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Introduction

• “Classical fields”: classical limit of coherent states

(large occupation numbers) 

• Coherent field description: new features compared to the

more standard particle description, e.g. in ultra-light DM models

Heisenberg uncertainty principle could help solving the small-

scale problems of CDM.

• Simplest models based on scalar fields, but in principle

any bosonic field could work



Introduction

Spin 1

• Vector inflation.

Ford, 1989.         

Golovnev, et al 2008

• Gauge-flation. 

Maleknejad, 2013

• Chromonatural inflation.

Adshead, 2012

Inflation

Slow evolution

Dark energy

• Vector dark energy (potential).

Armendáriz, 2004.

• Einstein-Aether.

Zlosnik et al , 2007 

• Vector dark energy (kinetic)              

Beltrán, A.L.M. 2008

Slow evolution

Dark matter

• Dark light.           

Nelson et al, 2011

Fast oscillating

Arbitrary spin

THIS TALK

Perturbations



• Particle (Fock) states vs. coherent states

Outline

• A simple example of coherent field: axion

• Coherent scalar fields: wave(fuzzy) dark matter

• Extension to higher-spin fields

• Coherent vectors as ultra-light dark matter



A simple example:

Particle (Fock) states vs. coherent states

For every Fourier mode:

Fock states: 

well-defined particle number

Coherent states: 

not well-defined particle number



Particle (Fock) states vs. coherent states

Coherent states

Large occupation numbers

Classical limit

in
creases



A simple example of coherent field: axions

Strong CP problem

Induces an electric dipole moment for the neutron: 

Solution: Introduce a global U(1)PQ symmetry which is spontaneosly

broken at a fa scale.  Axion pseudo-NG boson. 



Axions

Non-perturbative QCD effects gives a potential for the axion

For typical scales fa = 1012 GeV,  ma= 10-5 eV

Minimizing the potential solves the problem

with mass



Axions

Misalignment mechanism

Angular variable  [-p,p]

• Random initial value displaced from the origin

• Inflation suppresses the spatial derivatives.  This means that when

all the modes start oscillating coherently

DM behaviour

Shift symmetry protects small axion mass



Axions

Axion occupation number

Axion density

Planck limit

For virialized axions

>> 1 classical field



Coherent scalar fields

(Turner, 1983)

Homogeneous RW

background



Coherent scalar fields

Virial theorem: average equation of state

bounded

Johnson and Kamionkowski (2008)



Coherent scalar fields

Average equation of state

n = 2   matter (axions)

n = 4   radiation

n = 4 

Detectable in pulsar timing array

Khmelnitsky and Rubakov 2014



Coherent scalar fields

Perturbations

Equations



Coherent scalar fields

Adiabatic approximation

Effective sound speed

If

Gauge-invariant



Coherent scalar fields

Harmonic case n=2

0 Particle regime

Wave regime

Matter power spectrum
suppression on small
scales



Coherent scalar fields

Harmonic case n=2



Heuristic interpretation (Hu et al, PRL85, 1158  (2000), Hlozek et al, PRD 91 103512 (2015))

Consider a particle of mass m << 1 eV moving with the Hubble flow H

The corresponding de Broglie wavelength:                      

mr

Thus, the particle can be localized only in a 
sphere with radius:                      

That corresponds to a (physical) wavenumber k=p/r

Particle DM vs. Wave DM



Heuristic interpretation (Hu et al 2000, Hlozek et al, PRD 91 103512 (2015))

Consider a particle of mass m << 1 eV moving with the Hubble flow H

Thus, we have:

mr
particle-like behaviour

wave-like behaviour

Jeans scale = de Broglie wavelength
Uncertainty principle avoids the small-scale problems of CDM:

a) missing satellite,    b) too-big-to-fail,      c) cusp-core

Particle DM vs. Wave DM

Ultralight scalar dark matter
(Sin 1994, Guzmán-Matos, 2000, Hu 2000) 



Higher-spin coherent fields

The anisotropy problem

• Homogeneous vectors or other higher-spin fields are generically

anisotropic

Problems at the background level



Anisotropy problem

There are different solutions in the literature:

- Particular solutions: Triads of orthogonal vectors.

- Large number, N, of randomly oriented fields.

Cervero, Jacobs, 1978)

Golovnev, Mukhanov, Vanchurin, 2008

Higher-spin coherent fields



bounded

rapid oscillations

A

L

Coherent vectors (abelian case)

Homogeneous RW

background



diagonal stress

Virial theorem: average energy-momentum tensor

Coherent vectors (abelian case)



Isotropic average energy-momentum tensor

Pressures:

Coherent vectors (abelian case)



Virial theorem: average equation of state

Coherent vectors (abelian case)

Agrees with the scalar case 

for power law potentials

L independent



Non power-law potentials

Coherent vectors (abelian case)



1.- Average energy-momentum tensor is
diagonal and isotropic

2.- Average equation of state for :

Solving the anisotropy problem (abelian case)



cabc totally antisymmetric

semi-simple Lie group

Mab symmetric constant matrix

Coherent vectors (non-abelian case)



Isotropy theorem for Yang-Mills theories

Yang-Mills theories for semi-simple Lie groups:

𝑆 = න𝑑4𝑥 𝑔 −
1

4
𝐹𝑎𝜇𝜈 𝐹

𝑎 𝜇𝜈 − 𝑉 𝐴 𝜇
𝑎 𝐴𝑎 𝜇

If the field evolves rapidly and  𝑨𝒂 𝒊 , ሶ𝑨𝒂𝒊 are bounded during its      

evolution,

Cembranos, ALM, Nunez Jareno,  Phys. Rev. D87 (2013) 043523

1.- The energy momentum tensor is diagonal and isotropic in  
average.

2.- Without potential, the equation of state parameter is w = 1/3 
i.e. it behaves as radiation. 



Example: SU(2) theory

The self-interaction for non-Abelian theories changes the average
equation of state. For high energy densities or large coupling
constants it will behave as radiation, in the opposite limit, the Abelian
behavior is recovered.

𝒈 ↓, 𝝆 ↓

𝝎 =
𝒏−𝟏

𝒏+𝟏

𝒈 ↑, 𝝆 ↑

𝝎 =
𝟏

𝟑



Arbitrary-spin fields

Consider a generic field fA with general Lagrangian of the form:

Canonical energy-
momentum tensor

Belinfante-Rosenfeld energy
momentum tensor



Diagonal and isotropic
energy-momentum tensor

Average equation
of state:

Virial theorem:

Arbitrary-spin fields



Average equation of state:

Virial theorem:

Average equation of state:

Power-law theories:

Arbitrary-spin fields



Coherent spin 2 fields

Fierz-Pauli Lagrangian

Massive gravitons as wave DM 
Cembranos, A.L.M., Núñez Jareño, JCAP 1403 (2014) 042

Average equation of state:



General space-time geometries

For a general background metric. Riemann normal coordinates:

The average energy-momentum tensor takes
the perfect fluid form for any locally inertial observer.



Coherent vectors as ultralight dark matter

Massive abelian vector field

Scalar-vector-tensor mixing

3 independent perturbations (dA0 is fixed)

Unlike scalar fields no extra (shift) symmetry required to protect small masses



Coherent vectors as ultralight dark matter

Equations

Adiabatic approximation:

• Three comoving scales in the problem:  

• Adiabatic approximation:  



Coherent vectors as ultralight dark matter

Regimes

WaveParticle



Coherent vectors as ultralight dark matter

Particle regime (2 scalar and 4 vector modes)

• Same behaviour as CDM: 
- Scalar-vector-tensor decoupled evolution
- No tensor sources
- No anisotropic stress

Wave regime (2 scalar-tensor and 4 vector-tensor modes)

Scalar-tensor modes

• Speed of sound

• Gravitational slip



Coherent vectors as ultralight dark matter

Scalar-tensor modes

Linear transfer function
suppression for



Coherent vectors as ultralight dark matter

Scalar-tensor modes

Gravity wave abundance



Coherent vectors as ultralight dark matter

Scalar-tensor modes



Coherent vectors as ultralight dark matter

Scalar-tensor modes



Coherent vectors as ultralight dark matter



Conclusions

• Cosmological coherent fields of arbitrary-spin do not present anisotropy or

instability problems if they are fast oscillating

• Higher-spin fields can play the role of wave(fuzzy) DM

• Ultralight vectors are indistinguishable from scalars in the particle regime, 

however in the wave regime they generate scalar-vector-tensor mixing, 

anisotropic stress and GW.

• Fields with power-law Hamiltonians behave as perfect fluids with average

equation of state:   



The self-interaction for non-Abelian theories changes the average
equation of state. For high energy densities or large coupling
constants it will behave as radiation, in the opposite limit, the Abelian
behavior is recovered.

𝒈 ↓, 𝝆 ↓

𝝎 =
𝒏−𝟏

𝒏+𝟏

𝒈 ↑, 𝝆 ↑

𝝎 =
𝟏

𝟑

JARC, Maroto, Nunez Jareno,  Phys. Rev. D87 (2013) 043523

DARK MATTER BEHAVIOR

Example: SU(2) theory



Problems at the perturbation level

• Instabilities in vector theories with spatial VEVs: 
(Himmetoglu, Contaldi,  Peloso 2009)

M2 > 0  

to avoid instabilities in 

the perturbations

Higher-spin coherent fields



Instabilities for abelian vectors

Himmetoglu, Contaldi,  Peloso (2009)

M2 > 0   no  instabilites

+      bounded evolution



FRW background

Coherent vectors (non-abelian case)



Generalized virial theorem

bounded

Rapid evolution

Coherent vectors (non-abelian case)


