

Quantum Vacuum and Gravitation: Testing General Relativity in Cosmology. Mainz 13-24 March 2017

Cosmology with arbitrary-spin coherent fields

Antonio L. Maroto

Universidad Complutense Madrid

Based on JHEP 1702 (2017) 064 and JHEP 1603 (2016) 013 In collaboration with J.A.R. Cembranos and S. J. Núñez Jareño

- "Classical fields": classical limit of coherent states (large occupation numbers)
- Coherent field description: new features compared to the more standard particle description, e.g. in ultra-light DM models Heisenberg uncertainty principle could help solving the small-scale problems of CDM.
- Simplest models based on scalar fields, but in principle
 any bosonic field could work

Outline

- Particle (Fock) states vs. coherent states
- A simple example of coherent field: axion
- Coherent scalar fields: wave(fuzzy) dark matter
- Extension to higher-spin fields
- Coherent vectors as ultra-light dark matter

Particle (Fock) states vs. coherent states

A simple example:

$$\phi(x) = \int \frac{d^3 p}{(2\pi)^3 \sqrt{2E_{\mathbf{p}}}} \left(a_{\mathbf{p}} e^{-ipx} + a_{\mathbf{p}}^{\dagger} e^{ipx} \right) \qquad E_{\mathbf{p}} = \mathbf{p}^2 + m^2$$

For every Fourier mode:

 $N_{\mathbf{p}}|n_{\mathbf{p}}\rangle = n_{\mathbf{p}}|n_{\mathbf{p}}\rangle$ Fock states: well-defined particle number

 $\langle n_{\mathbf{p}} | \phi(x) | n_{\mathbf{p}} \rangle = 0$

 $\begin{aligned} z_{\mathbf{p}} &= |z_{\mathbf{p}}|e^{i\theta_{\mathbf{p}}} \\ & a_{\mathbf{p}}|z_{\mathbf{p}}\rangle = z_{\mathbf{p}}|z_{\mathbf{p}}\rangle \\ & |z_{\mathbf{p}}\rangle = e^{\frac{-|z_{\mathbf{p}}|^2}{2}}\sum_{n_{\mathbf{p}}=0}^{\infty} \frac{z_{\mathbf{p}}^n}{\sqrt{n_{\mathbf{p}}!}} |n_{\mathbf{p}}\rangle \end{aligned}$

Coherent states:

not well-defined particle number

$$\langle z_{\mathbf{p}} | \phi(x) | z_{\mathbf{p}} \rangle = \frac{2|z_{\mathbf{p}}|}{(2\pi)^3 \sqrt{2E_{\mathbf{p}}}} \cos(px - \theta_{\mathbf{p}})$$

Particle (Fock) states vs. coherent states

Coherent states

$$\langle z_{\mathbf{p}} | N_{\mathbf{p}} | z_{\mathbf{p}} \rangle = |z_{\mathbf{p}}|^2$$

 $|z_{\mathbf{p}}|^2 \gg 1$ Large occupation numbers

$$\frac{\left(\langle z_{\mathbf{p}} | \phi^{2}(x) | z_{\mathbf{p}} \rangle - \langle z_{\mathbf{p}} | \phi(x) | z_{\mathbf{p}} \rangle^{2}\right)^{1/2}}{\langle z_{\mathbf{p}} | \phi(x) | z_{\mathbf{p}} \rangle} \sim \frac{1}{|z_{\mathbf{p}}|} \to 0$$

Classical limit

A simple example of coherent field: axions

Strong CP problem

$$S_{\theta} = \frac{\theta}{32\pi^2} \int d^4x \epsilon^{\mu\nu\lambda\rho} \operatorname{Tr} G_{\mu\nu} G_{\lambda\rho}$$

Induces an electric dipole moment for the neutron:

$$\bar{\theta} = \theta + \arg \det m_q \lesssim 10^{-10}$$

Solution: Introduce a global $U(1)_{PQ}$ symmetry which is spontaneosly broken at a f_a scale. Axion pseudo-NG boson.

$$S_a = \int d^4x \left(\frac{1}{2} (\partial_\mu a)^2 + \frac{a}{32\pi^2 f_a} \epsilon^{\mu\nu\lambda\rho} \operatorname{Tr} G_{\mu\nu} G_{\lambda\rho} \right)$$

Axions

Non-perturbative QCD effects gives a potential for the axion

$$V(a) = \Lambda_{QCD}^4 \left(1 - \cos\left(\frac{a}{f_a}\right)\right)$$

with mass

$$m_a \sim \frac{\Lambda_{QCD}^2}{f_a} \sim 6 \times 10^{-10} \text{eV} \left(\frac{10^{16} \text{GeV}}{f_a}\right)$$

For typical scales $f_a = 10^{12}$ GeV, $m_a = 10^{-5}$ eV

Minimizing the potential solves the problem $heta_{eff}\equiv rac{\langle a(x)
angle}{f_a}+ar{ heta}=0$

Axions

Shift symmetry protects small axion mass

• Random initial value displaced from the origin

$$\ddot{\theta}_k + 3H\dot{\theta}_k + \frac{k^2}{a^2}\theta_k + m_a^2(T)\theta_k = 0$$

• Inflation suppresses the spatial derivatives. This means that when $m_a(T) \sim H(T)$ all the modes start oscillating coherently

$$\rho_a \propto a^{-3}$$
 $m_a \gg H$ DM behaviour

Axions

Axion density
$$\Omega_a \sim \left(\frac{f_a}{10^{11-12} \text{ GeV}}\right)^{7/6}$$

 $f_a < 3 \times 10^{11} \text{GeV}$ or $m_a > 2.1 \times 10^{-5} \text{eV}$. Planck limit

Axion occupation number

$$n_{\rm gal} = \frac{\rho_{\rm gal}}{m} \approx \frac{{\rm GeV/cm^3}}{10^{-5} \,{\rm eV}} = \frac{10^{14}}{{\rm cm^3}}$$

For virialized axions

$$\lambda_{dB} = \frac{2\pi}{mv} \approx \frac{2\pi}{10^{-5} \,\mathrm{eV} \times 10^{-3}} \approx 10^4 \,\mathrm{cm}$$

$$\mathcal{N} \sim n_{\mathrm{gal}} \lambda_{dB}^3 pprox 10^{26}$$
 >> 1 classical field

$$S = \int d^4x \sqrt{g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)$$

$$V(\phi) = a \phi^n$$

(Turner, 1983)

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

Homogeneous RW background

Virial theorem: average equation of state

$$G = \dot{\phi}\phi$$
 bounded

$$\dot{G} = \dot{\phi}^2 + \ddot{\phi}\phi = \dot{\phi}^2 - V'(\phi)\phi = \dot{\phi}^2 - nV(\phi)$$

$$\langle \dot{G} \rangle = \frac{1}{T} \int_0^T \dot{G} dt = \frac{G(T) - G(0)}{T} \xrightarrow{T \gg \omega^{-1}} 0$$

$$\langle \dot{\phi}^2 - nV(\phi) \rangle = 0$$

 $\langle \rho + p - n(\rho - p) \rangle = 0$

$$\langle p \rangle = \frac{n-2}{n+2} \langle \rho \rangle$$

Johnson and Kamionkowski (2008)

Perturbations

$$\phi(\eta, \vec{x}) = \phi(\eta) + \delta\phi(\eta, \vec{x})$$

$$ds^{2} = a^{2}(\eta) \left((1 + 2\Phi(\eta, \vec{x})) \ d\eta^{2} - (1 - 2\Psi(\eta, \vec{x})) \ d\vec{x}^{2} \right)$$

Equations

$$\begin{split} \ddot{\delta\phi}_k &+ 2\mathcal{H}\dot{\delta\phi}_k - 3\dot{\Psi}_k\dot{\phi} - \dot{\Phi}_k\dot{\phi} \\ &+ (V''(\phi) a^2 + k^2)\delta\phi_k + 2V'(\phi) a^2\Psi_k = 0 \\ \delta G_{\mu\nu} &= 8\pi G \langle \delta T_{\mu\nu} \rangle \end{split}$$

Adiabatic approximation

Effective sound speed

$$c_{\text{eff}}^{2}(k) \equiv \frac{\langle \delta p_{k} \rangle}{\langle \delta \rho_{k} \rangle} = \frac{\left\langle \frac{k^{2}}{a^{2}} \delta \phi_{k} \phi - V'(\phi) \delta \phi_{k} + V''(\phi) \phi \delta \phi_{k} \right\rangle}{\left\langle \frac{k^{2}}{a^{2}} \delta \phi_{k} \phi + 3V'(\phi) \delta \phi_{k} + V''(\phi) \phi \delta \phi_{k} \right\rangle} + \mathcal{O}\left(\epsilon\right)$$

Gauge-invariant

If
$$\nu_{eff} \gg k$$
 $c_{eff}^2 = \frac{n-2}{n+2} = \omega$

Harmonic case n=2

Harmonic case n=2

CDM	$\Psi = \Phi \sim \text{const.}$ δρ ~ a ⁻³	$\Psi = \Phi \sim \text{const.}$ $\delta \rho \sim a^{-2}$		
	Q ~ a ⁻² Partic	$Q \sim a^{-2}$		
Scalar	$\Psi = \Phi \sim \text{const.}$	$\Psi = \Phi \sim \text{const.}$	$\Psi = \Phi \sim \mathbf{a}^{-1} \mathbf{H}$	
	δρ ~ a - ³	$\delta \rho \sim a^{-2}$	δρ ~ a ⁻³ iii	Cut-off
	δφ ~ const.	$\delta \phi \sim \mathbf{const.}$	$\delta \phi \sim a^{-3/2}$	
k ²	• $\mathcal{H}^{3}/\mathrm{ma}$ \mathcal{H}	\mathcal{H}^2 \mathcal{H}	ma m ²	a ²

Particle DM vs. Wave DM

Heuristic interpretation (Hu et al, PRL85, 1158 (2000), Hlozek et al, PRD 91 103512 (2015))

Consider a particle of mass *m* << 1 eV moving with the Hubble flow *H*

The corresponding de Broglie wavelength:

$$\lambda_{\rm dB} = \frac{1}{mv} = \frac{1}{mHr}$$

Thus, the particle can be localized only in a sphere with radius:

$$r \ge \lambda_{\mathrm{dB}} \quad \Longrightarrow \quad r \ge \frac{1}{\sqrt{Hm}}$$

That corresponds to a (physical) wavenumber $k=\pi/r$

$$k_{\star} = \pi \sqrt{mH}$$

Particle DM vs. Wave DM

Heuristic interpretation (Hu et al 2000, Hlozek et al, PRD 91 103512 (2015))

Consider a particle of mass *m* << 1 eV moving with the Hubble flow *H*

Higher-spin coherent fields

Problems at the background level

The anisotropy problem

• Homogeneous vectors or other higher-spin fields are generically anisotropic

Higher-spin coherent fields

Anisotropy problem

There are different solutions in the literature:

- Particular solutions: Triads of orthogonal vectors.

$$\vec{A}^{(3)}_{\vec{A}^{(2)}}$$
 $A^{(a)}_i \propto \delta^a_i$, a=1,2,3 Cervero, Jacobs, 1978
 $T^i_j \propto \delta^i_j$

- Large number, N, of randomly oriented fields.

$$T^i_j/p_k \sim 1/\sqrt{N}$$
 Golovnev, Mukhanov, Vanchurin, 2008

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - V(A^2) \qquad A^2 = A_{\mu} A^{\mu}$$

Virial theorem: average energy-momentum tensor

$$\frac{G_{ij}(T) - G_{ij}(0)}{T} = \left\langle 2V'(A^2)\frac{A_iA_j}{a^2} \right\rangle + \left\langle \frac{\dot{A}_i\dot{A}_j}{a^2} \right\rangle$$

$$H^{-1} \gg T \gg \omega_i^{-1} \implies \left\langle \frac{\dot{A}_i \dot{A}_j}{a^2} \right\rangle = -\left\langle 2V'(A^2) \frac{A_i A_j}{a^2} \right\rangle$$

$$T^{i}{}_{j} = \frac{\dot{A}_{i}\dot{A}_{j}}{a^{2}} + 2V'(A^{2})\frac{A_{i}A_{j}}{a^{2}}, \quad i \neq j$$

$$\left< T^i_{\ j} \right> = 0, \ i \neq j$$
 diagonal stress

$$\left\langle \frac{\dot{A}_i \dot{A}_j}{a^2} \right\rangle = -\left\langle 2V'(A^2) \frac{A_i A_j}{a^2} \right\rangle$$

Pressures:

$$p_{k} \equiv -T_{k}^{k} = \frac{1}{2} \frac{A_{i} A_{j}}{a^{2}} \delta^{ij} - \frac{A_{k} A_{k}}{a^{2}}$$
$$- V(A^{2}) - 2V'(A^{2}) \frac{A_{k} A_{k}}{a^{2}}, \ k = 1, 2, 3$$

$$\langle p_k \rangle \equiv -\langle T_k^k \rangle = \left\langle \frac{1}{2} \frac{\dot{A}_i \dot{A}_j}{a^2} \delta^{ij} \right\rangle - \langle V(A^2) \rangle,$$

 $k = 1, 2, 3;$

$$\left\langle T^i_{\ j} \right\rangle = - \left\langle p \right\rangle \ \delta^i_{\ j}$$

Isotropic average energy-momentum tensor

Virial theorem: average equation of state $V = \lambda (A_{\mu}A^{\mu})^n$

$$\left\langle \frac{\dot{A}_i \dot{A}_j}{a^2} \right\rangle = -\left\langle 2V'(A^2) \frac{A_i A_j}{a^2} \right\rangle \implies \left\langle \frac{1}{2} \frac{\dot{A}_i \dot{A}_j}{a^2} \delta^{ij} \right\rangle = n \left\langle V(A^2) \right\rangle$$
$$\left\langle \rho \right\rangle = (n+1) \left\langle V(A^2) \right\rangle$$
$$\left\langle p \right\rangle = (n-1) \left\langle V(A^2) \right\rangle$$

$$\omega = \frac{\langle p \rangle}{\langle \rho \rangle} = \frac{n-1}{n+1}$$

Agrees with the scalar case for power law potentials

L independent

Non power-law potentials

$$V = -aA_{\mu}A^{\mu} + b(A_{\mu}A^{\mu})^2$$

Solving the anisotropy problem (abelian case)

$$\langle T^i_0 \rangle = 0 \qquad \langle T^i_j \rangle = -\langle p \rangle \delta^i_j$$

2.- Average equation of state for $V = \lambda (A_{\mu}A^{\mu})^n$:

$$\omega = \frac{\langle p \rangle}{\langle \rho \rangle} = \frac{n-1}{n+1}$$

$$\mathcal{S} = \int d^4x \sqrt{g} \left(-\frac{1}{4} F^a_{\mu\nu} F^{a\ \mu\nu} - V(M_{ab} A^a_{\rho} A^{b\rho}) \right)$$

$$F_{\mu\nu} \equiv -igF^{a}_{\mu\nu}T^{a}$$
$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gc_{abc}A^{b}_{\mu}A^{c}_{\nu}$$

$$\left[T^a, T^b\right] = ic_{abc}T^c$$

c_{abc} totally antisymmetric semi-simple Lie group

$$F^{a\,;\nu}_{\mu\nu} - gc_{abc}F^{b}_{\mu\nu}A^{c\,\nu} + 2V'M_{ab}A^{b}_{\mu} = 0$$

M_{ab} symmetric constant matrix

Isotropy theorem for Yang-Mills theories

Yang-Mills theories for semi-simple Lie groups:

$$S = \int d^4x \sqrt{g} \left(-\frac{1}{4} F^a{}_{\mu\nu} F^{a\,\mu\nu} - V(A^a{}_{\mu}A^{a\,\mu}) \right)$$

If the **field evolves rapidly** and A^a_i , $\dot{A^a}_i$ are bounded during its evolution,

- 1.- The energy momentum tensor is diagonal and isotropic in average.
- 2.- Without potential, the equation of state parameter is w = 1/3
 - i.e. it behaves as radiation.

Cembranos, ALM, Nunez Jareno, Phys. Rev. D87 (2013) 043523

Example: SU(2) theory

The self-interaction for non-Abelian theories changes the average equation of state. For high energy densities or large coupling constants it will behave as radiation, in the opposite limit, the Abelian behavior is recovered.

Arbitrary-spin fields

Consider a generic field ϕ_A with general Lagrangian of the form:

 $\mathcal{L} \equiv \mathcal{L} \left[\phi^A, \partial_\mu \phi^A \right] \qquad \phi_A \text{ and } \dot{\phi}_A \text{ bounded}$

Canonical energymomentum tensor

$$\Theta^{\mu\nu} = -\eta^{\mu\nu}\mathcal{L} + \frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu}\phi^{A}\right)}\partial^{\nu}\phi^{A}$$

Belinfante-Rosenfeld energy momentum tensor

Therefore
$$\nabla_{\rho} \Theta^{\nu\rho;\mu}$$

$$T^{\mu\nu} = \Theta^{\mu\nu} - \frac{1}{2} \nabla_{\rho} \left(S^{\rho\mu\nu} + S^{\mu\nu\rho} - S^{\nu\rho\mu} \right)$$

 $S^{\mu\nu\rho} = \Pi^{\mu}_{A} \Sigma^{\nu\rho} \phi^{A}$

Arbitrary-spin fields

Virial theorem:

$$H^{-1} \gg T \gg \omega^{-1}$$

$$\left\langle g^{\rho\gamma}\nabla_{\rho}\tilde{\Theta}_{\nu\gamma;\mu}\right\rangle \approx \frac{1}{T}\int_{t}^{t+T}dt'\partial_{0}\tilde{\Theta}_{\nu0;\mu}(t') = \frac{\tilde{\Theta}_{\nu0;\mu}(t+T) - \tilde{\Theta}_{\nu0;\mu}(t)}{T}$$

Diagonal and isotropic energy-momentum tensor

$$\begin{split} \langle T^{00} \rangle &= \langle \Pi^0_A \partial_0 \phi^A - \mathcal{L} \rangle ; \\ \langle T^{0j} \rangle &= T^{0j} = 0 ; \\ \langle T^{jj} \rangle &= \langle -g^{jj} \mathcal{L} \rangle ; \\ \langle T^{jk} \rangle &= 0 ; k \neq j , \end{split}$$

Average equation of state:

$$\omega = \frac{\langle p \rangle}{\langle \rho \rangle} = \frac{\langle \mathcal{L} \rangle}{\langle \Pi_A^0 \partial_0 \phi^A - \mathcal{L} \rangle} = \frac{\langle \mathcal{L} \rangle}{\langle \mathcal{H} \rangle}$$

Arbitrary-spin fields

Average equation of state:

Virial theorem:

$$\left\langle \partial_0 \left(\Pi^0_A \phi^A \right) \right\rangle = 0$$

Power-law theories:

$$\mathcal{H} = \left(\lambda^{AB} g_{00} \Pi^0_A \Pi^0_B\right)^{n_T} + \left(M_{AB} \phi^A \phi^B\right)^{n_V}$$

$$\langle T \rangle = \frac{n_V}{n_T} \left\langle V \right\rangle$$

Average equation of state:

$$\omega = \frac{2 n_V}{1 + \frac{n_V}{n_T}} - 1$$

Coherent spin 2 fields

Massive gravitons as wave DM

Cembranos, A.L.M., Núñez Jareño, JCAP 1403 (2014) 042

Fierz-Pauli Lagrangian

$$\mathcal{L} = \frac{M_{Pl}^2}{8} \Big[\nabla_{\alpha} h^{\mu\nu} \nabla^{\alpha} h_{\mu\nu} - 2 \nabla_{\alpha} h^{\alpha}_{\mu} \nabla_{\beta} h^{\mu\beta} \\ + 2 \nabla_{\alpha} h^{\alpha}_{\mu} \nabla^{\mu} h^{\beta}_{\beta} - \nabla_{\alpha} h^{\mu}_{\mu} \nabla^{\alpha} h^{\nu}_{\nu} \\ - m_g^2 \left(h_{\mu\nu} h^{\mu\nu} - \left(h^{\mu}_{\mu} \right)^2 \right) \Big] .$$

Average equation of state:

$$\omega = \frac{2n_V}{1 + \frac{n_V}{n_T}} - 1 = 0$$

General space-time geometries

For a general background metric. Riemann normal coordinates:

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + \frac{1}{3}R_{\mu\alpha\nu\beta}x^{\alpha}x^{\beta} + \dots$$

- 1. The Lagrangian depends only on the fields and their gradients.
- 2. The field evolves rapidly:

$$|R_{\lambda\mu\nu}^{\gamma}| \ll (\omega_A)^2$$
, and $|\partial_j S^{\mu\nu\rho}| \ll |\partial_0 S^{\mu\nu\rho}|$,
for $j = 1, 2, 3$;

3. $S^{\mu\nu\rho}$, i.e. ϕ^A and Π^0_A , remains bounded in the evolution.

The average energy-momentum tensor takes the perfect fluid form for any locally inertial observer.

Massive abelian vector field

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} A_{\mu} A^{\mu} .$$

Unlike scalar fields no extra (shift) symmetry required to protect small masses

 $ds^{2} = a(\eta)^{2} \left[(1 + 2\Phi(\eta, \vec{x})) d\eta^{2} - ((1 - 2\Psi(\eta, \vec{x})) \delta_{ij} + h_{ij}(\eta, \vec{x})) dx^{i} dx^{j} - 2Q_{i}(\eta, \vec{x}) d\eta dx^{i} \right]$

Scalar-vector-tensor mixing

Equations

$$\ddot{\delta A}_i + ik_i\dot{\delta A}_0 - \left(\dot{\Phi} + \dot{\Psi}\right)\dot{A}_i - 2\Phi\ddot{A}_i - i\left(\vec{k}\vec{A}\right)Q_i - \dot{h}_{ij}\dot{A}_j + \left(m^2a^2 + k^2\right)\delta A_i - k_i\left(\vec{k}\vec{\delta A}\right) = 0$$

$$\delta G_{\mu\nu} = 8\pi G \langle \delta T_{\mu\nu} \rangle$$

Adiabatic approximation:

- Three comoving scales in the problem: $|ma, \mathcal{H}|$ and |k|
- Adiabatic approximation: $ma \gg \{\mathcal{H},k\}$

Regimes

Particle regime (2 scalar and 4 vector modes)

- Same behaviour as CDM:
 - Scalar-vector-tensor decoupled evolution
 - No tensor sources
 - No anisotropic stress

Wave regime (2 scalar-tensor and 4 vector-tensor modes)

Scalar-tensor modes $\cos \theta \equiv \hat{k} \cdot \hat{u}_A$

• Speed of sound

$$\begin{aligned} c_{eff}^2 &\equiv \frac{\langle \delta p \rangle}{\langle \delta \rho \rangle} = -\frac{k^2}{4m^2 a^2} \cos(2\theta) \\ \frac{\Psi(\eta, \vec{k}) - \Phi(\eta, \vec{k})}{\Phi(\eta, \vec{k})} &= \frac{k^2}{2m^2 a^2} (1 + \cos^2 \theta) \end{aligned}$$

Gravitational slip

Scalar-tensor modes $m = 10^{-22} \text{ eV}$

suppression for $k > 10h \text{ Mpc}^{-1}$

Scalar-tensor modes

$$h_{ij}(\eta, \vec{k}) \equiv \begin{pmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{h_{+}(\eta_{eq}, \vec{k})}{\Phi(\eta_{eq}, \vec{k})} = \frac{k^2}{2m^2 a_{eq}^2} \sin^2(\theta) \left(1 - 4\cos^2(\theta)\right)$$

Gravity wave abundance

$$\Omega_{\rm GW}(k,\eta_0) = \int d\Omega \frac{k^5 |h_+|^2}{48\pi^3 H_0^2} = 1.605 A_s \frac{k^2}{H_0^2} \left(\frac{k_{\rm eq}^2}{m^2 a_{\rm eq}} \ln\left(\frac{k}{8k_{\rm eq}}\right)\right)^2 \left(\frac{k}{k_0}\right)^{n_s - 1}$$

 $k_{eq} \ll k \ll ma_{eq}$

Scalar-tensor modes

Scalar-tensor modes

	$\Psi = \Phi \sim \mathbf{const.}$	$\Psi = \Phi \sim \mathbf{const.}$
CDM	δρ ~ a⁻³	δρ ~ a ⁻²
	$Q \sim a^{-2}$	$Q \sim a^{-2}$

	Particle		e Regime 🚽 🛶 Wav		Regime
Scalar	Ψ = Φ δρ ~ a δφ ~ c	o∼ const. - ⁻³ ronst.	Ψ = Φ ~ const. δρ ~ a ⁻² δφ ~ const.	$\begin{split} \Psi &= \Phi \sim a^{-1} \underset{\delta \phi \sim a^{-3}}{\text{Hem}_{\chi}^{2}} \\ \delta \phi &\sim a^{-3/2} \text{O} \end{split}$	Cut-off
Vector	Averaging fails	$\Psi = \Phi \sim \text{const.}$ $\frac{\Psi - \Phi}{\Psi} = 0$ $\delta \rho \sim a^{-3}$ $\delta A_a \sim a$ $Q \sim a^{-2}$ $h_{ij} = 0$	$\Psi = \Phi \sim \text{const.}$ $\frac{\Psi - \Phi}{\Psi} = 0$ $\delta \rho \sim a^{-2}$ $\delta A_a \sim a$ $Q \sim a^{-2}$ $h_{ij} = 0$	$\begin{split} \Psi \sim \Phi \sim \mathbf{a}^{-1} \\ \frac{\Psi - \Phi}{\Psi} \sim \mathbf{a}^{-2} \\ \delta \rho \sim \mathbf{a}^{-3} \\ \delta A_{\mathbf{a}} \sim \mathbf{a}^{-1/2} \\ \mathbf{Q} \sim \mathbf{a}^{-2} \\ \mathbf{h}_{ij} \sim \mathbf{a}^{-1} \end{split}$	Cut-off
k^2	• $\mathcal{H}^{3/n}$	na d	$\mathcal{H}^2 \qquad \mathcal{H}$	ma m	2 _a 2 - ►

Conclusions

- Cosmological coherent fields of arbitrary-spin do not present anisotropy or instability problems if they are fast oscillating
- Fields with power-law Hamiltonians behave as perfect fluids with average equation of state: $\omega = \frac{2 n_V}{1 + \frac{n_V}{n_T}} - 1$
- Higher-spin fields can play the role of wave(fuzzy) DM

• Ultralight vectors are indistinguishable from scalars in the particle regime, however in the wave regime they generate scalar-vector-tensor mixing, anisotropic stress and GW.

Example: SU(2) theory

The self-interaction for non-Abelian theories changes the average equation of state. For high energy densities or large coupling constants it will behave as radiation, in the opposite limit, the Abelian behavior is recovered.

Higher-spin coherent fields

Problems at the perturbation level

• Instabilities in vector theories with spatial VEVs: (Himmetoglu, Contaldi, Peloso 2009)

$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{F^2}{4} - V(A^2) + \frac{\xi}{2} R A^2 \right].$$

$$M^2 = 2\frac{\partial V}{\partial A^2} - \xi R$$

Instabilities for abelian vectors

$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{F^2}{4} - V(A^2) + \frac{\xi}{2} R A^2 \right].$$

$$M^2 = 2\frac{\partial V}{\partial A^2} - \xi R$$

Himmetoglu, Contaldi, Peloso (2009)

FRW background $ds^2 = a^2(\eta) \left(d\eta^2 - d\vec{x}^2 \right)$

 $\mu = 0$

$$gc_{abc}\dot{A}_{i}^{b}A_{i}^{c} + g^{2}c_{abc}c_{bde}A_{0}^{d}A_{i}^{e}A_{i}^{c} + 2V'M_{ab}a^{2}(\eta)A_{0}^{b} = 0$$

No \ddot{A}^a_0 term

 $\mu = i$

$$\ddot{A}_{i}^{a} - gc_{abc} \left(2\dot{A}_{i}^{b}A_{0}^{c} + A_{i}^{b}\dot{A}_{0}^{c} \right) + g^{2}c_{abc}c_{bde} \left(A_{i}^{d}A_{0}^{e}A_{0}^{c} - A_{i}^{d}A_{j}^{e}A_{j}^{c} \right) - 2V'M_{ab}a^{2}(\eta)A_{i}^{b} = 0 ,$$

Generalized virial theorem

$$G_{ij}^{ab} = \frac{\dot{A}_i^a A_j^b}{a^4(\eta)}, \quad i, j = 1, 2, 3; \ a, b = 1 \dots N$$
 bounded

$$\begin{split} \dot{G}^{ab}_{ij} &= \frac{\ddot{A}^a_i A^b_j}{a^4(\eta)} + \frac{\dot{A}^a_i \dot{A}^b_j}{a^4(\eta)}, \ i, j \ = \ 1, 2, 3; \\ a, b \ = \ 1 \dots N \end{split}$$

$$\omega_i^{(a)} \gg H$$

Rapid evolution

$$\frac{G_{ij}^{ab}(T) - G_{ij}^{ab}(0)}{T} = \left\langle \frac{\ddot{A}_i^a A_j^b}{a^4(\eta)} + \frac{\dot{A}_i^a \dot{A}_j^b}{a^4(\eta)} \right\rangle = 0$$
$$H^{-1} \gg T \gg \omega^{-1}$$