at the electroweak scale without the Z2 symmetry is to assume minimal flavor violation, flavor
alignment or other variants. We do not discuss this possibility, but refer to [13–15] for recent phenomenological studies.
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For future purposes, we emphasize that the value of ⇠ is not invariant.
Denoting tan� = |v2|/|v1|, the minimization conditions in the H0

k and A0
k directions give us the relations

m2
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From the last equation, it is clear that the phase ⇠ can be solved for given the complex parameters m2
12 and �5. It is

useful, however, to express this condition in terms of the �k:

|m2
12| sin(�2 � �1) = |�5v1v2| sin(2�2 � �1) . (12)

In the limit that the �k are small but non-vanishing that will be appropriate for our later phenomenological discussion,
Eq. (12) then implies

�2 ⇡
1�

�

�

�

�5v1v2
m2

12

�

�

�

1� 2
�

�

�

�5v1v2
m2

12

�

�

�

�1 , (13)

so that there exists only one independent CPV phase in the theory after EWSB.
A special case arises when �1 = 0. In this case, Eq. (12) implies that

|m2
12| sin(�2) = |�5v1v2| sin(2�2) , (14)
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When the right-hand side is less than 1, �2 has solutions two solutions of equal magnitude and opposite sign, corre-
sponding to the presence of spontaneous CPV (SCPV) [17, 18]:
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To the extent that the vacua associated with the two opposite sign solutions are degenerate, one would expect the
existence of cosmological domains [19] associated with these two vacua. Persistence of the corresponding domain walls
to late cosmic times is inconsistent with the observed homogeneity of structure and isotropy of the cosmic microwave
background. Consequently, parameter choices leading to �1 = 0 but �2 6= 0 should be avoided. In practice, we will
scan over model parameters when analyzing the EDM and LHC constraints. As a check, we have performed a scan
with 106 points and find less than ten that give �1 = 0. We are, thus, confident that the general features of our
phenomenological analysis are consistent with the absence of problematic SCPV domains.

Henceforth, for simplicity, we utilize the rephasing invariance of the �k and work in a basis where ⇠ = 0. In this
basis, the phases of m2

12 and �5 are redefined and related by Eq. (11). As we discuss below, we will trade the resulting
dependence of observables on �1 [and �2 via �1 in Eq. (13)] for one independent angle in the transformation that
diagonalizes the neutral scalar mass matrix.

B. Scalar spectrum

After EWSB, the diagonalization of the 2 ⇥ 2 charged Higgs mass matrix yields the physical charged scalar and
Goldstone modes,

H+ = � sin�H+
1 + cos�H+

2 , G+ = cos�H+
1 + sin�H+

2 , (17)

The charged scalar has a mass

m2
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2
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2v2
. (18)
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FIG. 10: Current and prospective future constraints from electron EDM (blue), neutron EDM (green), Mercury EDM (red) and
Radium (yellow) in flavor conserving 2HDMs. First row: type-I model; Second row: type-II model. The model parameters
used are the same as Fig. 6. Central values of the hadronic and nuclear matrix elements are used. Left: Combined current
limits. Middle: combined future limits if the Mercury and neutron EDMs are both improved by one order of magnitude. Also
shown are the future constraints if electron EDM is improved by another order of magnitude (in blue dashed curves). Right:
combined future limits if the Mercury and neutron EDMs are improved by one and two orders of magnitude, respectively.

matrix elements, there is guidance from näıve dimensional analysis, which takes into account the chiral structures of
the operators in question. However, the precise value of matrix elements involving quark CEDMs and the Weinberg
three-gluon operator are only known to about an order of magnitude, and dimensional analysis does not tell us the
signs of the matrix elements. We highlight two places where these uncertainties can change our results.

• In Figs. 7 and 8, we see that the Weinberg three-gluon operator is always subdominant as a contribution to the
neutron and mercury EDMs. It is possible, though, that the actual matrix element may be an order of magnitude
larger than the current best value. Then, the Weinberg operator would make the largest contribution to the
neutron and mercury EDMs at large tan� in the type-II model.

• In the left panel of Fig. 7, the quark EDM and CEDM contributions to nEDM in the type-I model are shown to
be nearly equal, but with opposite signs, suppressing the total neutron EDM in the type-I model. If overall sign
of the CEDM matrix element is opposite to that used here, the two e↵ects would add constructively, making
the neutron EDM limit much stronger.

In the absence of hadronic and nuclear matrix element uncertainties, improvements in neutron and diamagnetic
atom searches will make them competitive with present ThO result when in constraining CPV in 2HDM. At present,
however, theoretical uncertainties are significant, making it di�cult to draw firm quantitative conclusions regarding
the impact of the present and prospective neutron and diamagnetic EDM results.

Present Future:  
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FIG. 10: Current and prospective future constraints from electron EDM (blue), neutron EDM (green), Mercury EDM (red) and
Radium (yellow) in flavor conserving 2HDMs. First row: type-I model; Second row: type-II model. The model parameters
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matrix elements, there is guidance from näıve dimensional analysis, which takes into account the chiral structures of
the operators in question. However, the precise value of matrix elements involving quark CEDMs and the Weinberg
three-gluon operator are only known to about an order of magnitude, and dimensional analysis does not tell us the
signs of the matrix elements. We highlight two places where these uncertainties can change our results.
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of the CEDM matrix element is opposite to that used here, the two e↵ects would add constructively, making
the neutron EDM limit much stronger.

In the absence of hadronic and nuclear matrix element uncertainties, improvements in neutron and diamagnetic
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•  Green: 100 fb-1 
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•  Validated vs. ATLAS 8 
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•  Apply BDT for 14 TeV 
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IV. Outlook 

•  Tests of fundamental symmetries & neutrino 
properties provide powerful windows into key 
open questions in fundamental physics  

•  There exists a rich interplay with BSM searches 
at the high energy frontier & both frontiers are 
essential 

•  Exciting opportunities for discovery and insight 
lie at the frontier interface 

•  Fully realizing them poses new challenges for 
hadronic & nuclear structure theory 
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FIG. 6: Current constraints from the electron EDM (left), neutron EDM (middle) and 199Hg EDM (right).First row: type-I
model; Second row: type-II model. In all the plots, we have imposed the condition that ↵ = � � ⇡/2. The other parameters
are chosen to be mH+ = 320 GeV, mh2 = 300 GeV, mh3 = 350 GeV and ⌫ = 1.0. Again, ↵c is a dependent parameter
solved using Eq. (43). The purple region is theoretically not accessible because Eq. (43) does not have a real solution. For
the neutron and Mercury EDMs, theoretical uncertainties from hadronic and nuclear matrix elements are reflected by di↵erent
curves. For the neutron EDM, we vary one of the most important hadronic matrix elements: ⇣̃d

n = 1.63 ⇥ 10�8 (solid, central
value), 0.4 ⇥ 10�8 (dot-dashed) and 4.0 ⇥ 10�8 (dashed). For the Mercury EDM, we take di↵erent sets of nuclear matrix
element values: a0 = 0.01, a1 = 0.02 (solid, central value). a0 = 0.01, a1 = 0.09 (long-dashed), a0 = 0.01, a1 = �0.03 (dashed),
a0 = 0.005, a1 = 0.02 (dotted) and a0 = 0.05, a1 = 0.02 (dot-dashed).

B. Ine↵ectiveness of a Light-Higgs-Only Theory

From the discussion of electron EDM, we have learned that the heavy Higgs contributions via H�� and H±W⌥�
diagrams make non-negligible contributions to the total EDM. They can even be dominant at large tan� & 20. This
example illustrates the ine↵ectiveness of the “light Higgs e↵ective theory”, often performed as model independent
analyses, which include the CPV e↵ects only from the lightest Higgs (mass 125 GeV). The key point is that a CP
violating Higgs sector usually contains more than one scalar at the electroweak scale, and all of them have CPV
interactions in general. The total contribution therefore includes CPV e↵ects from not only CP even-odd neutral
scalar mixings, but also the CPV neutral-charged scalar interactions from the Higgs potential. This is necessarily
model dependent. In this work, we have included the complete contributions to EDMs in the flavor-conserving (type-I
and type-II) 2HDMs .

C. Neutron EDM Constraint

Next, we consider the neutron EDM, whose current bound is |dn| < 2.9⇥10�26e cm. In Fig. 7, we plot the anatomy
of neutron EDM, this time in terms of the various dimension-six operator contributions. The parameters are fixed
as in Fig. 5, and the contributions to neutron EDM from light quark EDMs, CEDMs, and the Weinberg three-gluon
operator are shown as functions of tan�. The plot shows that in the type-II model, the quark CEDM contributions
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