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Ultra-low magnetic fields
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- Inner room size  2,9 x 2,9 x 2,8 m ,- Illumination through glass fibres- Air-conditioned
3

RF shield 12 x 12 x 12 m  2 mm galvanized steel sheet
3

Massive concrete foundation

Passive magnetic shielding:- 7 layers of MU-Metall- 1 eddy current shield 

Double coil system- for active shielding- for earth field compensation 

Wooden gallery

4 sliding doors driven by pneumatic air - doors are blown up to reduce gap

15,6 m 
3

Berlin Magnetically Shielded Room - 2

Ultra-low magnetic fields
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• Passive magnetic shielding7-layers of mu-metal
• One eddy-current layer
• Active shielding coil system(feedback control)
• Shielding performance @ 0.1Hz

Passive shielding:           2105
With active shielding:    2107

BMSR-2

Berlin Magnetically Shielded Room - 2
Ultra-low magnetic fields

2004200820122016
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BMSR-2 passiv shielding
BMSR

Residual Field Homogeneity Stability
2017 500 pT 0.2 pT/mm 2 pT/h
2018 100 pT 0.02 pT/mm 0.2 pT/hUpgrade 2018:

Ultra-low magnetic fields

Add another mu-metal layerUpgrade the temperature control



May 17, 2017 Low-Energy Probes of New Physics  page7/55

AMSR

100 m

BMSR2

BMSR1
ZMSR

Ultra-low magnetic fields
PTB Campus Berlin
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Superconductingshield

The „Micromagnet“

Ultra-low magnetic fields

2018
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The „Micromagnet“
BMSR2

5000s Superconductingshield 
10000s

1

2

0

-1

B/pT

Ultra-low magnetic fields
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+   

 1mT < 0.5nT

Helmholtz-Coils inside BMSR-2
Ultra-low magnetic fields
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3D Helmholtz coils

Ultra-low magnetic fields

SQUID

Dewarfilled withliquid He

3He and/or 129Xe
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Magnetic sensors



May 17, 2017 Low-Energy Probes of New Physics  page13/55

SQUID (PTB)

OPM (QuSpin)

10-2 10-1 100 101 102f/ Hz 
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Optically Pumped Magnetometer (OPM)

Magnetic sensors
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7 mm

Superconducting Quantum Interference Device (SQUID)

liquid HeDewar

„Cart-wheel“ design by D. Drung

Magnetic sensors
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Noise floor < 3.5 fT/Hz

Mechanical vibrations
1/f noise < 3 Hz

Power line interferences

Magnetic sensors

 20162017

Storm et al. APL, 2017

Noise floor < 0.16 fT/Hz
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3He @ 546 pT (17,7 mHz ) 

3He precession measured over 7000s

Magnetic sensors
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Since May 1st :
Core Facility offers access to external users

Magnetic sensors
Core Facility „Metrology of ultra-low magnetic fields“
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Scientist 1: Development of magnetic metrology(Jens Voigt)
Scientist 2: Scientific support of external users
Engineer : Management and technicalsupport of external users Open positions!

DFG-funded

Magnetic sensors
Core Facility „Metrology of ultra-low magnetic fields“
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Experimental SetupUltra-low magnetic fieldsMagnetic sensorsCo-magnetometry
Search for exotic interactionsNuclear magnetic momentsAxion wind

Co-magnetometry



May 17, 2017 Low-Energy Probes of New Physics  page20/55

Polarizing 3He and 129Xe

Spin polarization lab

Co-magnetometry
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Co-magnetometry
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Nuclear precession as measured by a SQUID
B(t)

/pT

B(t)
/pT

T2*>100 h

Co-magnetometry-

3He
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3He frequency (10s SinCos-fit)
SQUID (B0-direction)
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Co-magnetometry
Stabilizing the field by using the SQUID 
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3He
129Xe

B0

3He
129Xe

Drift compensationNN-Co-magnetometry :  Observing two spin species (3He and 129Xe )in one cell

Co-magnetometry

nHe/nXe

t/s

r[f
T/√

Hz)

1              10            100Frequency [Hz]

129Xe 3He

• Superposition of two frequencies
• Blockwise calculation of nHe/nXeeliminates the drifts
• The faster decay limits frequencyresolution
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Even in the presence of magnetic field drifts, its average value can be determined by an utmost precision !

Co-magnetometry
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Experimental SetupUltra-low magnetic fieldsMagnetic sensorsCo-magnetometry
Search for exotic interactionsNuclear magnetic momentsAxion wind

Nuclear magnetic moments
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Makulski W 2015 Magn. Reson. Chem. 53 273

Pfeffer M and Lutz O 1994 J. Magn. Reson. 108 106Flowers J L, Petley B W, and Richards M G 1993 Metrologia 30 75

Temporal variation of nuclear magnetic moments ?

up to now no instability observed

Flambaum VV, Tedesco AF 2006 Phys Rev C 73, 055501

Nuclear magnetic moments
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2,75408
2,754081
2,754082
2,754083
2,754084
2,754085
2,754086 2.75408544(07)

Pfeffer and Lutz 1994Flowers et al. 1993

Makulski W 2015

PTB

The PTB value is 1.5 ppm above the literature value

What about systematic errors ?

Nuclear magnetic moments

Instability ?Ultra-low field effect ?



May 17, 2017 Low-Energy Probes of New Physics  page29/55

1. The observer is spinning2. The lab is in a rotating frame
B

J
nLarmorx

z

y

r

WEarth

Our lab is on a spinning planet 

Nuclear magnetic moments
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q

B
WEarth

J
nLarmorx

z

y

r

WEarth = 1/1day= 11.6057617(4) mHz

1. The observer is spinning

Co-latitude of Berlin:
q =   90°- 52.5164°=   37.4836(30)°

We have to addthe observer‘s rotationto the Larmor precession

Nuclear magnetic moments
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The daily motion of the lab on the surface 
of the spinning Earth along the latitude 
line moves the applied magnetic field 
across a curved surface. 

q
B

WEarth

nLarmor

z

nLarmor

B

This adds a continuously 
increasing phase to the Larmor 
precession frequency [Berry 1984] 

This adds an offset of  ୆ୣ୰୰୷ ୉ୟ୰୲୦ to nLarmor , 
which only depends on the geographical latitude of the lab.

Within one sidereal day the motion 
completes a full circle, which is the 
perimeter of a cone forming the solid 
angle with its apex 
at the center of the Earth

Nuclear magnetic moments
2. The lab is rotating
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nlab= nLarmor +Dnobs +DnBerry.

୐ୟ୰୫୭୰ ୉ୟ୰୲୦
୐ୟ୰୫୭୰ ୉ୟ୰୲୦ , if = 90°

୐ୟ୰୫୭୰ୌୣ ఊౄ౛
ఊ౔౛ ୐ୟ୰୫୭୰ଡ଼ୣ

୐ୟୠୌୣ ఊౄ౛
ఊ౔౛ ୐ୟୠଡ଼ୣ ୉ୟ୰୲୦ ఊౄ౛

ఊ౔౛

Weighted phase difference:

Nuclear magnetic moments
The precession frequency in the lab is shifted by a constant amount

q

B

WEarth

J
x z

y

r
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Nuclear magnetic moments
ு௘
௑௘ ୉ୟ୰୲୦ ୉ୟ୰୲୦

a = 12.3882(14) mHz b = 4.2033(4) mHz



May 17, 2017 Low-Energy Probes of New Physics  page34/55

Experiment : J = 90°

Let r vary in steps of 45°:

a = 12.35(.11) mHz

5.10(.15)mHz

Nuclear magnetic moments
ு௘
௑௘ ୉ୟ୰୲୦ ୉ୟ୰୲୦

a = 12.3882(14) mHz b = 4.2033(4) mHz
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2,75408

2,754081

2,754082

2,754083

2,754084

2,754085

2,754086 2.75408544(07)

2.75408100(07)

Pfeffer and Lutz 1994Flowers et al. 1993

Makulski W 2015

PTB

Nuclear magnetic moments
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n He/
n Xe

t/s

nHe/nXe

Lit. (k=1) Self shift decreases due to relaxation

3He 
129Xe

Nuclear magnetic moments
Additional systematics:Self shift due to non-spherical symmetry
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Statistical uncertainties:
 Thermally induced B0 drift
 DAQ clock drift removed by comagnetometer
 Current source drift

Systematic errors :
 DnEarth Earth rotation
 DnRBS(t) self shift
 DnChem chemical shift

Nuclear magnetic moments
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Experimental SetupUltra-low magnetic fieldsMagnetic sensorsCo-magnetometry
Search for exotic interactionsNuclear magnetic momentsAxion wind

Axion wind
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Global Network of Optical Magnetometers for Exotic Physics (GNOME)
Add on: Local net on one siteOPMs + SQUIDs

BMSR 1

AMSR

100 m

BMSR 2

ZUSE

Expected time shift:
Dt = Ds/vEarth≈ 100 m/300 (km/s) ≈  300 ms

Micro-GNOME

Axion wind

Pustelny et al. Ann Phys 2013
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3He B0

non-magneticinteraction byAxion wind

Axion interaction acts like a tickle pulse of NMR, when in resonance withthe Larmor frequency

Axion wind
Cosmic Axion Spin Precession Experiment (CASPEr) 

Budker et al. PRX (2014)Graham and Rajendran PRD (2011, 2013))

+ high sensitivity- finding the resonance frequency

SQUID
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0 wL

2wALP

SILFIA Concept:Frequency modulation of wL results in sidebands at wL ± wALP

ALP ALP

+  they are at well defined positions+  we cannot miss them(- if their amplitude is high enough) 

Axion wind
Sidebands in Larmor Frequency Induced by Axions
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3He B0

SQUIDs
wL wL+DwALP(t)

Bo
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B Z / p
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P. Graham and S. Rajendran, PRD 2011, 2013

non-magneticinteraction byAxion or ALP

w(t)wL + DwALP*cos (wALP*t)

2/wALP

2DwALP

Axion interaction acts like an oscillating magnetic field
mALP

Axion wind
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Frequency modulation :

Signal recorded by SQUID:

Modulation index I

Axion wind

mALPgaNN
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The amplitude of the side bands is given by the Bessel functions

Modulation index :

with A0 ≈ AHe
Modulation index I

Nor
ma

lize
d am

plit
ude J0
J1

J2

Axion wind
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Frequency modulation :

Axion wind

DwALP g B“ALP“

Signal recorded by SQUID:
Generating a fake axion signal:
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Frequency modulation :

Axion wind

DwALP g B“ALP“

Signal recorded by SQUID:
Generating a fake axion signal:
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B0         = 1 mTB“ALP“ = 1 nTn“ALP“ = 1.5 HzA0 = 12.6 fT
B0 + B“ALP“* sin (wALP *  t )

Feed a sinusodial current to a second Helmholz coilto produce a modulation field 

3He

SQUIDs

Axion wind
Generating a fake axion signal:
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B0 + B“ALP“* sin (wALP *  t )
B0         = 1 mTB“ALP“ = 1 nTn“ALP“ = 1.5 HzA0 = 12.6 fT

nHe = gHe B0 =  32.4 HzDnALP = gHe B“ALP“ = 32.4 mHz ± 3 mHz

= 136 aT ± 15 aT

Axion wind
Feed a sinusodial current to a second Helmholz coilto produce a modulation field 
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B0         = 1 mTB“ALP“ = 1 nTn“ALP“ = 1.5 HzA0 = 12.6 fT

Axion wind
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Larmor frequency

Side bands

A1+A1-

A1 = 145 aT± 10 aTnALP =  1.5 Hz
2nALP

nL

The side bands are at well defined frequencies !

B0         = 1 mTB“ALP“ = 1 nT ± 0.1 nTn“ALP“ = 1.5 HzA0 = 12.6 fT

A1 = 136 aT ± 15 aT

Axion wind
Measured amplitude spectrumagrees with calculation
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Demo Limits
Initial amplitude: 12.6 fT 100 pT
SQUID System noise: 3.5 fT/Hz 160 aT/Hz
Life time of precession T2* 600 s 100 hours
Axion Coherence time t - 106/nALP

SNR > 10

10-21 10-18 10-15 1x10-12 1x10-9 1x10-6 1x10-3 1x100
10-21
10-18
10-15

1x10-12
1x10-9
1x10-6
1x10-3

1x10-4 10-1 102 105 108 1011 1014

1x10-10
1x10-7
1x10-4
1x10-1
1x102
1x105

Supernova cooling bounds
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 Frequency / Hz
Axion wind
Detection limitsof SILFIA
B“ALP“ = 1 nTn“ALP“ = 1.5 Hz

SNR > 10
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How can we identify a magnetic artefact ?
In a SQUID magnetic artifacts generate a signal of their own !!
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Axion wind
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• SQUIDs reach a system noise level down to 160 aT/  

• Larmor frequencies down to a few millihertz are available
• Co-magnetometry at ultra-low fields enables the determinationof nuclear magnetic moments with small statistical errors
• Earth rotation has a significant systematic impactat ultra-low frequencies
• Axions of ultra-low masses down to 10-21eV are detectable
• Artefacts are identified by the presence of an additional peak at the modulation frequency „nALP“

Summary
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