## The Nucleon Axial Charge from Lattice QCD

## Evan Berkowitz

Institut für Kernphysik Institute for Advanced Simulation Forschungszentrum Jülich

15 May 2017 Low Energy Probes of New Physics Mainz Institute for Theoretical Physics



1701.07559 1704.01114

ÜLICH

FORSCHUNGSZENTRUM



**NVIDIA** 

University of Glasgow

GERS

David Brantley, Henry Monge Camacho, Chia Cheng (Jason) Chang, Ken McElvain, André Walker-Loud

- C Enrico Rinaldi
- ZJ EB

Bálint Jóo

Nicolas Garron

L Pavlos Vranas

SC Thorsten Kurth

INC Amy Nicholson

idia Kate Clark

Glasgow Chris Bouchard

Rutgers

William &

Mary

Chris Monahan

Kostas Orginos



### The Nucleon Axial Charge

$$\left\langle N(p) \mid A^a_\mu \mid N(p) \right\rangle = \left\langle N(p) \mid \bar{\psi} \gamma_\mu \gamma_5 \tau^a \psi \mid N(p) \right\rangle$$
$$= g_A \ \bar{n}(p) \gamma_\mu \gamma_5 \tau^a n(p)$$

- Free neutron lifetime
- Nuclear force
- Nuclear β decay





t

### Applications



Big Bang Nucleosynthesis Astrophysics

New Physics Searches













## A long-outstanding problem for LQCD

Bhattacharya, Cohen, Gupta, Joseph, Lin, Yoon PRD 89 (2014) arXiv:1306.5435



### LQCD Systematics



### any calculation



physical quark masses



### continuum limit



infinite volume limit

## MILC Ensembles

MILC Collaboration Phys. Rev. D87 (2013) 054505

| abbr. name | ensemble                            | $N_{cfg}$ | $N_{srcs}$ | volume           | $\sim a  [\mathrm{fm}]$ | $\sim m_{\pi,5}  [\text{MeV}]$ | $\sim m_{\pi,5}L$ |
|------------|-------------------------------------|-----------|------------|------------------|-------------------------|--------------------------------|-------------------|
| a15m310    | l1648f211b580m013m065m838a          | 1960      | 24         | $16^3 \times 48$ | 0.15                    | 307                            | 3.78              |
| a12m310    | l2464f211b600m0102m0509m635a        | 1053      | 4          | $24^3 \times 64$ | 0.12                    | 305                            | 4.54              |
| a09m310    | l3296f211b630m0074m037m440e         | 784       | 8          | $32^3 \times 96$ | 0.09                    | 313                            | 4.50              |
| a15m220    | l2448 f211 b580 m0064 m0640 m828 a  | 1000      | 12         | $24^3 \times 48$ | 0.15                    | 215                            | 3.99              |
| a12m220S   | l2464f211b600m00507m0507m628a       | 1000      | 4          | $24^3 \times 64$ | 0.12                    | 218                            | 3.22              |
| a12m220    | l3264f211b600m00507m0507m628a       | 1000      | 4          | $32^3 \times 64$ | 0.12                    | 217                            | 4.29              |
| a12m220L   | $\rm l4064f211b600m00507m0507m628a$ | 1000      | 4          | $40^3 \times 64$ | 0.12                    | 217                            | 5.36              |
| a15m130    | l3248f211b580m00235m0647m831a       | 1000      | 5          | $32^3 \times 48$ | 0.15                    | 131                            | 3.30              |

• Anyone is free to use them

- Large statistics available
- Capable of controlling all systematic uncertainties
- We use domain wall valence on the HISQ sea,  $\mathcal{O}(a^2)$  errors [1701.07559].

### LQCD Systematics



### any calculation



physical quark masses



### continuum limit



infinite volume limit

### LQCD Systematics



physical quark masses

infinite volume limit

### New Methods



New Analytic Tools

Improved Systematics Computationally Affordable





### Effective Mass



$$C(t) = \langle \Omega | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | \Omega \rangle$$
  
=  $\sum_{n} \langle \Omega | e^{\hat{H}t} \mathcal{O}(0) e^{-\hat{H}t} \frac{|n\rangle \langle n|}{2E_{n}} \mathcal{O}^{\dagger}(0) | \Omega \rangle$   
=  $\sum_{n} Z_{n} Z_{n}^{\dagger} \frac{e^{-E_{n}t}}{2E_{n}}$   
 $M^{eff}(t) = -\partial_{t} \ln (C(t))$   
 $\lim_{t \to \infty} M^{eff}(t) = E_{0}$ 









## Standard Method

PNDME Phys. Rev. D94 (2016) arXiv:1606.07049



Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963





t<sub>min</sub>















# Improved systematics Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963



# Improved systematics Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963



### Improved systematics







## Example Effective Matrix Element





- Not QCD Specific
- Any fermion bilinear matrix element

3-point  $\rightarrow$  2-point function: easier fits

٠

- Known spectral decomposition
- Stochastic enhancement
- 3/2 the cost of one temporal separation

### Systematics for an example point



### Systematics for an example point



### Another example point



## Models

$$\epsilon_{\pi} = \frac{m_{\pi}}{4\pi f_{\pi}} \qquad \delta_a = c_{2a} \frac{a^2}{w_0^2}$$

| Physics                         | Finite Volume                                                                                                                      | m <sub>π</sub> dependence                  | lattice spacing<br>dependence |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|--|
| Taylor Expans                   | sion independent<br>$\delta_L \equiv g_A(L) - g_A(\infty)$                                                                         | ε <sub>π</sub> 0                           | a <sup>0</sup>                |  |
| Chiral<br>Perturbatic<br>Theory | $= \frac{3}{3} \epsilon_{\pi}^{2} \left[ g_{0}^{3} F_{1}(m_{\pi}L) + g_{0} F_{3}(m_{\pi}L) \right]$<br>on coefficients<br>reappear | $[e_{\pi}L)$ $\mathbf{\epsilon}_{\pi}^{2}$ | a²<br>ɑs a²                   |  |

### Chiral Extrapolation



### Chiral Extrapolation



### **Taylor Series Extrapolation**



### **Taylor Series Extrapolation**



## Model Comparison





### Towards 1% uncertainty



### Towards 1% uncertainty



### Backup Slides

### All Ensembles



### Infinite Volume Extrapolation: a12m220



Model

 $\delta_L \equiv g_A(L) - g_A(\infty)$  $g_A = c_0 + \delta_a + \delta_L,$  $= \frac{8}{3} \epsilon_{\pi}^{2} \left[ g_{0}^{3} F_{1}(m_{\pi}L) + g_{0} F_{3}(m_{\pi}L) \right]$  $g_A = c_0 + \alpha_S \delta_a + \delta_L \,,$  $g_A = c_0 + c_2 \epsilon_\pi^2 + \delta_L \,,$ Lattice Spacing  $\delta_a = c_{2a} \frac{a^2}{w^2}$  $g_A = c_0 + c_2 \epsilon_\pi^2 + \delta_a + \delta_L \,,$  $g_A = c_0 + c_2 \epsilon_\pi^2 + \alpha_S \delta_a + \delta_L \,,$ Pion mass  $g_A = g_0 + \delta_a + \delta_L \,,$  $\epsilon_{\pi} = \frac{m_{\pi}}{4\pi f_{\pi}}$  $g_A = g_0 + \alpha_S \delta_a + \delta_L \,,$  $g_A = g_0 - (g_0 + 2g_0^3)\epsilon_\pi^2 \ln(\epsilon_\pi^2) + c_2\epsilon_\pi^2 + \delta_L$  $g_A = g_0 - (g_0 + 2g_0^3)\epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_2\epsilon_{\pi}^2 + \delta_a + \delta_L,$  $g_A = g_0 - (g_0 + 2g_0^3)\epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_2\epsilon_{\pi}^2 + \alpha_S\delta_a + \delta_L,$ 

Finite Volume

## Model Comparison



### χPT only: gA=1.257(20)(09) [1.7%]



### Smearing Study



### Autocorrelations

