Gyromagnetíc Faraday Rotation Studies on Polarízed ³He

Wolfgang Korsch, Josh Abney, Mark Broering

University of Kentucky Lexington, KY 40506

Low-energy Probes of New Physics May 17, 2017 MITP, Mainz

Supported by DOE, Office of Nuclear Physics, Grant #: DE-FG02-99ER41101

Motivation:

New idea to search for Asymmetric Dark Matter?

• Test case:

Gyromagnetic Faraday rotation on polarized ³He

Summary

A Dark-Domínated Universe

Most of the cosmic energy budget is in unknown forms!

[map.gsfc.nasa.gov/universe/uni_matter.html]

Gyromagnetic Faraday Rotation on Polarized ³*He*

Observational Evidence for Dark Matter

The observed circular speed does not track the luminous mass.

Gyromagnetic Faraday Rotation on Polarized ³He

Most of the cosmic energy budget is of an unknown form!

Dark Matter (DM) Knowns

We do know DM must be...

- stable or effectively on Gyr time scales
- not "hot" i.e., not relativistic at the time it decoupled from matter in the cooling early Universe
- have no substantial strong or electromagnetic charge

It has long been thought that if DM were produced as a "thermal relic" that it would be a Weakly Interacting Massive Particle or "WIMP"

Such candidates appear in models with weak-scale supersymmetry (MSSM)

They can be detected directly in low-background experiments

Gyromagnetic Faraday Rotation on Polarized ³He

Dírect Detection: Dark Matter "WIMPs"

Limits rely on local DM density and velocity distribution

Theory: Possible DM Candidates

[arXiv:1401.6085]

Gyromagnetic Faraday Rotation on Polarized ³He

What if DM is not a WIMP?

Its relic density need not be fixed by thermal freeze-out, and its stability need not be fixed by a discrete symmetry.

> What mechanisms then are operative and how do we discover them?

- Its stability may be guaranteed by a hidden conserved charge, much as the electron in the SM is stable. A complex hidden sector?
- Its relic density may be related to the cosmic baryon asymmetry.
- The hidden sector could be • [axions].... asymmetric,

as baryons are?

[Nussinov, PLB 1985; Barr, Chivukula, Farhi, PLB 1990; Harvey and Turner, PRD 1990; Ellis et al., NPB 1992. Ryttov and Sannino, arXiv:0809.0713 [hep-ph]; Kaplan, Luty, Zurek, arXiv:0901.4117 [hep-ph].]

Asymmetric Dark Matter (ADM)

Experimental Signatures

- ADM models can give distinctive collider signatures
 E.g. long-lived metastable states, new charged states at the weak scale, and/or colored states at a TeV. (All not seen as yet.)
- Direct detections signals can arise from interactions that could
 - * eliminate the symmetric DM component
 - * transfer the fermion asymmetry

These could be realized through magnetic moment or charge radius couplings. Both interactions can give rise to anomalous nuclear recoils....

[Bagnasco, Dine, and Thomas, PLB 1994; Barger, Keung, Marfatia, arXiv:1007.4345; Banks, Fortin, and Thomas, arXiv:1007.5515]

A magnetic Faraday effect can also discover dark matter if it possesses a magnetic moment... and establish asymmetric dark matter.

S. Gardner, PRL 100, 041303 (2008) S. Gardner, PRD 79, 055007 (2009)

some reviews: K.M Zurek, Phys. Rep. 537, 91 (2014), D.E. Kaplan et al., PRD 79, 115016 (2009), ...

Gyromagnetic Faraday Rotation on Polarized ³He

Experimental Signatures of ADM

V. Barger et al., arXiv: 1007.4345v2

Constraínts on Magnetíc Moments of DM

Properties of DM: Possibility of (anomalous) magnetic moments

Constraints for $M_{DM} \leq 1$ MeV:

- precision electroweak measurements \rightarrow e.w. radiative corrections anomalous mag. moment (x): $|x| < 4 \times 10^{-6}$ for $M_{DM} = m_e$
- $e^+e^- \rightarrow \nu \bar{\nu} \gamma \rightarrow \mu_{\nu\tau} \sim few \times 10^{-6} \mu_B$

J. Erler and P. Langacker, review in W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) H. Grotch and R.W. Robinett, Z. Phys. C 39, 553 (1988)

Can Faraday rotation be used to probe µDM?

Gyromagnetic Faraday Rotation on Polarized ³He

Introduction to Faraday Rotation

Faraday Effect: 1846 !! Optical activity is induced in matter by magnetic field

Faraday, M., Phil. Mall., 28, 294 (1846) ;

Phil. Trans. Roy. Soc. London, 1 (1846)

Angle of rotation:

$$\theta = V \cdot B \cdot L = V \int_0^L B dl$$

https://en.wikipedia.org/wiki/Faraday_effect#/media/File:Faraday-effect.svg

Gyromagnetic Faraday Rotation on Polarized ³He

Measurement Prínciple

D. Beck's talk: Principle of measuring neutron EDMs

uniform B and E fields

Gyromagnetic Faraday Rotation on Polarized ³He

Measurement Prínciple

Principle of measuring Faraday rotation

Gyromagnetic Faraday Rotation on Polarized ³*He*

Símílar to PVLAS Experiment

PVLAS: "Testing the polarization of the vacuum with lasers"

Nonlinear effects due to magnetic birefringence (of vacuum) →sensitivity to axions

 $\Delta n = 3A_e B_{ext}^2$

"nonlinearity" const.

no effect observed:

 $A_e < 2.9 \cdot 10^{-21} \ T^{-2}$

Laser Optical Isolator Nd:YAG DAQ Feedback BS ー PD Detector Motor PD ÍÞD Polarizer Magnet Magnet Anlalvzer FPMa FPMp PEM A

Department of Physics and National Institute of Nuclear Physics in Ferrara, Italy

Total sensitivity: $\Delta \theta \sim 10$ nrad

G. Zavattini et al, Int. J. Mod. Phys. A 27, 1260017 (2012)

Gyromagnetic Faraday Rotation on Polarized ³He

Sensítívíty to Magn. Moments of Líght DM

Gyromagnetic Faraday Rotation on Polarized ³He

Matter in E. & M. Fields

Matter in e.m fields: dielectric displacement and magnetic induction

- $\mathbf{D} = \epsilon \mathbf{E}$
- $\mathbf{B}=\mu\mathbf{H}$
 - $\epsilon = 1 + 4\pi N \alpha \quad \rightarrow \text{dielectric constant}$
- $\mu = 1 + 4\pi N \chi \quad \ \ \, \rightarrow \text{ permeability}$

Magnetic Moments in E&M Fields

Matter in e.m fields: dielectric displacement and magnetic induction

- $\mathbf{D} = \epsilon \mathbf{E} + ig\mathbf{H} + if_1\mathbf{E} \times \mathbf{H'} + k\mathbf{H} \times \mathbf{H'}$
- $\mathbf{B} = \mu \mathbf{H} ig\mathbf{E} + if_2\mathbf{H} \times \mathbf{H'} k\mathbf{E} \times \mathbf{H'}$

 $\mathbf{E}, \mathbf{H} \rightarrow e.m.$ wave $\mathbf{H}' \rightarrow static field$

- $\epsilon = 1 + 4\pi N \alpha \quad \rightarrow \text{dielectric constant}$
- $\mu = 1 + 4\pi N \chi \rightarrow \text{permeability}$
 - → natural gyration constant
- $\begin{cases} f_1 = \omega 4\pi N\eta \\ f_2 = \omega 4\pi N\xi \end{cases}$

 $q = \omega 4\pi N\beta$

→ magneto-optical gyration constants

 $k = 4\pi N \delta$

→ contribution to polarizability and birefringence in optically active molecules

Gyromagnetic Faraday Rotation on Polarized ³He

Magnetic Moments in E&M Fields

Precession of M in B_0 :

$$\frac{d\mathbf{M}}{dt} = \frac{g\mu_M}{\hbar} \mathbf{M} \times \mathbf{B}_0$$

Relativistic eq. (BMT eq. for neutral particles)

$$\gamma \frac{d\mathbf{M}}{dt} = \frac{g\mu_M}{\hbar} (\mathbf{M} \times \mathbf{B}_0 + \mathbf{M}_0 \times (\mathbf{B} - \boldsymbol{\beta} \times \frac{\mathbf{E}}{c}))$$

For LH and RH circularly polarized light:

$$M_{\pm} = \pm \frac{\omega_M (1+\beta)}{\gamma \omega \pm \omega_B} B_{\pm} \equiv \chi_{\pm} B_{\pm} \qquad \qquad n_{\pm} = \sqrt{1+\chi_{\pm}}$$

 $\omega_M = g\mu_M M_o/\hbar$

$$n_{-} - n_{+} = \frac{\omega_M (1 + \beta)}{\gamma c}$$

D. Polder, Philos. Mag. 40, 99 (1949) C.L. Hogan, Rev. Mod. Phys. 25, 253 (1953) S. Gardner, PRL 100, 041303 (2008)

 $\omega \gg \omega_B$

Gyromagnetic Faraday Rotation on Polarized ³He

$$\theta = \frac{g\mu_M M_0 L}{2\hbar c}$$

→ gyromagnetic optical rotation independent of frequency

FR on Dífferent Systems

Here: Far off-resonance FR \rightarrow different frequency dependence

Faraday rotation: 2nd order time-dependent theory

A. D. Buckingham and P.J. Stephens, Ann. Rev. Phys. Chem. 17, 399 (1966)

Gyromagnetic Faraday Rotation on Polarized ³He

Gyromagnetíc Faraday Effect

Gyromagnetic FR:

- off-diagonal elements of magnetic susceptibility tensor: χ_M^{\pm}
- precession of the \dot{M} under the influence of the B-field of e.m. wave

G.S. Krinchik & M.V. Chetkin, Sov. Phys. JETP 14, 485 (1961) S. Gardner, PRD 79, 055007 (2009)

.

Gyromagnetic Faraday Rotation on Polarized ³He

Test Case: Polarízed ³He

- Can produce dense highly polarized targets
- No unpaired electrons rediamagnetic atoms

Gyromagnetic Faraday Rotation on Polarized ³He

Gyromagnetic Faraday Effect on Polarized ³He

Pol. 3He as a test case for DM:

Conditions:

- Independent of frequency
- Small rotations:
- L = 40 cm, p = < 8 atm, P < 1

Expectation: 490 nrad for p = 8 atm, P = 1

Some order of magnitude numbers:

off-resonance

Material	Length	Θ at B = 4G
Flint Glass	1.27 cm	80 µrad
Aluminosilicate glass	0.4 cm	6.5 µrad
Air	3 m	1.5 µrad

 $\lambda = 633 \text{ nm}$

Gyromagnetic Faraday Rotation on Polarized ³He

Producing Densely Polarized ³He Gas

Polarizing ³He: spin exchange optical pumping (SEOP)

Jefferson Lab geometry

Gyromagnetic Faraday Rotation on Polarized ³He

Polarízíng ³He: SEOP

Pumping on D1 line: ~100 W CW @ 795 nm

793.5

794.0

794.5

Wavelength (nm)

795.0

Wolfgang Korsch, LEPONP17, May, 2017

795.0

796.5

795.5

High Pressure Cells

Gyromagnetic Faraday Rotation on Polarized ³He

High Pressure Cell for FR Studies

- New SEOP cell: flat, anti-reflective coated end windows designed for multiple passes with laser.
- Target chamber length: 40 cm
- Fill density is 3.6 amg (atm). (Lower density due to flat end windows)

rotation angle drops by factor of 2: $\rightarrow \theta \sim 250 \text{ nrad}$

Corning 1720/1723

Gyromagnetic Faraday Rotation on Polarized ³He

Determining the Polarization

Polarization measurement and monitoring

Absolute pol. measurement:

- Electron Parametric Resonance (EPR) (pumping chamber)
 - Zeeman level shift in Rb due to ³He "magnetization"
- NMR (target chamber)

active B-field stabilization ($\Delta B \sim nT$ level)

Polarízed ³He

Gyromagnetic Faraday Rotation on Polarized ³He

Faraday Detection

Triple modulation technique

Complete Setup

Pump and probe laser systems

Gyromagnetic Faraday Rotation on Polarized ³He

Target region

Some Systematic Checks

- Does the FR from multiple objects in the beam path add up with our measurement method?
- Are there errors associated with windows in the beam path?

1 window

test window A

windows A + B

Light Depolarization

- s- and p-polarizations:
- depolarization due to reflections
- effect of magnetic field

 $Depol \% = \frac{Measured Value at NOT}{Measured Value at 0^{\circ} AOI}$

Polarization loss: < 3%

Increased Sensítívíty (Multí-pass Cavíty)

Improving SNR: θ_{FR} is additive under reflection $\rightarrow \theta_{FR}$ increases

Herriott Cavity

- Flat mirrors: not optimal need better beam focusing
- Cylindrical mirrors: concave √
- Spherical mirrors: concave \checkmark

Optimizing Mirror Geometry

Two spherical mirrors with glass windows

Cylindrical mirrors

Gold covered spherical mirror

Single photon pattern on mirror surface

Gyromagnetic Faraday Rotation on Polarized ³He

Cavity Mirrors

Date: 1/15/2017

Tine: 12:19:12 PM

Gyromagnetic Faraday Rotation on Polarized ³He

Experimental Tests

Single pass vs multi pass: 4 mm GE180 + air

# of passes	θ _{"meas"} [µrɑd]	θ _{air} [µrad]	θ _{glass} [µrad]
1	8.95	2.15	6.80
15 × 1	134.25	-	102.00
15	126.05	1.69	100.24

Single pass: B-field scan 4 mm GE180 + air

Gyromagnetic Faraday Rotation on Polarized ³He

Single pass: On-resonance 10 cm Rb gas at T_{room}

Fírst FR Measurement on Polarízed ³He

Preliminary!!

Best measurement so far (w/o ³He cell): $\theta = (15 + - 9)$ nrad (15 passes) $\rightarrow (1 + - 2)$ nrad/pass

Gyromagnetic Faraday Rotation on Polarized ³He

- Gyromagnetic Faraday rotation as a probe of a possible DMAU
- Developed apparatus with a sensitivity of 2 nrad/pass
 - $\rightarrow \Delta n \sim 4 \times 10^{-14}$ /cm @ 633 nm
- Test case → polarized ³He: no effect at level of ~10 nrad/40 cm observed yet
- Further systematic studies in progress
- Do results place limits on SME (e.g. limit on $\vec{\sigma}_{photon} \cdot \vec{\sigma}_{^3He}$ correlations ?)