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Primordial non-Gaussianity. Many inflationary scenarios (notably, multi-field  
Inflation) predict small, model-dependent deviations from Gaussianity. 
Additional information in 3-point (bispectrum) and 4-point (trispectrum)  
correlation functions. 
  

Local Equilateral Flat 

•  Fit primordial bispectrum (trispectrum) template to the data and measure  
    the degree of correlation via a dimensionless parameter fNL  (gNL, τNL).  
 

•  Large fNL for a given shape selects specific scenarios. E.g. large local fNL 
    would rule out standard single-field models. 

Beyond	power	spectra:	non-Gaussianity	

L1 
L2 

L3 
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Primordial		and	CMB	bispectrum		

Non-Gaussianity:	higher	order	correlators	of	the	primordial	curvature		
perturba?on	field	are	non-vanishing	

•  Largest	correlator	(in	most	cases):	the	primordial	bispectrum		
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•  What	we	measure	is	the	CMB	angular	bispectrum	:		 B123
m1m2m3 = a1

m1a2
m2a3

m3
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•  Primordial	and	CMB	bispectra	are	linked	through	linear	radia?ve	transfer	effects	
						(same	as	for	power	spectrum)	
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The	2015	Planck	bispectrum	(modal)	

M.	Liguori				"Non-Gaussiani$es	via	the	modal	es$mator"	

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Fig. 3. CMB temperature and polarisation bispectrum reconstructions for Planck SMICA maps using the full set of polynomial modes with
nmax = 2001 and with signal-to-noise weighting. The top bispectra are the symmetric pure temperature TTT (left) plotted with `  1500 and
E-mode polarisation EEE (right) shown for 30  `  1100. Below are the mixed temperature/polarisation bispectra with TTE on the left (with E
multipoles in the z-direction) and TEE on the right (with T multipoles in the z-direction). All SN thresholds are the same.

Fig. 4. Comparison of CMB polarzation bispectrum EEE reconstructions for Planck NILC, SEVEM and Commander foreground-separated maps
with signal-to-noise weighting. Note that these results are not as internally consistent between the four methods, also comparing SMICA shown
in figure 3 which is closest to NILC. We will compare the underlying modal coe�cients below to demonstrate these di↵erences quantitatively.
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l3 

l2 

l1 

squeezed 

9	

Bispectrum	

l1 << l2,l3 
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Main	primordial	shapes	
Local Equilateral Orthog. 

10	

•  Local	shape:	peaked	on	squeezed	triangles.	Mul?field	Infla?on	and	Ekpyro?c		
																													models.	
	
•  Equilateral	shape:	single-field	models	with	non-standard	kine?c/higher-deriva?ve	
																																							terms,	effec?ve	field	theory		

•  Flat	shape:	linear	combina?on	of	equilateral.	and	orthogonal.	Non	bunch	Davies	
																										vacuum	

•  Standard	single	field	slow-roll:	negligible	NG	(given	current		sensi;vity)	

M.	Liguori				”Tes$ng	Primordial	non-Gaussianity"	
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NG	fields	in	real	space	
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Local: large scale modulation of small  
scale power (more/less small scale structure 
in large scale overdense regions)  
 
Equilateral: filamentary structure of over/
underdense regions  
 
Flattened: pancake structure 

Lewis 2012 
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fNL = 0, gNL = 0 fNL = 3000, gNL = 0 

Liguori	et	al.	2007	

Φ
!x( ) =ΦL

!x( )+ fNL ΦL
2 !x( )− Φ2 !x( )( )+ gNLΦL

3 !x( )
CMB local-type NG simulations 
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Op?mal	fNL	bispectrum	es?mator	

  

€ 

ˆ f NL =
1
N∑ B 1 2 3

m1m2m3 C−1a( ) 1

m1 C−1a( ) 2

m2 C−1a( ) 3

m3
− 3C 1m1 2m2

−1 C−1a( ) 3

m3

Leaving	aside	complica?ons	coming	from	breaking	of	sta?s?cal	isotropy		
(sky-cut,	noise…),	one	can	see	that	we	are	extrac?ng	the	three	point		
Func?on	from	the	data	and	fi[ng	theore?cal	bispectrum	templates	to	it	

  

€ 

ˆ f NL =
1
N
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a 1
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C 1

a 2
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C 3 i mi

∑

A	brute	force	implementa?on	scales	like										.	Unfeasible	at	Planck		
(or	WMAP)	resolu?on.	
	
Can	achieve	massive	speed	improvement	(								scaling)		if	the	reduced		
bispectrum	is	separable	(Komatsu,	Spergel,	Wandelt	2003).	KSW	method.	

max
5
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3
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k
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										Expansion	 																Basis	modes		

= α0 + α1 

+ α2 + … 

α0,α1,…,αn( )

Modal	expansion	in	figures	
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Bispectrum	es?ma?on	

= β0 + β1 + β2 

For	a	given	dataset,	extract	best-fit	βi,	i=1,…,n		

• 			The	basis	elements	pictured	on	the	right	are	by	construc;on		
					factorizable	
	
	

• 			Apply	posi?on	space	cubic	sta?s?cs,	KSW,	to	each	separable		

				template		on	the	right	to	es?mate	the	amplitudes	βi				

• 			Orthonormal	basis	è βi	uncorrelated	(in	first	approx.)	

+ … 
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fNL	and	bispectrum	reconstruc?on	

α0,α1,…,αn( )

β0,β1,…,βn( )

Theory 

Data  
(“mode spectrum”) 

fNL =
1
N

αnβn
n
∑

N =
1
6

αn
2

n
∑

= βn
n
∑ ℜn
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J. Fergusson, ML, P. Shellard 2009, 2010, arXiv: 0912.5516, 1006.1642 
J. Fergusson, P. Shellard, 2011, arXiv: 1105.2791,  
M. Shiraishi, ML, J. Fergusson 2014, arXiv: 1403.4222, 1409.0265  
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The	2014	Planck	bispectrum	(modal)	
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Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Fig. 3. CMB temperature and polarisation bispectrum reconstructions for Planck SMICA maps using the full set of polynomial modes with
nmax = 2001 and with signal-to-noise weighting. The top bispectra are the symmetric pure temperature TTT (left) plotted with `  1500 and
E-mode polarisation EEE (right) shown for 30  `  1100. Below are the mixed temperature/polarisation bispectra with TTE on the left (with E
multipoles in the z-direction) and TEE on the right (with T multipoles in the z-direction). All SN thresholds are the same.

Fig. 4. Comparison of CMB polarzation bispectrum EEE reconstructions for Planck NILC, SEVEM and Commander foreground-separated maps
with signal-to-noise weighting. Note that these results are not as internally consistent between the four methods, also comparing SMICA shown
in figure 3 which is closest to NILC. We will compare the underlying modal coe�cients below to demonstrate these di↵erences quantitatively.
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Planck	TTT:	2013	vs	Planck	2015	

M.	Liguori				”Tes$ng	Primordial	non-Gaussianity"	

2013 2015 

18	

Modal bispectrum reconstruction: 
Fergusson, ML, Shellard 2010, 2011 

Primordial NG Planck results: 
Ade et al., Planck 2015 results. XVII 



QVG	–	Mainz	2017	

Planck	TTT:	2013	vs	Planck	2015	

M.	Liguori				”Tes$ng	Primordial	non-Gaussianity"	

2013 2015 

Does not match period of acoustic  
oscillations for primordial bispectra 

19	
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Planck	TTT:	2013	vs	Planck	2015	

M.	Liguori				”Tes$ng	Primordial	non-Gaussianity"	

2013 2015 

ISW-lensing signature 

20	
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Planck Collaboration: Planck 2015 Results. Constraints on primordial NG
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each

22

fNL	from	Planck	bispectrum	(KSW)	
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fNL,	es?mators	comparison	

M.	Liguori				”Tes$ng	Primordial	non-Gaussianity"	

SMICA SEVEM 

NILC Commander 

22	
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T+E 

fNL,	cleaned	maps	comparison	(modal)	

ISW-lensing 

23	
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Beyond	“standard”	shapes	
	
•  We	compute	fNL	for	a	large	number	of	primordial	models	beyond	the	standard		
						local,	equilateral,	orthogonal	shapes,	including	

ü  Equilateral	family 	(DBI,	EFT,	ghost)	
ü  Flacened	shapes 	(non-Bunch	Davies)	
ü  Feature	models 	(oscillatory	bispectra,	scale-dependent)	
ü  Direc?on	dependence		
ü  Quasi-single-field	
ü  Parity-odd	models	

	
	
•  No	evidence	for	NG	found,	constraints	on	parameters	from	the	models	above	

•  Extended	survey	of	feature	models	with	respect	to	2013,	600	->	2000	modes,	
					including	polariza$on.		

M.	Liguori				”Tes$ng	Primordial	non-Gaussianity"	 24	

All primordial NG Planck results in Planck 2015 results. XVII.   
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S ~ fNL
feat. sin K

k*
+φ

!

"
#

$

%
&

Feature	models	

Sflat− feat. = Sflat × Sfeat
Sequil− feat = Sequil × Sfeat

Change of sign does not  
match acoustic peak 
 

Can be captured by oscillating  
features 
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Features	x	Flat	
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Planck	vs	WMAP	
Planck WMAP 

M. Shiraishi, ML, J. Fergusson 2014 

J Fergusson, ML, P. Shellard 2009, 2010  
(updated plot) 

29	
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Trispectrum	

Pictures from Lewis 2012 

Φ k1( )Φ k2( )Φ k3( )Φ k4( ) ∝F k1,k2,k3,k4,K12,K23( )δ
!
k1 +
!
k2 +
!
k3 +
!
k4( )

Diagonal squeezed 
trispectrum: τNL 

Leg squeezed 
trispectrum: gNL 

glocalNL = −9.0± 7.7( )×10−4

τ NL < 2800 (95% C.L.)
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Implica?ons	for	infla?on	(examples)	

•  No	evidence	for	primordial	NG	of	the	local,	equilateral,	orthogonal	type.	
						consistent	with	the	simplest	scenario:	standard	single-field	slow	roll.	
	

•  Other	possibili?es	are	however	not	ruled	out.	Constraints	on	fNL	are		
						converted	into	constraints	on	relevant	model	parameters,	for	example:	
	

								-	Curvaton	decay	frac?on	rD	>	19%	(from	local	fNL,	T+E)	
	

								-	Speed	of	sound	in	Effec?ve	Field	Theory	cS	>	0.024	(from	equil.	+	ortho.	fNL)	

	
	
	

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

N  90, we find
�  0.7 95% CL , (96)

dramatically restricting the allowed parameter space of this
model.

Power-law k-inflation: These models (Armendariz-Picon et al.
1999; Chen et al. 2007b) predict f equil

NL = �170/(81�), where
ns � 1 = �3�, c2

s ' �/8. Assuming a prior of 0 < � < 2/3,
our constraint f equil

NL = �42 ± 75 at 68% CL (see Table 9)
leads to the limit � � 0.05 at 95% CL. On the other hand,
Planck’s constraint on ns � 1 yields the limit 0.01  � 
0.02 (Planck Collaboration XXII 2013). These conflicting lim-
its severely constrain this class of models.

Flat Models and higher derivative interactions: Flat NG can
characterize inflationary models which arise from independent
interaction terms di↵erent from the (⇡̇)3 and ⇡̇(r⇡)2 discussed
in Sect. 2 (see also Sect. 9.2). An example is given by mod-
els of inflation based on a Galilean symmetry (Creminelli et al.
2011a), where one of the inflaton cubic interaction terms allowed
by the Galilean symmetry, M3[⇡̈(@i@ j⇡)2/a4 � 2H⇡̇⇡̈2 + 3H3⇡̇3],
contributes to the flat bispectrum with an amplitude f flat

NL =

(35/256)(M3H)/(✏M2
Pl) (Creminelli et al. 2011a). Here, ⇡ is the

relevant inflaton scalar degree of freedom, ✏ the usual slow-roll
parameter and a the scale factor and H the Hubble parame-
ter during inflation. Our constraint f flat

NL = 37 ± 77 at 68% CL
(see Table 11) leads to (M3H)/(✏M2

Pl) = 270 ± 563 at 68%
CL. These interaction terms are similar to those arising in gen-
eral inflaton field models that include extrinsic curvature terms,
e.g., parameterized in the E↵ective Field Theory approach as
M2⇡̇(@i j⇡)2/a4 (Bartolo et al. 2010a), which contribute to a flat
bispectrum with an amplitude f flat

NL = (50/108) M2/(c2
s ✏M2

Pl). In
this case, we obtain M2/(c2

s ✏M2
Pl) = 80 ± 166 at 68% CL.

9.2. Implications for Effective Field Theory of Inflation

The e↵ective field theory approach to inflation (Weinberg 2008;
Cheung et al. 2008) provides a general way to scan the NG pa-
rameter space of inflationary perturbations. For example, one
can expand the Lagrangian of the dynamically relevant degrees
of freedom into the dominant operators satisfying some under-
lying symmetries. We will focus on general single-field models
parametrized by the following operators (up to cubic order)

S =
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PlḢ(1 � c�2

s ) � 4
3

M4
3

!

⇡̇3
#

where ⇡ is the scalar degree of freedom (⇣ = �H⇡). The mea-
surements on f equil

NL and f ortho
NL can be used to constrain the mag-

nitude of the inflaton interaction terms ⇡̇(@i⇡)2 and (⇡̇)3 which
give respectively f EFT1

NL = �(85/324)(c�2
s � 1) and f EFT2

NL =

�(10/243)(c�2
s � 1)

h

c̃3 + (3/2)c2
s

i

(Senatore et al. 2010, see also
Chen et al. 2007b; Chen 2010b). These two operators give rise
to shapes that peak in the equilateral configuration that are,
nevertheless, slightly di↵erent, so that the total NG signal will
be a linear combination of the two, possibly leading also to
an orthogonal shape. There are two relevant NG parameters,
cs, the sound speed of the the inflaton fluctuations, and M3
which characterizes the amplitude of the other operator ⇡̇3.
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Fig. 22. 68%, 95%, and 99.7% confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding �2 as described

in the text.
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Fig. 23. 68%, 95%, and 99.7% confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 22 via
the change of variables in Eq. (98).
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non-interacting model (vanishing NG) correspond to cs = 1 and
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N  90, we find
�  0.7 95% CL , (96)

dramatically restricting the allowed parameter space of this
model.

Power-law k-inflation: These models (Armendariz-Picon et al.
1999; Chen et al. 2007b) predict f equil

NL = �170/(81�), where
ns � 1 = �3�, c2

s ' �/8. Assuming a prior of 0 < � < 2/3,
our constraint f equil

NL = �42 ± 75 at 68% CL (see Table 9)
leads to the limit � � 0.05 at 95% CL. On the other hand,
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M2⇡̇(@i j⇡)2/a4 (Bartolo et al. 2010a), which contribute to a flat
bispectrum with an amplitude f flat
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where ⇡ is the scalar degree of freedom (⇣ = �H⇡). The mea-
surements on f equil

NL and f ortho
NL can be used to constrain the mag-

nitude of the inflaton interaction terms ⇡̇(@i⇡)2 and (⇡̇)3 which
give respectively f EFT1
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(Senatore et al. 2010, see also
Chen et al. 2007b; Chen 2010b). These two operators give rise
to shapes that peak in the equilateral configuration that are,
nevertheless, slightly di↵erent, so that the total NG signal will
be a linear combination of the two, possibly leading also to
an orthogonal shape. There are two relevant NG parameters,
cs, the sound speed of the the inflaton fluctuations, and M3
which characterizes the amplitude of the other operator ⇡̇3.
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NL , f ortho
NL ), defined by thresholding �2 as described

in the text.

10�2 10�1 100

c
s

�2
00

00
�1

00
00

0
10

00
0

c̃ 3
(c

�
2

s

�
1)

Fig. 23. 68%, 95%, and 99.7% confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 22 via
the change of variables in Eq. (98).
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non-interacting model (vanishing NG) correspond to cs = 1 and
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-	DBI	infla?on:	cS	>	0.087	(T+E)	
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Future	prospects	
What	else	can	be	done	with	the	CMB	bispectrum?	
	

ü  Planck	is	very	close	to	satura?ng	the	theore?cal	limit	on	fNL	sensi?vity,	which		
						is	achievable	using	CMB	observa?ons	(a	cosmic-variance-limited	T+E	full	sky		
						survey,	up	to	l~3000,	could	s?ll	improve	by	a	factor	~2)	

ü  The	current	level	of	sensi?vity	is	amazing,	but	with	these	error	bars	we	are	s?ll		
						unable	to	directly	probe	predic?ons	from	standard	single	field	models	(fnl	~	10-2	!!),		
						or	rule	out	mul?-field	(e.g.	curvaton,	|fNL|	>	5/4)	

LSS	
ü  Scale	dependent	halo	bias	(local	ΔfNL	~	1	with	Euclid).	Control	of		
						systema?cs	will	be	crucial.	Both	in	galaxy	surveys	and	CIB.	
ü  Bispectrum	of	galaxies.	Sensi?ve	to	all	shapes.	Needs	small	scales.		
					Gravita?onal	bispectrum,	bias	and	other	non-linear	effects	pose	a	serious	challenge.	
	

Other	observables	(futuris$c)	
ü  CMB	(µ-type)	spectral	distorsions			(only	squeezed	bispectra/trispectra)	
ü  21	cm	bispectrum		

For	the	required	large	improvements	in	sensi?vity,	we	need	other	cosmological	probes	

M.	Liguori				”Tes$ng	Primordial	non-Gaussianity"	
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CORE.	CMB	bispectrum	forecasts	
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7

As we expected, the statistical errors are independent of tracer density n in the sample variance limited case, while
they scale as 1/n in the Poisson limit. This behavior becomes very clear in the numerical results shown in Figure 1.

We also notice the errors often depend on volume in a way which di↵ers from the usual V �1/2 scaling. This happens
when the k-integral for the Fisher matrix element diverges at low-k, so that most of the statistical weight comes from
the survey scale k

min

= 2⇡/V 1/3. This divergence always occurs for ⌧
NL

, so the ⌧
NL

constraint is always dominated
by the largest-scale modes in the survey (i.e. a few modes). For f

NL

this depends on the level of Poisson noise; in the
sample variance limit the statistical weight is dominated by the largest scale modes, but in the Poisson dominated
limit the statistical weight is distributed over a range of scales between k

min

and k
eq

.
We also note that in the Poisson dominated case, the last line of (32) can be rewritten:

�(⌧
NL

) = 30.6

✓

1

b
g

� 1

◆

2

(k
eq

R
0

(z)4n
0

(z))
1

nV
(Poisson dominated) (33)

i.e. �(⌧
NL

) only depends on n, V through the total number of tracers (nV ) in the Poisson-dominated case.

FIG. 1: Statistical errors on fNL (bottom) and ⌧NL (middle) and gNL (top) for varying tracer density n, for our fiducial survey
with volume V = 25 h�3 Gpc3, redshift z = 0.7, tracer bias bg = 2.5 and maximum wavenumber k

max

= 0.1 h Mpc�1. The
‘marginalized’ case (dashed lines) refers to marginalization over Gaussian bias and a 20% Gaussian prior on 1/n

e↵

around
the fiducial value 1/n

e↵

= 1/n. When forecasting each parameter {fNL, ⌧NL, gNL}, the other two parameters are set to zero.
Constraining gNL is discussed in Section III E, while degeneracies and their covariance are discussed in Section VI.

The analytic results in this subsection are approximate (we have assumed n
s

= 1 and T (k) = 1) and shouldn’t be
used in forecasting. In Figure 1 we show the numerical results and in the next subsection we give fitting functions
which work at the few percent level and include the e↵ect of non-trivial n

s

and T (k).

D. Fitting functions

Motivated by the analytically discussion of the previous Section, here we present fitting functions for �(f
NL

) and
�(⌧

NL

) as functions of (V, z, b
g

, n), while fixing all of the parameters of the background cosmology to the Planck 2013
values, as explained in Section II. Moreover, we take k

max

= 0.1h Mpc�1 throughout.
As a first step, we define the quantity

�(n, z) =
b2
g

n

n
0

(z)
= b2

g

✓

n

1.17⇥ 10�5h3 Mpc�3

◆

D2(z) (34)
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FIG. 4: Statistical errors on fNL (bottom solid curve), ⌧NL (middle solid curve) and gNL (top solid curve) in a multitracer
analysis, with varying M

min

and N = 50 mass bins equally spaced on a log scale. When forecasting a given parameter
{fNL, ⌧NL, gNL}, the other two are set to zero. Here the volume is V = 25 h�3 Gpc3, the redshift z = 0.7 and k

max

= 0.1
h Mpc�1. Note the ‘sample variance plateau’ at M

min

⇠ 3 ⇥ 1013 h�1M�. The upper dashed line shows the Planck Fisher
forecast �(gNL) = 6.7⇥ 104 from [22]. The middle dashed line is the Planck �(⌧NL) ⇡ 720, obtained by fitting a Gaussian to
the upper part of the ⌧NL posterior for L

max

= 50 (Figure 19 of [1]).

where the minus sign appears because the covariance matrix is the inverse of the Fisher matrix.
An analytic calculation along the lines of Section III C suggests that there should always be a moderate negative

correlation between f
NL

and ⌧
NL

in the single-tracer case. Figure 5 shows the numerical results for our fiducial survey.
Note that having to marginalize over b

g

and 1/n
e↵

makes f
NL

and ⌧
NL

more degenerate and harder to distinguish.

B. Multiple tracer

The multi-tracer case is more interesting since f
NL

and g
NL

are no longer degenerate due to the di↵erent dependence
of �

f

and �
g

on halo mass (or equivalently on Gaussian bias). Following Section V, we assume perfect measurements of
all halos above some minimum mass M

min

, and use the Fisher matrix formalism to compute the correlation coe�cients
Corr(f

NL

, ⌧
NL

) and Corr(f
NL

, g
NL

). Numerical results are shown in Figure 6.
Let’s consider the f

NL

� ⌧
NL

case first. In the region with high M
min

the tracer density is low and we are deeply
in the Poisson dominated regime, with correlation coe�cient close to �0.5, in agreement with Figure 5. Decreasing
M

min

allows more tracers to be included and the correlation becomes more negative, as expected from the previous
discussion. As soon as M

min

reaches the sample variance plateau, f
NL

and ⌧
NL

start to decorrelate, reaching nearly
zero correlation at M

min

⇠ 1010h�1M�.
Joint constraints on f

NL

, ⌧
NL

were also studied in [11], who found poor prospects for distinguishing the two, and
generally weak constraints on ⌧

NL

, if the stochastic bias from ⌧
NL

is not included. We therefore conclude that
stochastic bias is a very powerful observational probe of ⌧

NL

.
In the f

NL

� g
NL

case, the two are completely degenerate in the Poisson limit of high M
min

and are therefore
observationally indistinguishable using halo bias. Close to the sample variance plateau they decorrelate partially, to
become highly negatively correlated again in the region of sample variance cancellation. We conclude that f

NL

, g
NL

are not perfectly degenerate in a multi-tracer analysis, but are always significantly correlated (see also [10] for a
detailed discussion of the degeneracy between f

NL

and g
NL

).

Multi tracer 
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peak height, and hence no change in the abundance of
massive halos. However, δ and φ are correlated, imply-
ing that rare peaks are systematically raised or lowered,
depending upon the sign of fNL. Therefore, we expect
changes in the mass function and the correlation func-
tion.

In the appendix, we derive expressions for the abun-
dance and clustering of regions above a given threshold,
which then give the clustering and mass function of halos
in the Press-Schechter model. However, we can derive the
form of the halo correlation function using a very simple
argument. The halo correlation function is usually pa-
rameterized in terms of the halo bias b, which is the rate
of change of the halo abundance as the background den-
sity is varied. Writing the matter overdensity as δ and
the halo overdensity as δh, we can define the halo bias as

δh = b δ. (6)

It is normally assumed that b → const on large scales,
but we will not make this assumption here. Consider a
long-wavelength mode, providing a background density
perturbation δ and corresponding potential fluctuation
φ. In the absence on nongaussianity, this perturbation
raises subthreshold peaks above threshold, and thereby
enhances the abundance of super-threshold peaks by bLδ,
where bL is the usual (Gaussian) Lagrangian bias. For
nonzero fNL, the long-wavelength mode also enhances the
peak height by 2fNLφpδpk, and we will focus on peaks
near threshold, such that δpk ≃ δc. This provides an
additional enhancement factor, giving a total

δh = bL(δ + 2fNLφpδc). (7)

In Fourier space, the potential and density modes are
related by φ = (3Ωm/2ar2

Hk2)δ, and so we see that the
nongaussian bias acquires a correction

∆b(k) = 2bLfNLδc
3Ωm

2ag(a) r2
Hk2

, (8)

where again bL refers to the usual Lagrangian bias for
halos of this mass with Gaussian fluctuations. The total
Lagrangian bias is then bL(k) = bL + ∆b(k).

Since we have been working with the clustering of
peaks in the initial density distribution, the above ex-
pression for the bias applies only to the early-time, La-
grangian bias. Translating these results to late-time, Eu-
lerian bias is straightforward, however. The bias of Eule-
rian halos is simply b = 1+bL : the excess of halos in some
Eulerian volume with overdensity δ is bδ = bLδ + δ. The
first term corresponds to the excess of peaks in the initial
Lagrangian volume, which are advected into the Eulerian
volume. The second term arises because an Eulerian vol-
ume with overdensity δ has δ times more mass than an
average volume, and therefore δ times more peaks.

In summary, local NG generates a scale-dependent cor-
rection to the bias of galaxies and halos, of the form

∆b(k) = 2(b − 1)fNLδc
3Ωm

2a g(a)r2
Hk2

(9)

FIG. 1: Slice through simulation outputs at z = 0 gener-
ated with the same Fourier phases but with fNL =−5000,
−500, 0, +500, +5000 respectively from top to bottom. Each
slice is 375 h−1 Mpc wide, and 80 h−1 Mpc high and deep.
We can easily match by eye much of the large scale struc-
ture; for example, an overdense region sits on the left, while
an underdense region (void) falls on the right, in all panels.
Note that for positive fNL, overdense regions are more evolved
and produce more clusters than their Gaussian counterparts,
while underdense regions are less evolved (e.g. grid lines are
still visible). For negative fNL, underdense regions are more
evolved, producing deeper voids, while overdense regions are
less evolved, as illustrated by the grid lines apparent in the
left of the top panel.

where b here now refers to the Eulerian bias of the tracer
population. In subsequent sections, we show that this
simple expression, despite the underlying assumptions
and approximations in its derivation, matches surpris-
ingly well the halo clustering measured in our numerical
simulations.

III. NUMERICAL SIMULATIONS

We numerically simulate the growth of structure in
nongaussian cosmologies using the adaptive P3M par-
allel N-body code GRACOS

2 [63, 64]. Non-gaussian ini-
tial conditions were generated using the following pro-
cedure. First, we generated a Gaussian random poten-
tial field φ(x) using a power-law power spectrum with a
scalar (density) index ns = 0.96, and normalized so that

2 http://www.gracos.org

•  Single tracer, V = 25 Gpc3 h-3, statistical power ~ Planck  
 
•  Multi-tracer techniques have the power to reach σfNL ~ 1 (local) 

•  Significant degeneracies between fNL, gNL, τNL 
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CIB	power	spectrum	
•  CIB power spectrum is integrated over a large volume. Ideal for scale 
     dependent bias (Tucci et al. 2016) 

•  Seriously contaminated by dust, but future full-sky satellite B-mode  
     experiments with many (high-)frequency channels allow very accurate 
     component separation. 

(Finelli et al. 2016) (Tucci et al. 2016) 
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Table 1: Forecasts for �
f

NL

from the bispectrum of BOSS, eBOSS, DESI and Euclid, assuming the
fiducial values p = {bfid10 , bfid20 , ffid

NL = 0}, as described in section 4.1. Forecasts from the power spectrum
are obtained considering only the tree-level, with the fiducial model p = {bfid10 , ffid

NL = 0}. The results
with marginalisation over the bias factors are shown on the left columns (bias float), while those
without on the right (bias fixed). The numbers inside the parenthesis in the superscripts are the
predictions for �

f

NL

considering the fiducial value for the non-linear bias to be bfid20 +1, while those in
the subscripts assume bfid20 � 1.

Power Spectrum Bispectrum
Sample �

f

NL

�
f

NL

�
f

NL

�
f

NL

bias float bias fixed bias float bias fixed

BOSS 21.30 13.28 1.04(0.65)(2.47) 0.57(0.35)(1.48)

eBOSS 14.21 11.12 1.18(0.82)(2.02) 0.70(0.48)(1.29)

Euclid 6.00 4.71 0.45(0.18)(0.71) 0.32(0.12)(0.35)

DESI 5.43 4.37 0.31(0.17)(0.48) 0.21(0.12)(0.37)

BOSS + Euclid 5.64 4.44 0.39(0.17)(0.59) 0.28(0.11)(0.34)

We then performed idealised forecasts of �
f

NL

, the accuracy of the determination of local fNL, that
could be obtained from measurements of the galaxy bispectrum using data from surveys like BOSS,
eBOSS, DESI and Euclid. Our findings suggest that the bispectrum of galaxies in current and future
surveys will provide competitive fNL constraints even if the covariance between triangle configurations
degrades our idealised forecasts by a factor of 5. In particular, current BOSS data should allow for
Planck-like constraints on fNL, while future surveys like Euclid and DESI will contain the statistical
power to shrink the bound by an additional factor of three.

We leave as a challenge for future work to obtain improved predictions for �
f

NL

fully accounting
for the covariance: this will be necessary if we are to completely understand the power of bispectrum
measurements to constrain fNL compared to alternative approaches, such as the multi-tracer technique
or the position-dependent power spectrum.
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NG	with	LSS.	Bispectrum	

•  Fisher matrix forecast. Tree level bispectrum. Local NG initial conditions. 
     In redshift space. Covariance between different triangles neglected (optimistic). 

•  Bispectrum could do better than power spectrum. 

•  fNL ~ 1 achievable with forthcoming surveys? 

•  Many issues, e.g. full covariance, accurate bias model, GR effects, survey  
     geometry, estimator implementation… Still, great potential: 3D vs 2D (CMB). 
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FIG. 5. Forecast results of primordial non-Gaussian parameter for HSC (left), DES (middle) and LSST (right). In each panel, the marginalized
1s error contours on tNL � fNL (top left), gNL � fNL (bottom left) and gNL � tNL (bottom right) planes are plotted. Faint green contours
indicate the expected constraints derived from the angular power spectrum of halo clustering, while the dark green contours represent the
results when we add the cross correlation between halo clustering and weak lensing. For clarity, the plotted range of the error contours is
changed in each panel.
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FIG. 6. Forecast results of primordial non-Gaussian parameters by HSC (left), DES (middle), and LSST (right). In each panel, marginalized
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the parameter tNL
2. The constraint on fNL and gNL is also im-

proved, however, degeneracy still remains between these two
parameters, and the resultant values of the marginalized error
are still larger than those of the un-marginalized constraint by
more than one order of magnitude. This is clearly seen in the
third columns of Tables III-V.

2 The expected errors on fNL for HSC are somewhat degraded compared to
the previous study by Refs. [6, 7]. These differences mainly come from
the choice of minimum multipole, `min. While the previous study adopted
`min = 2, we conservatively set it to the fundamental mode, i.e., `min = `f,
which roughly corresponds to 9 for HSC.

The situation is drastically changed if we use the bispec-
trum data, as shown in Figs. 6 and 7. A remarkable point
is that only with the halo bispectrum, the degeneracy be-
tween three parameters are mostly broken, and this enables
us to simultaneously constrain each parameter. As a result,
the marginalized constraints become rather close to the un-
marginalized ones (forth column in Tables III-V and Fig. 7).
This is indeed expected from the asymptotic scaling relation
in Eq. (68). Further adding the cross correlation data mod-
erately improves the constraints, and the expected constraints
on fNL and tNL are improved by a factor of < 1.5, compared
to the halo bispectrum alone.

The results imply that a deep imaging survey is advanta-

Combining power spectra and bispectra, clustering and weak lensing, can  
help to break degeneracies between local NG parameters  

Hashimoto et al. 2016 
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FIG. 4. Signal-to-noise ratio for angular power spectra and bispectra combining both the halo clustering and weak lensing measurements.
Based on the parameters specified in Table I and assuming the non-Gaussian parameters of fNL = 10, gNL = 104, and tNL = (36/25) f 2

NL,
the resultant signal-to-noise ratio for three representative surveys of HSC (left), DES (center) and LSST (right) are shown as function of the
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HSC DES LSST current CMB
s( fNL) 19 (9.2) 9.8 (5.2) 2.1 (0.89) (5.1)
s(gNL) 1.2⇥105 (7.1⇥104) 1.8⇥105 (1.0⇥105) 5.3⇥103 (3.8⇥103) (1.4⇥105)

s(tNL) 3.9⇥103 (2.1⇥103) 4.6⇥103 (2.5⇥103) 14 (6.2) (1.4⇥103)

TABLE II. Forecast results of marginalized (un-marginalized) 1s errors on primordial non-Gaussian parameters for HSC, DES, and LSST.
The results are compared with with the single-parameter constraint derived from CMB measurement by Planck [1].

the quantities FP
ab and FB

ab are the Fisher matrices for power
spectra and bispectra, respectively, which are assumed to be
statistically independent. Fisher matrix Fab quantifies the sta-
tistical uncertainty for the parameters ppp that are determined
by observations, and the 1s (68% C.L.) statistical error on the
single parameter pa is given by (1/Faa)1/2. Also, the 1s sta-
tistical error marginalized over other parameters is expressed
as ([F ]�1

aa)
1/2 with [F ]�1 being the inverse of Fisher matrix.

Here, for free parameters ppp, we consider the three non-
Gaussian parameters, i.e., ppp = ( fNL, gNL, tNL), with the fidu-
cial values of ppp0 = (0,0,0). We do not marginalize the uncer-
tainty in the halo bias properties, since our PT treatment with
iPT completely specifies the halo clustering for a given mini-
mum halo mass, Mmin, which we set 1013 h�1 M�. This may
be a rather optimistic assumption, however, our primary pur-
pose is to explore the feasibility to test single-sourced consis-
tency relation by simultaneously constraining multiple non-
Gaussian parameters. Since the properties of the clustering
bias is expected to be observationally determined at the rela-
tively small scales, where no notable effect of the primordial
non-Gaussianity appears, there would be no serious parameter
degeneracy with non-Gaussian parameters. A forecast study
in more practical situation will be considered elsewhere.

In evaluating the Fisher matrix, we set the minimum mul-
tipole to `min = `f = 2p/

p
Ws, while the maximum multi-

pole `max is set to 150, adopting the Gaussian covariances
in Eqs. (57) and (58). Note that increasing `max may give a
tighter constraint on the non-Gaussian parameters, as naively
inferred from Fig. 4. However, a big impact on the statisti-
cal analysis may come from the gravity-induced non-Gaussian
contributions to the error covariances, for which we do not
consider. In this sense, our results presented below may be re-
garded as a conservative estimate, and a possibility to further
improve the constraints needs to be investigated.

The results of Fisher matrix analysis are summaryzed in
Figs. 5 and 6, and Tables III-V for each survey. In Table II,
the forecast results from three surveys are compared to the
current constraints from CMB.

Let us first look at the forecast results from the power
spectra. Figs. 5 show the two-dimensional error contours
on ( fNL,gNL) (bottom left), ( fNL,tNL) and (tNL,gNL) from
the power spectrum data. As we expect from the asymptotic
scale-dependence in Eq. (66), the forecast constraints from
halo clustering data alone exhibit a large degeneracy between
each parameter (see also Ref. [28]), and the marginalized con-
straints are substantially degraded, compared to the single-
parameter cases (see second column in Tables III-V). Adding
the weak lensing power spectra partly breaks the parameter
degeneracy, and constraints becomes tightened, especially for
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FIG. 6: One sigma error bar on f eq.
NL as a function of the maximal redshift zmax. Two horizontal lines correspond to f eq.

NL = 40
(the current strongest bound from the CMB) and f eq.

NL = 10. Each panel shows the constraints with and without marginalization
over the EFT and bias parameters. Di↵erent lines correspond to di↵erent combinations of the tree-level and the one-loop power
spectrum and bispectrum. As a reference we also plot a line for the ideal case with no theoretical error and no marginalization.

are the most important for the neutrino mass, one should
have relative errors smaller than 0.1 � 0.5% (depending
on the redshift) which seems quite challenging. Other
parameters, such as b2, bG

2

or Rp, require precision of
1� 10%.

B. Equilateral non-Gaussianities

Let us now consider the constraints on primordial NG
of equilateral shape. Our pNG constraints are solely ob-
tained from the shape dependence of the tree level bis-
pectrum and the power spectrum will be used to break
degeneracies with bias parameters. We will note on ex-
plicit scale dependent bias at the end of this section.

Bispectrum.—In Fig. 6 we plot �(f eq.
NL) as a function of

zmax for di↵erent galaxy abundance scenarios. In the
ideal case, with neither theoretical errors nor marginal-
ization, f eq.

NL ⇠ 1 can be reached at high redshift. This
means that in principle there are enough modes in the
perturbative regime. In practice, the theoretical error
and marginalization degrade the constraints significantly.

Including the theoretical errors only changes �(f eq.
NL)

by a factor of 3 with the one-loop bispectrum and an ad-
ditional factor of 3 with the tree-level bispectrum. Notice
that, as in the case of neutrinos, there is a large di↵erence
between the results from the tree-level and the one-loop
bispectrum. This is due to the fact that including higher
loops increases kmax and reduces the error for k < kmax.

Marginalization degrades the constraints by additional
factor of few. This is not surprising given that the grav-
itational contributions are not very orthogonal to the
equilateral shape. With our simple model for the one-
loop bispectrum of biased tracers, the current Planck

limits can be reached with a survey that would map the
distribution of galaxies up to redshift z ⇠ 1.5. With a
more realistic model which will contain more bias pa-
rameters, the results are expected to get weaker. Going
to higher redshifts, our analysis indicates that reaching
f eq.
NL ⇠ 10 will be very challenging.

Scale dependent bias.— Equilateral NG do not a↵ect only
the bispectrum. They can also contribute to the power
spectrum through a scale dependent bias of the form

�b1(k) ⇡ 9(b1 � 1)f eq.
NL · ⌦m�c

H2
0R

2(z)

D+(z)T (k)
. (49)

(This form can be obtained by taking the squeezed limit
k1 ⌧ k2,3 of (36) as a correction to the power of short
scale modes k2,3 with the characteristic size R(z), the
Lagrangian size of objects observed at redshift z. b1 �
1 and �c = 1.686 typically appear in the simplest halo
models that relate the change in the power to the bias
parameters [30].) We choose the same time dependence
as for the counter terms in the power spectrum: R(z) =
R0D+(z)/D+(0). The power spectrum is modified in the
following way

Pg(k, z) = (b1 +�b1(k))
2P (k, z) , (50)

and one can put constraints on f eq.
NL measuring its shape

carefully. However, the amplitude of �b1(k) is very
small, typically R2H2 ⇠ 10�6. Note that compared to
the similar term in the bispectrum, the e↵ect of the scale
dependent bias at some scale k is R2k2 times smaller. For
perturbative scales Rk < 1, and we expect weaker limits
on f eq.

NL than what we get from the three-point function.
To test this expectation we do a simple forecast using

just the model described by Eq. (50). We do not include

•  The LSS bispectrum allows in principle tight constraints also on non-local  
     shapes e.g. equilateral 

•  Naive mode counting suggest σfNL ~ 1 for equilateral might be achievable by  
     pushing kmax high enough 

•  However, in the non-linear regime we have to model the gravitational  
     bispectrum with high accuracy. Very challenging. Equilateral is more correlated 
     than local to non-linear gravitational bispectrum, so bigger problem. 

Baldauf et al. 2016 
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Radio	surveys	
•  Wide radio surveys, reaching high-z can produce very interesting  
    constraints in principle. High-z allows to reach higher k, while remaining 
    in linear regime (but careful to theoretical errors) 
 
Forecasts (D. Karagiannis, ML, A. Raccanelli, N. Bartolo, in prep.): 
 

-  Joint power spectrum/bispectrum prediction for local, equilateral,  
-  orthogonal + bias coefficients 
-  Use cross-correlation method between radio continuum surveys and  
-  spectroscopic datasets to derive redshift information on point sources  
    (Schneider et al 2006, Newman et al 2008) 
-  Effective halo bias expansion up to 2nd order (Mirbabayi et al. 2014) 
     parameters b1, b2, bs2. 
-  Bivariate bias expansion for local shape  
-  kmax = 0.1/D(z) 
-  Including trispectrum correction term (NG contrib. to tree-level bispectrum). 
-  RSD accounted for up to 2nd order (excluding trispectrum) 
-  Neglecting PB covariance 
-  Theoretical errors not included yet (should worsen forecast by a factor 3-4) 
-  Model 0: Real space, no trispectrum. Model 1: Real space + trispectrum. 
     Model 2: Redshift space, no trispectrum  



QVG	–	Mainz	2017	

Forecasts:	SKA	

Model	0	(do]ed)	
Model	1	(dashed)	
Model	2	(solid)	
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Model 0 

Model 1 

Model 2 
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CMB spectral distortions from acoustic 
wave dissipation probe a large range  
of scales, much smaller than CMB/LSS 
 
Many additional modes!  

If µ-anisotropies are measured  (δµ ~ Φ2): 
 

ü  Tµ correlation: primordial local fNL (Pajer and Zaldarriaga 2013) 
     or other squeezed shapes, e.g. excited initial states (Ganc and Komatsu 2013)  

ü  µµ correlation: primordial local trispectrum, τNL 

ü  TTµ bispectrum: primordial local trispectrum, gNL 
     (Bartolo, ML, Shiraishi 2016) 
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Figure 1. Power which disappears from the anisotropies appears in the monopole as spectral distortions. CMB
damped and undamped power spectra were calculated using analytic approximations [33–36]. Scale range
probed by the CMB anisotropy experiments such as COBE-DMR, WMAP, Planck, SPT and ACT is marked
by the shaded region on the left side of the plot. Spectral distortions probe much smaller scales up to the
blackbody photosphere boundary at ` ⇠ 108.

spectrum. The energy stored in the perturbations (or the sound waves in the primordial radiation
pressure dominated plasma) on the dissipating scales, however, does not disappear but goes into the
monopole spectrum creating y, µ and i-type distortions, see Fig. 1. This e↵ect was estimated initially
by Sunyaev and Zeldovich [2] and later by Daly [43] and Hu, Scott and Silk [44]. Recently, the
energy dissipated in Silk damping and going into the spectral distortions was calculated precisely in
[45], correcting previous calculations and also giving a clear physical interpretation of the e↵ect in
terms of mixing of blackbodies [45, 46] 2. The calculations in [45] showed that photon di↵usion just
mixes blackbodies and the resulting distortion is a y-type distortion which can comptonize into i-type
or µ-type distortion, depending on the redshift. We can write down the (fractional) dissipated energy
(Q ⌘ �E/E�) going into the spectral distortions as [45, 46]

dQ
dt
= �2

d
dt

Z
k2dk
2⇡2 P�i (k)

2
6666664
1X

`=0

(2` + 1)⇥2
`

3
7777775 ⇡ �2

d
dt

Z
k2dk
2⇡2 P�i (k)

h
⇥2

0 + 3⇥2
1

i
, (2.1)

where ⇥`(k) are the spherical harmonic multipole moments of temperature anisotropies of the
CMB, t is proper time and P�i (k) = 4

0.4R⌫+1.5 P⇣ ⇡ 1.45P⇣ , P⇣ = (A⇣2⇡2/k3)(k/k0)ns�1+ 1
2 dns/d ln k(ln k/k0),

the amplitude of comoving curvature perturbation A⇣ is equivalent to �2
R in Wilkinson Microwave

2See [47] for a slightly di↵erent way of calculating µ-type distortions and also [48].

– 3 –

Kathri and Sunyaev 2013, arXiv: 1303.7212 

NG	with	CMB	spectral	distorsions	
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Figure 2. Expected 1� errors on gNL (top panel) and ⌧NL (bottom panel) estimated from TTµ

(colored lines) and TTTT (black lines) in the cosmic-variance dominated case (i.e., Nµµ
` = 0). Solid

and dashed lines are the full radiation transfer case (Eqs. (3.25) and (3.31) for TTµ) and the SW case
(Eqs. (3.26) and (3.34) for TTµ), respectively. In the TTµ cases, we consider several nonzero ⌧NL’s
with fNL = 0. For ⌧NL = 0, �gNL and �⌧NL obtained from TTµ scale like 1/ ln(`

max

/2) and 1/`

max

,
respectively (see Eqs. (4.4) and (4.7)). It is apparent that, if ⌧NL  1000, for `

max

 1000, TTµ

always outperforms TTTT , because C

µµ,G
` + C

µµ,⌧NL
` ⌧ C

TT
` . At larger `

max

, TTµ remains clearly
superior to TTTT for gNL measurements. For ⌧NL estimation the comparison is instead dependent
on the fiducial value of ⌧NL; see main text for further discussion.

– 13 –

Bartolo, ML, Shiraishi 2016 

For G initial conditions, dissipated power  
in small patches is isotropically  
distributed 
 
If local NG => large scale modulation of 
small scale power => Tµ correlations 
(Pajer, Zaldarriaga 2013, Emami et al. 2015) TTµ, gNL

TTµ, τNL

Φ=ΦG +ΦNG =ΦG + fNLΦG

2 ,

ΦG =ΦS +ΦL ⇒ΦNG =ΦS
2 +ΦL

2 + 2 fNLΦSΦL

Φ∝ΦS 1+ 2 fΦL( )⇒
δ Φ2

Φ2 =
δµ
µ
~ 4 fNLΦL

⇒
δT
T L

δµ
µ

∝ fNLCℓ

NG	with	CMB	spectral	distorsions	
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Scale	dependent	NG	with	µ	and	y	

A. Ravenni, ML, N. Bartolo, M. Shiraishi in prep. 

•  Τ, µ	and	y-dist.	probe	different	scales.	Can	
be	used	to	test	NG	scale	dependence.	
(Biage^	et	al.	2013,	Emami	et	al.	2015)	

	

•  yT	is	strongly	contaminated	by	SZ.	Can		
						improve	by	correla?ng	with	polariza?on	
						(Ravenni	et	al.	2017	in	prep.)	
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Excited	ini?al	states	
•  Specific models with excited initial states predict enhanced signals in the  
     squeezed limit (Agullo and Parker 2011).  

•  This can generate high S/N in µT tests (Ganc and Komatsu 2012)  

 
Finelli et al. 2016 
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Anisotropic	models	

•  The µµ auto-spectrum measures τNL type trispectra i.e. power spectrum  
     modulation signals 

•  Anisotropic models produce distinctive off-diagonal entries in the µµ  
    covariance  

Shiraishi, ML, N. Bartolo 2015 
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10

The variances of these estimators are [65]

�2
f̂i

= (F�1)
ii

, (50)

and the signal-to-noise ratio (SNR) for fNL is
fNL/

p
(F�1)00.

We show in Fig. 5 the forecasted SNR for the local-type
PNG, for a single narrow redshift slice around z = 50,
as a function of the maximum multipole moment `max

(with `min = 100). We also show for reference the SNR
one would obtain if one neglected the secondary non-
gaussianities, i.e. when substituting (F�1)00 ! 1/F00 as
in Ref. [26]. We see that properly accounting for sec-
ondary non-gaussianities and their correlation with the
primordial bispectrum reduces the SNR by a factor of
⇠ 6.

We also show the SNR integrated starting from `max =
105 down to a minimum `min, as a function of the latter.
It plateaus for `min ⇠ 103, so modes with smaller ` do
not contribute significantly to the signal-to-noise ratio,
which justifies our neglect of several contributions to the
bispectrum on large scales.

In Fig. 6 we show the forecasted SNRs for the
other shapes of PNG we considered. Secondary non-
gaussianities are less correlated with these shapes than
the they are with the local type, so the reduction in SNR
is not as dramatic (a factor of ⇠ 3).
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FIG. 5. Signal-to-noise ratio (SNR) for PNG of the local type
with f

NL

= 1, for a single narrow redshift slice at z = 50 and
assuming f

sky

= 1. The blue dashed curve shows (F
00

)1/2,
the SNR obtained if one neglected secondary non-gaussianity.
The black solid and red dotted curves show [(F�1)

00

]�1/2,
the SNR after marginalization over the unknown residual am-
plitudes of the secondary bispectrum, as a function of `

max

(black solid) and as a function of `
min

at fixed `
max

= 105

(red dotted).

We summarize the forecasted SNR in Table I for a
single narrow redshift-slice at z = 50, for `max = 104

(corresponding of an angular resolution of roughly 1 ar-
cmin) and `max = 105 (0.1 arcmin angular resolution),
assuming a cosmic-variance-limited experiment (i.e. tak-
ing Ctot

`

= C
`

, and neglecting additional thermal noise).
In particular, we find that values of f loc

NL ⇠ 1.3 and ⇠ 0.23
could be reached for `max = 104 and 105, respectively.

FIG. 6. SNR for di↵erent shapes of PNGs (with f
NL

= 1),
after marginalization over the residual amplitudes of the
secondary bispectrum. The di↵erent lines correspond to
equilateral-type PNG (solid black), orthogonal-type PNG
(blue dashed), and the three direction-dependent shapes J =
1, 2 and 3 in dotted green, dash-dotted brown, and long-
dashed red, respectively.

The bigger improvement for better resolution for the or-
thogonal and equilateral shapes with respect to the local
one is due to the fact that become less degenerate with
the secondary bispectra as more modes are added in the
analysis, as argued in Section IVA.

In this analysis we have marginalized over the resid-
uals of the four coe�cients T 21, ↵, �, �. In Appendix
A we discuss how our results would change if we only
marginalized over a single overall amplitude for the sec-
ondary bispectrum, or if we considered all geometrically
distinct shapes as independent.

PNG type �f
NL

(arcmin) �f
NL

(0.1 arcmin)

Local 1.3 0.23

Equilateral 14 0.71

Orthogonal 11 0.71

J = 1 83 5.3

J = 2 4.5 0.83

J = 3 40 3.1

TABLE I. Detection forecasts for di↵erent shapes of PNG for
a cosmic-variance-limited experiment observing the full sky
at a single narrow redshift slice at z = 50. The central col-
umn gives the results for `

max

= 104 (equivalent to having an
experiment with arcminute resolution), and the right column
those for `

max

= 105 (one tenth of arcminute).

C. Tomography

So far we have been studying the bispectrum on a sin-
gle redshift slice, which would correspond to observing
the 21-cm line with a single frequency channel. However,
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for two di↵erent bandwidths (�⌫ =1 and 0.1 MHz). For
fsky < 1 all the results scale as �

f

NL

/ f�1
sky.

In summary, with a bandwidth of 1 MHz we could
cross the fNL = O(1) threshold, enabling us to rule out a
big class of models of inflation if no PNG is detected. In-
creasing the frequency resolution to 0.1 MHz the numbers
improve to fNL ⇠ few 10�2, which would be close to the
ultimate limit of the consistency relation (fNL ⇠ n

s

� 1),
and hence should be present even in the simplest model
of inflation.

PNG type �f
NL

(1 MHz) �f
NL

(0.1 MHz)

Local 0.12 0.03

Equilateral 0.39 0.04

Orthogonal 0.29 0.03

J = 1 1.1 0.1

J = 2 0.33 0.05

J = 3 0.85 0.09

TABLE II. Minimum f
NL

detectable integrating all redshift
slices between z = 30 and z = 100 for f

sky

= 1. In the central
column we show the result for a bandwidth of �⌫ = 1 MHz
and in the right column for �⌫ = 0.1 MHz.

V. CONCLUSIONS

Now that the information from the CMB on non-
gaussianity has been almost fully mined, it is time to
consider other potential data sets. Intensity fluctuations
in the 21-cm line during the dark ages o↵er a window into
yet unexplored times and scales, and a promising future
probe of PNGs.

The technical challenges that need to be overcome be-
fore the required experiments see the light of day are
daunting. Because of atmospheric attenuation it would
require an observatory on the Moon. Even then, care
should be taken with intense Galactic foreground emis-
sion. Nevertheless, this is not an impossible task.

An additional issue is that the 21-cm signal is intrinsi-
cally highly non-gaussian, due to non-linear gravitational
growth, and the non-linear mapping between brightness
temperature and the underlying density field. In this pa-
per we have, for the first time, addressed this issue with
a rigorous Fisher analysis approach, assuming cosmic-
variance limited experiments with a finite angular and
frequency resolution. We have shown that for a single
redshift slice the secondary bispectrum is significantly
degenerate with the primordial one, which results in a
noticeable decrease of the forecasted signal-to-noise ratio
(SNR) for PNGs. This contrasts with the results of pre-
vious work, where this degeneracy was either neglected
when forecasting the SNR [26], or where it was claimed to
be weak [25]. We then co-added the information of inde-

pendent redshift slices while enforcing a smooth variation
of the secondary bispectrum amplitudes with redshift.

For a full-sky experiment with �⌫ = 0.1 MHz and 0.1-
arcminute resolution, we forecast a sensitivity �

f

local

NL

⇡
0.03, which would enable us to check the famous inflation-
ary consistency relation. We also forecast �

f

equil ⇡ 0.04,
�
f

ortho

⇡ 0.04, fJ=1 ⇡ 0.1, fJ=2 ⇡ 0.05, and fJ=3 ⇡ 0.09.
Measurements of 21-cm fluctuations therefore have the
potential to significantly improve upon cosmic-variance-
limited CMB bounds.
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21cm	bispectrum	

•  21cm full-sky measurments reach very high lmax => many modes and high S/N, 
    even after marginalization of secondary effects + redshift tomography. 
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Conclusions	
•  Primordial NG probes interaction terms in the Inflationary action 
     Therefore it is a powerful test to discriminate between different  
     scenarios 
 
•  Planck NG results are consistent with predictions by the simplest 

inflationary models. However, we need more sensitivity to reach 
critical fNL thresholds. Local fNL=1 is the next goal  

•  CMB anisotropies have nearly saturated ideal limit 

•  Next: scale-dependent halo bias and LSS bispectrum. 3-point function 
very challenging but sensitive to all shapes 

•  CIB can be a very powerful local fNL probe, via large-scale power 
spectrum 

•  Very powerful but futuristic: spectral distortions, 21 cm 

•  Specific shapes  are already interesting with spectral distortions. 

•  Multiple approaches to local shape. Only bispectrum for the rest. 
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NG	forecasts:	future	radio	surveys	
λ We consider a SKA and ASKAP/EMU like surveys. 
λ Use cross-correlation method between radio continuum 
surveys and spectroscopic datasets to derive redshift 
information of point sources (Schneider et al 2006, Newman 
et al 2008). 
 



QVG	–	Mainz	2017	

Bias 

Effec?ve	halo	bias	expansion	up	to	second	order	(N=2),	of	the	
form	(Mirbabayi	et	al	2014)	

Stay	in	large-intermediate	scales,	hence	we	exclude	stohas?c	bias.	
λ Second	part	of	the	expansion	are	the	?dal	field	terms.	For	n=2	
the	?dal	term	bias	is	a	simple	func?on	of	linear	bias.	
Use	a	weighted	average	with	respect	to	a	simple	HOD	to	derive	
galaxy	bias	from	the	PBS	halo	model.	
l 		
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Bias 
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Model 
We	use	the	fisher	matrix	formalism	to	derive	predic?on	on	assumed	free	
parameters	from	the	two	and	three	point	sta?s?cs.	
In	fourier	space	power	spectrum	and	bispectrum	of	the	galaxies	is:	
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For	the	trispectrum	term	in	bispectrum	we	consider	only	the	non-
Gaussian	contribu?on	to	the	tree	level	trispectrum.	
We	exclude	primordial	trispectrum	since	O(fNL

2).	
For	the	local	PNG	we	consider	a	bivariate	bias	expansion	
(Giannantonio	et	al	2009)	.				
Finally	we	test	the	effect	of	RSD	up	to	second	order	in	the	
predicted	variables,	excluding	trispectrum	contribu?ons	from	the	
bispectrum.	
The	Fisher	matrix	for	the	two	correlators	will	be:	
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Fisher matrix predictions 

•  We	consider	as	free	parameters	p={fNL,b1,b2,bs}	and	for	the	RSD	
model	p={fNL,b1,b2,bs,σP,f}.	

•  kmax=0.1/D(z),	kmin=kf	
•  For	the	powerspeccrum	bispectrum	joint	predic?ons	we	neglect	

off-diagonal	terms	in	the	covariance,	
•  We	neglect	for	now	theore?cal	errors,	although	they	can	increase	

the	errors	3-4	?mes.	
	
	
•  3	models	for	the	galaxy	bispectrum	are	used	for	the	predic?on.	

1) Model	0:	Redshiv	space	bispectrum	(monopole	only)	excluding	trispectrum	loop	
correc?on.	
2) Model	1:	Redshiv	space	bispectrum	(monopole	only)	including	trispectrum	
correc?on.	
3) Model	2:	Redshiv	space	bispectrum	(RSD	2

nd
	order),	without	including	trispectrum.	

	



QVG	–	Mainz	2017	

Fisher matrix predictions 

Model 0 

Model 1 

Model 2 
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Predictions for SKA 

Model	0	(doced)	
Model	1	(dashed)	
Model	2	(solid)	
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Predictions for SKA 
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Predictions for ASKAP/EMU 
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Predictions for ASKAP/EMU 


