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• CMB temperature and dipole 
anisotropy define cosmic rest frame

• peculiar motion of Milky Way is only 
partially understood

• tension between local and global H0

• controversial claims on bulk flows
• CMB anomalies (tiny intrinsic dipole?)
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CMB Dipole
T0 = (2.7255 ± 0.0006) K Fixsen 2009

T1 = (3364.5 ± 2.0) 𝜇K 
l = (264.00 ± 0.03) deg, b = (48.24 ± 0.02) deg Planck 2015

hypothesis: cmb dipole is due to peculiar motion
of Solar system with v = (369 ± 0.9) km/s   Planck 2015

                                                                                       Peebles & Wilkinson 1968
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CMB Dipole: Impact
The proper motion hypothesis makes a prediction: 

Doppler shift and aberration
for all objects at cosmological distances and at any frequency

➜ test with high-l multipoles in CMB Planck 2013/2015

        (coupling of l to l±1 multipoles)  

➜ test with radio sky (as ⟨z⟩ > 1, unlike IR or optical) 

➜ identify corresponding structures 
    (e.g. SN1a bulk flow, IR galaxy distribution)



Cosmic Microwaves  
frequency bands

Planck - ESA



Planck Collaboration: Doppler boosting of the CMB: Eppur si muove

Fig. 3. Measured dipole direction �̂ in Galactic coordinates as a function of the maximum temperature multipole used in the
analysis, `max. We plot the results for the four data combinations discussed in Sect. 4: 143⇥ 143 (H symbol); 217⇥ 217 (N symbol);
143 ⇥ 217 (⇥ symbol); and 143 + 217 (+ symbol). The CMB dipole direction �k has been highlighted with 14� and 26� radius
circles, which correspond roughly to our expected uncertainty on the dipole direction. The black cross in the lower hemisphere is
the modulation dipole anomaly direction found for WMAP at `max = 64 in Hoftuft et al. (2009), and which is discussed further in
Planck Collaboration XXIII (2013). Note that all four estimators are significantly correlated with one another, even the 143 ⇥ 143
and 217 ⇥ 217 results, which are based on maps with independent noise realizations. This is because a significant portion of the
dipole measurement uncertainty is from sample variance of the CMB fluctuations, which is common between channels.

four estimators, we see that the presence of velocity along �k is
strongly preferred over the null hypothesis. At 143 GHz this sig-
nal comes from both �̂k and ⌧̂k. At 217 GHz it comes primarily
from ⌧̂k. Additionally, there is a somewhat unexpected signal at
217 GHz in the �⇥ direction, again driven by the ⌧ component.
Given the apparent frequency dependence, foreground contami-
nation seems a possible candidate for this anomalous signal. We
will discuss this possibility further in the next section.

In Table 1 we present �2 values for the � measurements of
Fig. 4 under both the null hypothesis of no velocity e↵ects, as
well as assuming the expected velocity direction and amplitude.
We can see that all of our measurements are in significant dis-
agreement with the “no velocity” hypothesis. The probability-
to-exceed (PTE) values for the “with velocity” case are much
more reasonable. Under the velocity hypothesis, 217 ⇥ 217 has
the lowest PTE of 11%, driven by the large �̂⇥.

In Table 2 we focus on our measurements of the velocity
amplitude along the expected direction �k, as well as perform-
ing null tests among our collection of estimates. For this table,
we have normalized the estimators, such that the average of �̂k
on boosted simulations is equal to the input value of 369 km s�1.
For all four of our estimators, we find that this normalization
factor is within 0.5% of that given by N

x�⌫
fk,sky, as is already ap-

parent from the triangles along the horizontal axis of Fig. 4. We
can see here, as expected, that our estimators have a statistical
uncertainty on �k of between 20% and 25%. However, several
of our null tests, obtained by taking the di↵erences of pairs of �k
estimates, fail at the level of two or three standard deviations. We
take the 143 ⇥ 217 GHz estimator as our fiducial measurement;
as it involves the cross-correlation of two maps with indepen-
dent noise realizations it should be robust to noise modelling.
Null tests against the individual 143 and 217 GHz estimates are
in tension at a level of two standard deviations for this estima-
tor. We take this tension as a measure of the systematic di↵er-
ences between these two channels, and conservatively choose
the largest discrepancy with the 143⇥217 GHz estimate, namely
0.31, as our systematic error. We therefore report a measurement
of v̂k = 384 km s�1 ± 78 km s�1 (stat.) ± 115 km s�1 (syst.), a sig-
nificant confirmation of the expected velocity amplitude.

6. Potential contaminants

There are several potential sources of contamination for our es-
timates above which we discuss briefly here, although we have
not attempted an exhaustive study of potential contaminants for
our estimator.

6

Planck 2013v = 384 km/s ± 78 km/s (stat.) ± 115 km/s (sys.)
compare with CMB dipole: v = (369 ± 0.9) km/s; analysis fixes direction 

CMB proper motion test
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Bipolar Spherical Harmonics
allows for 40% non-kinetic contribution to CMB-dipole



➜ H0 = (67.8 ± 0.9) km/s/Mpc (CMB: Planck 2015) 
        H0 = (73.0 ± 2.4) km/s/Mpc (SN1a: Riess et al. 2011) … debated conflict

➜ measurement of H0 assumes that redshifts of cepheids 
     and SN1a are given in comoving cmb frame

       ideal situation
       (isotropic 
        source distribution) 

➜ error in determination of comoving frame:

➜ realistic N/S anisotropic sample with ⟨d⟩ = 150 Mpc: 
    important for
       precision cosmology,
       larger effect on cepheid callibrators (luminosity distance is not boost invariant)

Hubble expansion rate
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Why bother?  
2. CMB anomalies (WMAP & Planck)
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alignment of low-l multipoles with CMB dipole



CMB anomalies (WMAP & Planck)

Pinkwart & Schwarz, in prep.

alignment extends to l = 50 with CMB dipole

11 out of the 49 lowest multipoles 
are aligned with the dipole at less 
than 2% likelihood (expected is 2-3)
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Cosmic Radio Dipole
dradio = dkin + dmatter 

radio galaxies: mean z > 1

dmatter expected to be small

kinetic dipole
Ellis & Baldwin 1984

dN
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aberration  & Doppler shift



The Challenge

Simulated pixelated sky map of 100,000 sources 
including expected kinetic dipole:

shot noise dominated 
➔ need huge catalogues (> 106 sources)
and large sky coverage (> 20.000 sqdeg)



Cosmic Radio Sources

JVLA,  Vernstrom et al. 2013

SKA MID  
two populations: 

* AGNs (FRI-II, RQQ)

* galaxies (SFG, SBG)

AGNs dominate at large fluxes

star forming galaxies 
dominate below ~ 1 mJy

identification of morphology
for angular resolution 0.5’’

NVSS



Radio Continuum Surveys 

Raccanelli et al. 2013

WODAN

LOFAR

EMU

DES

EUCLID (imaging)

EMU+WODAN

LSST

Pan-STARRS1
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NVSS @ 1.4 GHz 

 Condon et al. 2002 S > 25 mJy



WENSS @ 325 MHz 

 Rengelink et al. 1997  S > 25 mJy



aTGSS @ 150 MHz

 Intema et al. 2016



aTGSS (alternative DR1 TIFR GMRT SS) 
90% of sky @ 150 MHz

 Rubart, Schwarz & Siewert, in prep. S > 100 mJy

mask Milky Way, noisy and incomplete regions
put flux threshold 



Cosmic dipole @ 3 freq.
Smin
[mJy]

N α
[deg]

δ 
[deg]

d
[0.01]

est.

NVSS 25 197.998 153±30 -4±34 1.1±0.3
**quad. 
harm.

NVSS 25 185.649 158±21 -2±21 1.6±0.6 lin.

NVSS 25 220.237 143±12 -11±15 1.8±0.5 *quad.

NVSS 15 298.289 149±19 17±19 1.4±0.5 lin.

WENSS 25 92.600 117±40 2.9±1.9 lin.

aTGSS 200 118.287 141±15 12±20 6.8±0.6 *quad.

aTGSS 100 229.235 141±13 7±18 6.2±0.4 *quad.

expect. - - 168 -7 0.4
*preliminary **Blake & Wall 2002      Rubart & Schwarz 2013 & in prep.



Cosmic radio dipole
dcmb ⇔ dradio ?
NVSS (1.4 GHz),  
WENSS (345 MHz), 
aTGSS (150 MHz):

directions consistent,
amplitudes 2 - 10 times 
too large
Blake & Wall 2002
Rubart & Schwarz 2013

local bulk flows?
Watkins & Feldman 2014
Atrio-Barandela et al. 2014

local structure dipole?
Rubart, Bacon & Schwarz 2014
Nusser & Tiwari 2016
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Dipole tomography
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Cosmic radio dipole
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50 stations in NL (38), D (6), PL (3), F, S, UKLOw Frequency ARray



Shimwell et al. 2017

LOFAR Two-metre Sky Survey (LoTSS)



Shimwell et al. 2017

LOFAR Two-metre Sky Survey (LoTSS)

direction independent             vs       direction dependent calibration 



Conclusion

Measuring the cosmic radio dipole across frequencies
could help us to distinguish a kinetic dipole from a 
structure dipole and would thus

- firmly establish a cosmic rest frame 

- test fundamental assumptions in cosmology 

- improve measurement of cosmic expansion rate 

- may help to resolve some puzzles  


