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The main motivation of this talk is to argue that 
there is a novel type of energy.   This  energy has 
“non-dispersive” nature, and  can not be expressed 
in terms of conventional  scattering amplitudes. 

All these novel effects are due to the nontrivial 
topological sectors in the gauge systems and 
tunnelling transitions between them.   

The effect is non-local in nature, and can not be 
expressed in terms  of local curvature. It is 
expressed in terms of a non-local characteristics 
of the system such as  the holonomy. 

It should be  contrasted with the “dispersive” 
terms computed from the dispersion relations   
(see Tolley’s talk).  

1. Motivation. Structure of the talk.    



!

We want to test the ideas in a tabletop experiment 
where there is an extra contribution to the Casimir 
vacuum pressure.  A novel extra term can not be 
expressed in terms of propagating physical photons 
with  two transverse  polarizations (S-matrix).    

The effect (based exclusively on the SM physics) is 
highly sensitive to the     parameter. It motivated 
few new ideas on the axion search experiments.   

The talk is based on applications of this new type 
of energy to:                                               
1.cosmology- DE, inflation (PRD, arxiv:1505.05151);            
2.testing of these ideas in a tabletop experiment 
(PRD-2017, arxiv; 1605.01411);                                              
3.axion search experiments (arxiv:1702.00012).             
New opportunities  emerge due to high sensitivity  
of these novel effects  to the axion          field     
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A convenient  way to explain the nature of new type 
of vacuum energy is  to study the topologically 
susceptibility ( it is the key element in the resolution of the so-
called U(1) problem in QCD, Witten, Veneziano, 1979 ). 

!

        does not vanish, though                       . It has 
``wrong sign”, see below. It can  not be related to 
any physical propagating degrees of freedom. 
Furthermore, it has a pole in momentum space 

!

There is a massless pole, but there are no any 
physical massless states in the system. 

2.  Topological susceptibility

4

the theory is restored not due to the 2⌅ periodicity of Lagrangian (7). Rather, it is restored as a result of summation
over all branches of the theory when the levels cross at ⇤ = ⌅(mod 2⌅) and one branch replaces another and becomes
the lowest energy state as discussed in [23].

Finally, the dimensional parameter which governs the dynamics of the problem is the Debye correlation length of
the monopole’s gas,
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⇤ ⇥ L⇥

⌅
4⌅

g

⇧2

. (8)

The average number of monopoles in a “Debye volume” is given by
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The last inequality holds since the monopole fugacity is exponentially suppressed, ⇥ ⌅ e�1/g2

, and in fact we can view
(9) as a constraint on the validity of the approximation where semiclassical approximation is justified.

B. Topological susceptibility

The topological susceptibility ⇧ which plays a crucial role in resolution of the U(1)A problem [24–29] and is defined
as follows1

⇧(⇤ = 0) =
⌃2Evac(⇤)
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(10)

= lim
k⇥0

�
d4xeikx�T{q(x), q(0)} ,

where ⇤ is the ⇤ parameter which enters the Lagrangian (6) along with topological density operator q(x) and Evac(⇤)
is the vacuum energy density determined by (7).

It is important that the topological susceptibility ⇧ does not vanish in spite of the fact that q = ⌃µKµ is total
divergence. Furthermore, any physical state gives a negative contribution to this diagonal correlation function
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where mn is the mass of a physical state, k ⌃ 0 is its momentum, and �0|q|n = cn is its coupling to topological
density operator q(x). At the same time the resolution of the U(1)A problem requires a positive sign for the topological
susceptibility (12), see the original reference [26] for a thorough discussion,

⇧non�dispersive = lim
k⇥0

�
d4xeikx�T{q(x), q(0)} > 0. (12)

Therefore, there must be a contact contribution to ⇧, which is not related to any propagating physical degrees of
freedom, and it must have the “wrong” sign. The “wrong” sign in this paper implies a sign which is opposite to
any contributions related to the physical propagating degrees of freedom (11). In the framework [24] the contact
term with “wrong” sign has been simply postulated, while in refs.[25, 26] the Veneziano ghost had been introduced
into the theory to saturate the required property (12). Furthermore, as we discuss below the contact term has in
fact the structure ⇧ ⌅

⌃
d4x�4(x). The significance of this structure is that the gauge variant correlation function in

momentum space
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1 We use the Euclidean notations where path integral computations are normally performed.
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To avoid confusion: This is the Wick’s T-product, not Dyson’s       



conventional physical degrees of freedom always 
contribute with sign (-) while one needs sign (+) to 
satisfy WI and resolve the U(1) problem 

Conventional terms (related to propagating degrees 
of freedom) always  produce                      behaviour 
at large distances.   

Witten simply postulated this term, while Veneziano 
assumed the unphysical field, the so-called the 
“Veneziano ghost” to saturate “wrong” sign in     .  

In some models this contact non-dispersive term with 
“wrong” sign (+) can be explicitly computed. It is 
originated from the tunnelling effects  between the  
degenerate topological sectors of the theory.                      
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IV. INSIGHTS FROM LATTICE SIMULATIONS AND FROM HOLOGRAPHIC PICTURE OF QCD

In this section we want to get some insights from the lattice results. The Monte Carlo simulations are normally
performed in Euclidean space. Therefore, we reformulate the low energy relations discussed in previous sections II and
III to Euclidean space time in order to make comparison with lattice results.

A. Topological susceptibility

The scalar correlation function in Euclidean space takes the form and it is negative

⌥
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while the topological susceptibility in the Euclidean space is positive
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The di�erence in signs4 between these two correlation functions can be seen in Minkowski space as well, see eq. (3)
versus (6). The crucial observation here is as follows: any physical state contributes to ⌃Eucl with negative sign
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in drastic contrast with low energy relation (20). It poses no problem for the correlation function (19) when the
physical dilaton saturates the negative sign in eq.(19). At the same time the positive physical mass m2

�0 > 0 for
the ⇤⇥ meson requires the positive sign for the topological susceptibility (20), see the original reference [33] for a
thorough discussion. Therefore, there must be a contact contribution to ⌃, which is not related to any propagating
physical degrees of freedom, and it must have a “wrong sign” (in comparison with (21) representing the conventional
dispersive contribution) to saturate the positive sign for topological susceptibility (20). In di�erent words, it must be a
non-dispersive contribution to ⌃ which is not associated with any asymptotical physical states in conventional dispersion
relations. In the framework [34] the contact term with “wrong sign” has been postulated, while in refs.[32, 33] the
Veneziano ghost had been introduced to saturate the required property (20).

The simplest way to convince yourself in necessity for a non-dispersive contribution to ⌃ with a “wrong sign” is
to compute the topological susceptibility ⌃QCD in QCD rather than in gluodynamics. The topological susceptibility
⌃QCD(mq = 0) = 0 must vanish in the chiral limit as a consequence of the Ward Identities (WI). It is very instructive to
see how it happens. If one models the contact contribution to ⌃ using the Veneziano ghost, the topological susceptibility
in Euclidean space can be represented as follows, see [9, 49] and references therein:
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where Dc(m�0x) is the Green’s function of a free massive particle with standard normalization
⇧
d4xm2

�0Dc(m�0x) = 1.
The term proportional �Dc(m�0x) with negative sign in eq. (22) is resulted from the lightest physical ⇤⇥ state of mass
m�0 and it has a negative sign in accordance with (21). At the same time the ⇥4(x) represents the ghost contribution
with “wrong” sign which can not be associated with any physical states. The ghost’s contribution can be also thought
as the Witten’s contact term [34] not related to any propagating degrees of freedom. The topological susceptibility
⌃QCD(mq = 0) = 0 vanishes in the chiral limit as a result of exact cancellation between two terms entering (22) in
complete accordance with WI. The WI can not be satisfied if the contact term is not present in the system. When
mq ⌃= 0 the cancellation is not complete and ⌃QCD ⇧ mq q̄q⌦ in accordance with WI.

In case of “deformed QCD” considered in [40] we could explicitly compute the contact term and see that it is saturated
by the monopoles which in weak coupling regime describe the tunnelling processes between di�erent topological sectors
of the theory. While the topological sectors in case of strongly coupled 4d QCD of course still exist, we do not have

4 A warning signal with the signs: the physical degrees of freedom in Euclidean space (where the lattice computations are performed)
contribute to topological susceptibility �QCD with the negative sign, while the contact term (the Veneziano ghost) contributes with the
positive sign, in contrast with our discussions in Minkowski space, see eqs. (3), (6).
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These contributions can not be described in terms 
of conventional degrees of freedom (wrong sign); 

They are inherently non-local in nature as they 
are related to the tunnelling processes which are 
formulated in terms of the non-local large gauge 
transformation operator and holonomy; 

These terms may exhibit the long range features 
even through QCD has a gap (similar to the CM 
topologically ordered systems); 

The effects have been explained  in terms           . 
However,  the      -dependent portion of energy             
(which is generated due to the tunnellings) has all 
these unusual features due to the relation 
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The topological susceptibility        as a function of r.  Wrong sign for             	
     is well established phenomenon;  it has been tested on the lattice 
(plot above is from C. Bernard et al, LATTICE 2007).  This 
contribution is not related to any physical degrees of freedom, and 
can be interpreted as a contact term.   

�(r)

Contribution from 
physical degrees of 

freedom (negative sign 
with  finite width)

Contact  term  (positive sign +, 
vanishing width in continuum )

�
�(r = 0)



3. Warm up example: Maxwell system in 2d  

2D Maxwell theory is exactly solvable model. It is 
an empty theory as it does not support any 
propagating dof. Still, it has non-trivial dynamics. 

The   partition function for     vacua is known (in 
Hamiltonian approach): 

!

We want to reproduce               using path integral 
computations as it can be generalized to 4d system. 
Instanton configurations, topological  charge 
density Q, classical action are: 

✓
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the standard and generically accepted arguments sug-
gesting that all physical e�ects in Maxwell theory can
be formulated in terms of physical propagating photons
which are completely described by conventional Z0. Yet,
all the e�ects discussed in the present work are formu-
lated in fundamentally di�erent terms coded by Ztop.
The point is that the standard description is not quite
complete when 4d Maxwell theory is formulated on a
non-simply connected, compact manifold. The stan-
dard “naive” argument neglects the topological sectors,
which are indeed absent when the theory is formulated
in the topologically trivial Minkowski space-time. How-
ever, these topological sectors become important when
the theory is formulated on a nontrivial manifold.

When one attempts to remove all unphysical degrees
of freedom by a gauge fixing, the physics related to pure
gauge configurations describing the topological sectors of
the theory does not go away; instead, this physics reap-
pears in a much more complicated form where the so-
called Gribov’s ambiguities [11] emerge in Maxwell sys-
tem formulated on a compact manifold [12–15], see some
comments on this matter in concluding section V. In this
work we opt to keep some gauge freedom and study these
topological sectors explicitly, rather than deal with (tech-
nically complicated) analysis of the Gribov’s copies.

The structure of our presentation is as follows. In the
next section II, we review the relevant parts of the two di-
mensional Maxwell “empty” theory which does not have
any physical propagating degrees of freedom. Still, it
demonstrates a number of very nontrivial topological fea-
tures present in the system. In section III we generalize
our computations for 4d Maxwell theory defined on four
torus. We find two types of novel contributions to the en-
tropy in this system. First contribution with a negative
sign is very similar to topological entanglement entropy
well-studied in topologically ordered condensed matter
systems. The second contribution with a positive sign
results from emergent degeneracy which occurs when the
system is placed into a background of external magnetic
field which resembles a behaviour of topological insula-
tors with ⇥ = ⇤.

II. MAXWELL THEORY IN TWO
DIMENSIONS AS TOPOLOGICAL QFT

The 2d Maxwell model has been solved numerous times
using very di�erent techniques, see e.g.[16–18]. It is
known that this is an “empty” theory in a sense that it
does not support any propagating degrees of freedom in
the bulk of space-time. It is also known that this model
can be treated as a conventional topological quantum
field theory (TQFT). In particular, this model can be
formulated in terms of the so-called “BF” action involv-
ing no metric. Furthermore, this model exhibits many
other features such as fractional edge observables which
are typical for TQFT, see e.g.[17]. We emphasize on these
properties of the 2d Maxwell theory because the topolog-

ical portion of the partition function Ztop in our descrip-
tion of 4d Maxwell system, given in section III, identically
the same as the partition function of 2d Maxwell system.
As we already mentioned such a relation between the
two di�erent systems is a result of decoupling of physical
propagating photons from the topological sectors in 4d
system.
Our goal here is to review this “empty” 2d Maxwell

theory with nontrivial dynamics of the topological sectors
when conventional propagating degrees of freedom are
not supported by this system.

A. Partition function

We consider 2d Maxwell theory defined on the Eu-
clidean torus S1 ⇥ S1 with lengths L and � respectively.
In the Hamiltonian framework we choose a A0 = 0 gauge
along with ⌅1A1 = 0. This implies that A1(t) is the only
dynamical variable of the system with E = Ȧ1.
The spectrum for ⇥ vacua is well known [16] and it is

given by En(⇥) = 1
2

�
n+ �

2⇥

⇥2
e2L, such that the corre-

sponding partition function takes the form

Z(V, ⇥) =
⇤

n⇥Z
e�

e2V
2 (n+ �

2⇥ )
2

, (1)

where V = �L is the two-volume of the system.
We want to reproduce (1) using a di�erent approach

based on Euclidean path integral computations because
it can be easily generalized to similar computations 4d
Maxwell theory defined on 4 torus. Our goal here is to
understand the physical meaning of (1) in terms of the
path integral computations.
To proceed with path integral computations one con-

siders the “instanton” configurations on two dimensional
Euclidean torus with total area V = L� described as
follows [18]:

⌅
d2x Q(x) = k, eE(k) =

2⇤k

V
, (2)

where Q = e
2⇥E is the topological charge density and k

is the integer-valued topological charge in the 2d U(1)
gauge theory, E(x) = ⌅0A1 � ⌅1A0 is the field strength.
The action of this classical configuration is

1

2

⌅
d2xE2 =

2⇤2k2

e2V
. (3)

This configuration corresponds to the topological charge
k as defined by (2). The next step is to compute the
partition function defined as follows

Z(⇥) =
⇤

k⇥Z

⌅
DA(k)e�

1
2

�
d2xE2+

�
d2xL� , (4)

where ⇥ is standard theta parameter which defines the |⇥⇤
ground state and which enters the action with topological
density operator

L� = i⇥

⌅
d2x Q(x) = i⇥

e

2⇤

⌅
d2x E(x). (5)

2

the standard and generically accepted arguments sug-
gesting that all physical e�ects in Maxwell theory can
be formulated in terms of physical propagating photons
which are completely described by conventional Z0. Yet,
all the e�ects discussed in the present work are formu-
lated in fundamentally di�erent terms coded by Ztop.
The point is that the standard description is not quite
complete when 4d Maxwell theory is formulated on a
non-simply connected, compact manifold. The stan-
dard “naive” argument neglects the topological sectors,
which are indeed absent when the theory is formulated
in the topologically trivial Minkowski space-time. How-
ever, these topological sectors become important when
the theory is formulated on a nontrivial manifold.

When one attempts to remove all unphysical degrees
of freedom by a gauge fixing, the physics related to pure
gauge configurations describing the topological sectors of
the theory does not go away; instead, this physics reap-
pears in a much more complicated form where the so-
called Gribov’s ambiguities [11] emerge in Maxwell sys-
tem formulated on a compact manifold [12–15], see some
comments on this matter in concluding section V. In this
work we opt to keep some gauge freedom and study these
topological sectors explicitly, rather than deal with (tech-
nically complicated) analysis of the Gribov’s copies.

The structure of our presentation is as follows. In the
next section II, we review the relevant parts of the two di-
mensional Maxwell “empty” theory which does not have
any physical propagating degrees of freedom. Still, it
demonstrates a number of very nontrivial topological fea-
tures present in the system. In section III we generalize
our computations for 4d Maxwell theory defined on four
torus. We find two types of novel contributions to the en-
tropy in this system. First contribution with a negative
sign is very similar to topological entanglement entropy
well-studied in topologically ordered condensed matter
systems. The second contribution with a positive sign
results from emergent degeneracy which occurs when the
system is placed into a background of external magnetic
field which resembles a behaviour of topological insula-
tors with ⇥ = ⇤.

II. MAXWELL THEORY IN TWO
DIMENSIONS AS TOPOLOGICAL QFT

The 2d Maxwell model has been solved numerous times
using very di�erent techniques, see e.g.[16–18]. It is
known that this is an “empty” theory in a sense that it
does not support any propagating degrees of freedom in
the bulk of space-time. It is also known that this model
can be treated as a conventional topological quantum
field theory (TQFT). In particular, this model can be
formulated in terms of the so-called “BF” action involv-
ing no metric. Furthermore, this model exhibits many
other features such as fractional edge observables which
are typical for TQFT, see e.g.[17]. We emphasize on these
properties of the 2d Maxwell theory because the topolog-

ical portion of the partition function Ztop in our descrip-
tion of 4d Maxwell system, given in section III, identically
the same as the partition function of 2d Maxwell system.
As we already mentioned such a relation between the
two di�erent systems is a result of decoupling of physical
propagating photons from the topological sectors in 4d
system.
Our goal here is to review this “empty” 2d Maxwell

theory with nontrivial dynamics of the topological sectors
when conventional propagating degrees of freedom are
not supported by this system.

A. Partition function

We consider 2d Maxwell theory defined on the Eu-
clidean torus S1 ⇥ S1 with lengths L and � respectively.
In the Hamiltonian framework we choose a A0 = 0 gauge
along with ⌅1A1 = 0. This implies that A1(t) is the only
dynamical variable of the system with E = Ȧ1.
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which are completely described by conventional Z0. Yet,
all the e�ects discussed in the present work are formu-
lated in fundamentally di�erent terms coded by Ztop.
The point is that the standard description is not quite
complete when 4d Maxwell theory is formulated on a
non-simply connected, compact manifold. The stan-
dard “naive” argument neglects the topological sectors,
which are indeed absent when the theory is formulated
in the topologically trivial Minkowski space-time. How-
ever, these topological sectors become important when
the theory is formulated on a nontrivial manifold.

When one attempts to remove all unphysical degrees
of freedom by a gauge fixing, the physics related to pure
gauge configurations describing the topological sectors of
the theory does not go away; instead, this physics reap-
pears in a much more complicated form where the so-
called Gribov’s ambiguities [11] emerge in Maxwell sys-
tem formulated on a compact manifold [12–15], see some
comments on this matter in concluding section V. In this
work we opt to keep some gauge freedom and study these
topological sectors explicitly, rather than deal with (tech-
nically complicated) analysis of the Gribov’s copies.

The structure of our presentation is as follows. In the
next section II, we review the relevant parts of the two di-
mensional Maxwell “empty” theory which does not have
any physical propagating degrees of freedom. Still, it
demonstrates a number of very nontrivial topological fea-
tures present in the system. In section III we generalize
our computations for 4d Maxwell theory defined on four
torus. We find two types of novel contributions to the en-
tropy in this system. First contribution with a negative
sign is very similar to topological entanglement entropy
well-studied in topologically ordered condensed matter
systems. The second contribution with a positive sign
results from emergent degeneracy which occurs when the
system is placed into a background of external magnetic
field which resembles a behaviour of topological insula-
tors with ⇥ = ⇤.

II. MAXWELL THEORY IN TWO
DIMENSIONS AS TOPOLOGICAL QFT

The 2d Maxwell model has been solved numerous times
using very di�erent techniques, see e.g.[16–18]. It is
known that this is an “empty” theory in a sense that it
does not support any propagating degrees of freedom in
the bulk of space-time. It is also known that this model
can be treated as a conventional topological quantum
field theory (TQFT). In particular, this model can be
formulated in terms of the so-called “BF” action involv-
ing no metric. Furthermore, this model exhibits many
other features such as fractional edge observables which
are typical for TQFT, see e.g.[17]. We emphasize on these
properties of the 2d Maxwell theory because the topolog-

ical portion of the partition function Ztop in our descrip-
tion of 4d Maxwell system, given in section III, identically
the same as the partition function of 2d Maxwell system.
As we already mentioned such a relation between the
two di�erent systems is a result of decoupling of physical
propagating photons from the topological sectors in 4d
system.
Our goal here is to review this “empty” 2d Maxwell

theory with nontrivial dynamics of the topological sectors
when conventional propagating degrees of freedom are
not supported by this system.

A. Partition function

We consider 2d Maxwell theory defined on the Eu-
clidean torus S1 ⇥ S1 with lengths L and � respectively.
In the Hamiltonian framework we choose a A0 = 0 gauge
along with ⌅1A1 = 0. This implies that A1(t) is the only
dynamical variable of the system with E = Ȧ1.
The spectrum for ⇥ vacua is well known [16] and it is

given by En(⇥) = 1
2

�
n+ �

2⇥

⇥2
e2L, such that the corre-

sponding partition function takes the form

Z(V, ⇥) =
⇤

n⇥Z
e�

e2V
2 (n+ �

2⇥ )
2

, (1)

where V = �L is the two-volume of the system.
We want to reproduce (1) using a di�erent approach

based on Euclidean path integral computations because
it can be easily generalized to similar computations 4d
Maxwell theory defined on 4 torus. Our goal here is to
understand the physical meaning of (1) in terms of the
path integral computations.
To proceed with path integral computations one con-
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Euclidean torus with total area V = L� described as
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All integrals in this partition function are gaussian and
can be easily evaluated using the technique developed in
[18]. The result is

Z(V, ⇥) =
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e2V
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where the expression in the exponent represents the clas-
sical instanton configurations with action (3) and topo-
logical charge (2), while the factor in front is due to the
fluctuations, see [1] with some technical details and rel-
evant references. While expressions (1) and (6) look dif-
ferently, they are actually identically the same, as the
Poisson summation formula states:
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Therefore, we reproduce the original expression (1) using
the path integral approach.

The crucial observation for our present study is that
this naively “empty” theory which has no physical prop-
agating degrees of freedom, nevertheless shows some very
nontrivial features of the ground state related to the
topological properties of the theory. These new proper-
ties are formulated in terms of di�erent topological vac-
uum sectors of the system |k↵ which have identical phys-
ical properties as they connected to each other by large
gauge transformation operator T commuting with the
Hamiltonian [T , H] = 0. As explained in details in [1]
the corresponding dynamics of this “empty” theory rep-
resented by partition function (7) should be interpreted
as a result of tunnelling events between these “degener-
ate” winding |k↵ states which correspond to one and the
same physical state.

It is known that this model can be treated as TQFT,
e.g. supports edge observables which may assume the
fractional values, and shows many other features which
are typical for a TQFT, see [17] and references therein.
The presence of the topological features of the model
can be easily understood from observation that entire
dynamics of the system is due to the transitions between
the topological sectors which themselves are determined
by the behaviour of surface integrals at infinity

�
Aµdxµ.

These sectors are classified by integer numbers and they
are not sensitive to specific details of the system such
as geometrical shape of the system. Therefore, it is not
really a surprise that the system is not sensitive to specific
geometrical details, and can be treated as TQFT.

Important point we would like to make is that our anal-
ysis of the topological portion Ztop of the partition func-
tion for 4d Maxwell system defined on T4 assumes exactly
the same form (7) as a result of decoupling of propagating
photons from the topological part of the partition func-
tion, as will be discussed in section III. As a result of this
decoupling the topological portion of the 4d Maxwell sys-
tem behaves very much in the same way as 2d “empty”
theory. Therefore, one should not be very surprised that

this 4d system also demonstrates some topological fea-
tures, similar to 2d system reviewed in this section.
Before we proceed with computations of the topologi-

cal entropy we make a short detour on properties of the
topological susceptibility in this model, as it plays an
important role in our discussions of the entropy.

B. Topological susceptibility

The topological susceptibility ⌅ is defined as follows,

⌅ ⇤ lim
k⇥0

⇤
d2x eikx ⌦TQ(x)Q(0)↵ , (8)

where Q is topological charge density operator normal-
ized according to eq.(2). The ⌅ measures response of
the free energy to the introduction of a source term de-
fined by eq. (5). The computations of ⌅ in this simple
“empty” model can be easily carried out as the partition
function Z(⇥) defined by (4) is known exactly (7). To
compute ⌅ we should simply di�erentiate the partition
function twice with respect to ⇥. It leads to the following
well known expression for ⌅ which is finite in the infinite
volume limit [18, 19]

⌅(V ⌃ ⌥) = � 1

V
· �

2lnZ(⇥)

�⇥2
|�=0 =

e2

4⇤2
. (9)

A typical value of the topological charge k which satu-
rates the topological susceptibility ⌅ in the large volume
limit is very large, k ⌅

�
e2V ⇧ 1.

Few comments are in order. First, any physical state
contributes to ⌅ with negative sign

⌅dispersive ⌅ lim
k⇥0

⇥

n

⌦0| e
2⇤E|n↵⌦n| e

2⇤E|0↵
�k2 �m2

n

< 0, (10)

while (9) has a positive sign. Therefore, this non-
dispersive (contact) term (9) can not be identified ac-
cording to (10) with any contribution from any asymp-
totic state even when physical degrees are freedom, such
as fermions, are included into the system. This term has
a fundamentally di�erent, non-dispersive nature. In fact
it is ultimately related to di�erent topological sectors as
our computation (9) shows. Secondly, the integrand for
the topological susceptibility (8) demonstrates a singular
behaviour

⌦Q(x)Q(0)↵ = e2

4⇤2
�2(x), (11)

which is a not specific property of this “empty” theory,
but in fact a very generic feature which is present in many
gauge theories; it represents the contact term which is
not related to any propagating degrees of freedom. In
particular, such singular behaviour (11) is known to occur
in QCD and its modifications, and well supported by the
QCD lattice Monte Carlo simulations, see [19] for the
details and related references.
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really a surprise that the system is not sensitive to spe-
cific geometrical details, and can be treated as TQFT.
The simplest way to analyze the corresponding topologi-
cal features of the system is to introduce the topological
susceptibility � and study its property, see next subsec-
tion.

B. Topological susceptibility
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“empty” model can be easily carried out as the partition
function Z(✓) defined by (4) is known exactly (7). To
compute � we should simply di↵erentiate the partition
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well known expression for � which is finite in the infinite
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It is important to emphasize that the integrand for
the topological susceptibility (8) demonstrates a singu-
lar behaviour, see [2, 14, 15] for the details and related
references:
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It represents the non-dispersive contact term which can
not be related to any propagating degrees of freedom. In

this simplest case of the 2d Maxwell system this comment
is quite obvious as 2d Maxwell theory does not support
any propagating degrees of freedom. The �2(x) function
in (10) should be understood as total divergence related
to the infrared (IR) physics, rather than to ultraviolet
(UV) behaviour. Indeed,
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In other words, the non-dispersive contact term (10) is
determined by IR physics at arbitrary large distances
rather than UV physics which can be erroneously as-
sumed to be a source of �2(x) behaviour in (10). The
computations of this contact term in terms of the delo-
calized instantons (2) explicitly show that all observables
in this system are originated from the IR physics.
One should also remark that the same contact term (9)

and its local expression (10) can be also computed using
the auxiliary ghost field, the so-called Kogut-Susskind
(KS) ghost, as it has been originally done in ref. [16],
see also [2, 15] for relevant discussions in the present con-
text. This description in terms of the KS ghost implicitly
takes into account the presence of topological sectors in
the system. The same property is explicitly reflected by
summation over topological sectors k 2 Z in direct com-
putations (4,6) without introducing any auxiliary fields.
Important point we would like to make is that our anal-

ysis of the topological portion Z
top

of the partition func-
tion for 4d Maxwell system defined on T4 assumes exactly
the same form (7) as a result of decoupling of propagating
photons from the topological part of the partition func-
tion, as will be discussed in section III. As a result of this
decoupling the topological portion of the 4d Maxwell sys-
tem behaves very much in the same way as 2d “empty”
theory. Therefore, one should not be very surprised that
this 4d system also demonstrates some topological fea-
tures, similar to 2d system reviewed in this section.

III. TOPOLOGICAL PARTITION FUNCTION
IN 4D

Our goal here is to analyze the Maxwell system on a
Euclidean 4-torus with sizes L

1

⇥ L
2

⇥ L
3

⇥ � in the
respective directions. It provides the IR regularization of
the system. This section plays a supplementary role as
we want to review the previously known results on the
vacuum structure of this system. We want to reproduce
these known results on Maxwell vacuum using a di↵erent
technique based on the auxiliary fields developed in next
section IV. As we argue below our auxiliary fields will
play the same role as emergent Berry’s connection in CM
systems.
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The simplest way to analyze the corresponding topologi-
cal features of the system is to introduce the topological
susceptibility � and study its property, see next subsec-
tion.

B. Topological susceptibility

The topological susceptibility � is defined as follows,

� ⌘ lim
k!0

Z
d2x eikx hTQ(x)Q(0)i , (8)

where Q is topological charge density operator normal-
ized according to eq.(2). The � measures response of
the free energy to the introduction of a source term de-
fined by eq. (5). The computations of � in this simple
“empty” model can be easily carried out as the partition
function Z(✓) defined by (4) is known exactly (7). To
compute � we should simply di↵erentiate the partition
function twice with respect to ✓. It leads to the following
well known expression for � which is finite in the infinite
volume limit [2, 14, 15]

�(V ! 1) = � 1

V
· @

2lnZ(✓)

@✓2
|
✓=0

=
e2

4⇡2

. (9)

A typical value of the topological charge k which satu-
rates the topological susceptibility � in the large volume
limit is very large, k ⇠

p
e2V � 1.

It is important to emphasize that the integrand for
the topological susceptibility (8) demonstrates a singu-
lar behaviour, see [2, 14, 15] for the details and related
references:

hQ(x)Q(0)i = e2

4⇡2

�2(x). (10)

It represents the non-dispersive contact term which can
not be related to any propagating degrees of freedom. In

this simplest case of the 2d Maxwell system this comment
is quite obvious as 2d Maxwell theory does not support
any propagating degrees of freedom. The �2(x) function
in (10) should be understood as total divergence related
to the infrared (IR) physics, rather than to ultraviolet
(UV) behaviour. Indeed,
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In other words, the non-dispersive contact term (10) is
determined by IR physics at arbitrary large distances
rather than UV physics which can be erroneously as-
sumed to be a source of �2(x) behaviour in (10). The
computations of this contact term in terms of the delo-
calized instantons (2) explicitly show that all observables
in this system are originated from the IR physics.
One should also remark that the same contact term (9)

and its local expression (10) can be also computed using
the auxiliary ghost field, the so-called Kogut-Susskind
(KS) ghost, as it has been originally done in ref. [16],
see also [2, 15] for relevant discussions in the present con-
text. This description in terms of the KS ghost implicitly
takes into account the presence of topological sectors in
the system. The same property is explicitly reflected by
summation over topological sectors k 2 Z in direct com-
putations (4,6) without introducing any auxiliary fields.
Important point we would like to make is that our anal-

ysis of the topological portion Z
top

of the partition func-
tion for 4d Maxwell system defined on T4 assumes exactly
the same form (7) as a result of decoupling of propagating
photons from the topological part of the partition func-
tion, as will be discussed in section III. As a result of this
decoupling the topological portion of the 4d Maxwell sys-
tem behaves very much in the same way as 2d “empty”
theory. Therefore, one should not be very surprised that
this 4d system also demonstrates some topological fea-
tures, similar to 2d system reviewed in this section.

III. TOPOLOGICAL PARTITION FUNCTION
IN 4D

Our goal here is to analyze the Maxwell system on a
Euclidean 4-torus with sizes L

1

⇥ L
2

⇥ L
3

⇥ � in the
respective directions. It provides the IR regularization of
the system. This section plays a supplementary role as
we want to review the previously known results on the
vacuum structure of this system. We want to reproduce
these known results on Maxwell vacuum using a di↵erent
technique based on the auxiliary fields developed in next
section IV. As we argue below our auxiliary fields will
play the same role as emergent Berry’s connection in CM
systems.



The intergrand                          for the topological 
susceptibility is saturated by uniform fluxes 
filling the entire space-time volume (IR not UV 
physics). This “non-dispersive” contact term is not 
related to any propagating degrees of freedom 

!

Is this constant non-dispersive contribution  to 
the vacuum energy physically observable?  

The ultimate answer is “yes” as the anomalous 
Ward Identities               (when physical massless 
fermions are introduced into the system) can be 
only satisfied if the contact term is not zero.   
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4. Applications to Cosmology
We assume (see next few slides) that the non-
dispersive     -  dependent portion of the vacuum 
energy             shows the linear correction with 
respect to IR regulator “L” of the background, i.e.    

We also assume that the relevant (gravitating) 
energy which enters the Friedman’s equation is the 
difference                                      similar to 
computations of the Casimir energy, when the 
difference      is observed. This assumption was, in 
fact, originally formulated by Zeldovich in 1967. 

In this formula the dimensional parameter “L” 
should be interpreted as any IR parameter of the 
system. e.g. curvature in hyperbolic space               
or temporal/spatial  size of            or

Evac(✓)

�E

✓

E(L) = c0⇤
4
QCD + c1L

�1⇤3
QCD +O(L�2⇤2

QCD) + ...

�E = [E(L)� EMink]

H3
 ⇥ S1�1

T3 ⇥ S1 S3 ⇥ S1



!

Historical comments: many people from different 
fields had advocated (after Zeldovich)  a similar 
idea on the RHS for the Friedman’s equation  

                                      

James Bjorken (particle physics), 2001,                             
Ralf Schuetzhold (GR), PRL, 2002;                                                    
Grisha Volovik (CM physics), 2008 +many more  	



I personally adopted this idea in 2009, mostly 
due to the intense discussions with Grisha 
Volovik in the relation with  his COSLAB 
(Cosmology in a Laboratory) activities. 

E(L) ⌘ �(�V )�1 lnZ
�E(L) = [E(L)� EMink]



This “L”-dependent energy has the same “non-
dispersive” nature, which can not be expressed in 
terms of any local propagating degrees of freedom 
(such as  “inflaton” or DE-scalar fields). Dyson T-
product formulation  cannot describe this physics.  

For numerical estimates we take              , where 
“H” is the  Hubble constant. This estimate   
obviously  does not contradict any observations.It 
should not be interpreted as                 as it is 
formulated in terms of a different characteristic,  
the holonomy (not expressible as local curvature)  

With these assumptions the non-dispersive 
contribution to energy  is amazingly close to the 
observed values (without any fitting parameters)

L ⇠ H�1

L�1 ⇠
p
R

L�1 ⇠ H ⇠ 10�33eV, ⇢DE = �E ⇠ L�1⇤3
QCD ⇠ (10�3eV)4



Q:       How a system with a gap could be ever 
sensitive to arbitrary large distances?	



A1: The long range order in gapped QCD is similar 
to Aharonov -Casher effect. If one inserts an 
external charge into superconductor  when 
electric field is screened                  a neutral 
magnetic fluxon will be still sensitive to external 
charge at arbitrary large distances.  

A2: Long range order in the system emerges because 
the large gauge transformation operator         and 
holonomy are non-local operators sensitive to far 
IR-physics, similar to “modular operator” in 
Aharonov -Casher effect. 

exp(�r/�)

T



5. Applications to inflation
We assume a scaled up version of QCD with the 
scale                                                   to avoid 
interference with EW physics.  

The Friedman equation has a de Sitter solution 
after the  phase transition to the confined phase 
when the topological susceptibility is generated 

This non-dispersive type of energy (the contact 
term) is linear in “H” and drives the Universe into 
the de Sitter phase   

The relevant dynamics is governed by some non- 
propagating auxiliary topological fields without 
canonical kinetic term; it can not be expressed in 
terms of any local fields like “inflaton”  

H2 =
8⇡G

3
(⇢Inf + ⇢R) =

8⇡G

3

�
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QCD + ⇢R
�
, H0 ⇠ 8⇡G

3
(↵⇤3

QCD)

MPL � ⇤QCD � 3

q
M2

EWMPL ⇠ 108 GeV



This regime would be the final destination of our 
Universe if the interaction with SM fields is 
switched off. 

When the coupling is switched back on, the end of 
inflation is triggered precisely by this interaction 
which itself is unambiguously fixed by triangle 
anomaly.  

where        is topological non-propagating field  
and                                          is the coupling at 
inflationary scale 

The number of e-folds in this framework is related 
to the gauge coupling constant and not to some ad 
hoc inflaton potential, i.e.   

Lb�� =
↵(H0)

8⇡
NQ2 [✓ � b(x)] · Fµ⌫ F̃

µ⌫ ,

↵(H0) ⇠ ↵EW (H0) ⇠ ↵s(H0) ⇠ 0.1
b(x)

N
e�folds

⇠ ↵�2

s (H
0

) ⇠ 102



 Concluding comments on cosmological applications:	



We speculate that a liner in “L” correction  to the 
energy could be generated as a result of dynamics 
of topological configurations with nontrivial 
holonomy. The idea is tested in “deformed QCD” and 
in the system defined on hyperbolic space       

It produces an order of magnitude estimate which is 
consistent with the observations for DE: 

The same idea can be applied to describe inflation.  

Technically: effect is similar to Aharonov -Bohm 
effect when the gauge potential       (rather 
than     ) is physically  observable. Effect can not 
be expressed in terms of propagating DoF                                               

Aµ

H3
 ⇥ S1�1

⇢DE = �E ⇠ L�1⇤3
QCD ⇠ (10�3eV)4

Fµ⌫



When the  Maxwell system is formulated on a non-
simply connected manifold there will be an extra 
contribution to the Casimir pressure, not related 
to the physical propagating photons with two 
transverse polarizations 	



This setting   should be contrasted with 
conventional setting  when the Casimir energy  is 
generated between two conducting plates (trivial  
holonomy). 

The Maxwell system on a non-trivial manifold 
shows all signs (degeneracy,  etc)  which are 
normally attributed to the topologically ordered 
systems. 

Proposal: Instead of theoretical speculations I suggest to conduct a 
real tabletop experiment to study this new type of energy:



It is normally assumed that topology plays no role 
for abelian Maxwell theory because              is 
trivial. 

However, if we consider a  non-simply connected 
manifold (for example, a cylinder),  or consider 
external field which enforces a nontrivial 
boundary conditions than                  plays a role. 

In this case the problem is reduced to the 
previously studied 2d case when the “instanton 
fluxes” describe the tunnelling transitions 
between distinct topological      sectors. In 
particular, instanton-fluxes along Z-direction are:

6. Maxwell system in 4 dimensions

⇡3(U(1))

Topological order and Berry connection for the Maxwell Vacuum on a four-torus

Ariel R. Zhitnitsky
Department of Physics & Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada

We study novel type of contributions to the partition function to the Maxwell system defined on
a small compact manifold such as torus. These new terms can not be described in terms of the
physical propagating photons with two transverse polarizations. Rather, these novel contributions
emerge as a result of tunnelling events when transitions occur between topologically di�erent but
physical identical vacuum winding states. The infrared physics in the system can be described
in terms of the topological auxiliary non-propagating fields ai(k) governed by Chern-Simons -like
action. The system can be studied in terms of these auxiliary fields precisely in the same way as a
topological insulator can be analyzed in terms of Berry’s connection Ai(k). We also argue that the
Maxwell vacuum defined on a small 4-torus behaves very much in the same way as a topological
insulator with ✓ 6= 0.

PACS numbers: 11.15.-q, 11.15.Kc, 11.15.Tk

I. INTRODUCTION. MOTIVATION.

The main motivation for present studies is as fol-
lows. It has been recently argued [1, 2] that if the free
Maxwell theory (without any interactions with charged
particles) is defined on a small compact manifold than
some novel terms in the partition function will emerge.
These terms are not related to the propagating photons
with two transverse physical polarizations, which are re-
sponsible for the conventional Casimir e�ect. Rather,
these novel terms occur as a result of tunnelling events
between topologically di�erent but physically identical
states. These states play no role when the system is
defined in Minkowski space-time R1,3. But these states
become important when the system is defined on a finite
compact manifold such as torus T4.

In particular, it has been explicitly shown in [1, 2] that
these novel terms lead to a fundamentally new contri-
butions to the Casimir vacuum pressure, which can not
be expressed in terms of conventional propagating phys-
ical degrees of freedom. Instead, the new vacuum contri-
butions appear as a result of tunnelling events between
di�erent topological sectors |k⇧. Mathematically, these
sectors emerge as a result of non-triviality of the funda-
mental group �1[U(1)] ⇥= Z when the system is defined
on a torus.

The crucial for the present studies observation is as fol-
lows. While the Maxwell Electrodynamics is the theory
of massless particles (photons), the topological portion
of the system decouples from dynamics of these massless
propagating photons. Indeed, as we discuss below, the to-
tal partition function Z can be represented as a product
Z = Z0 � Ztop. The conventional partition function Z0

describing physical photons is not sensitive to the topo-
logical sectors |k⇧ of the system which itself is described
by Ztop. The topological portion of the partition func-
tion Ztop behaves very much as topological quantum field
theory (TQFT) as argued in [2]. Furthermore, it demon-
strates many features of topologically ordered systems,
which were initially introduced in context of condensed
matter (CM) systems, see original papers [3–6] and re-

cent reviews [7–11].
In particular, Ztop demonstrates the degeneracy of the

system which can not be described in terms of any local
operators. Instead, such a degeneracy can be formulated
in terms of some non-local operators [2]. Furthermore,
our system exhibits some universal sub-leading correc-
tions to the thermodynamical entropy which can not be
expressed in terms of propagating photons with two phys-
ical polarizations. Instead, the corresponding universal
contribution to the entropy is expressed in terms of the
“instantons” describing the tunnelling events between
topologically di�erent but physically identical topolog-
ical sectors |k⇧.
As a result of these similarities, the key question ad-

dressed in the present work is as follows. It has been
known for sometime [3–11] that some key features of
topologically ordered systems can be formulated in terms
of the so-called Berry’s connection in momentum space.
To address this question we formulate the topological fea-
tures of the system in terms of an auxiliary topological
field. Such a formulation exhibits a close mathematical
similarity between the auxiliary topological field describ-
ing the Maxwell vacuum state and the Berry’s connec-
tion in topologically ordered CM systems. Such a simi-
larity looks very instructive and suggestive, and further
supports our arguments [2] that the ground state of the
Maxwell theory defined on a small compact manifold be-
haves as a TQFT.
The structure of our presentation is as follows. In the

next section II, we review the relevant parts of the two di-
mensional Maxwell “empty” theory which does not have
any physical propagating degrees of freedom. Still, it
demonstrates a number of very nontrivial topological fea-
tures present in the system. In section III we generalize
our description for 4d Maxwell theory defined on four
torus. In our main section IV we introduce the auxil-
iary fields which e�ectively account for the topological
sectors of the system. We study the behaviour of these
auxiliary fields in the far infrared (IR) at small k ⇤ 0
in momentum space. We observe a striking similarity
of the obtained structure with analogous formula for the

|ki

4

A. Construction

We follow [1, 2] in our construction of the partition
function Ztop where it was employed for computation of
the corrections to the Casimir e⇥ect due to these novel
type of topological fluctuations. The crucial point is that
we impose the periodic boundary conditions on gauge Aµ

field up to a large gauge transformation. In what follows
we simplify our analysis by considering a clear case with
winding topological sectors |k⌦ in the z-direction only.
The classical configuration in Euclidean space which de-
scribes the corresponding tunnelling transitions can be
represented as follows:

�Btop = ��⇤ �Atop =

⇤
0, 0,

2⌅k

eL1L2

⌅
, (12)

� = e

�
dx1dx2B

z
top = 2⌅k

in close analogy with the 2d case (2).
The Euclidean action of the system is quadratic and

has the following form

1

2

�
d4x

⇧
�E2 +

�
�B + �Btop

⇥2⌃
, (13)

where �E and �B are the dynamical quantum fluctuations
of the gauge field. The key point is that the classical
topological portion of the action decouples from quantum
fluctuations, such that the quantum fluctuations do not
depend on topological sector k and can be computed in
topologically trivial sector k = 0. Indeed, the cross term

�
d4x �B · �Btop =

2⌅k

eL1L2

�
d4x Bz = 0 (14)

vanishes because the magnetic portion of quantum fluc-
tuations in the z-direction, represented by Bz =  xAy �
 yAx, is a periodic function as �A is periodic over the do-
main of integration. This technical remark in fact greatly
simplifies our analysis as the contribution of the physi-
cal propagating photons is not sensitive to the topolog-
ical sectors k. This is, of course, a specific feature of
quadratic action (13), in contrast with non-abelian and
non-linear gauge field theories where quantum fluctua-
tions of course depend on topological k sectors. The au-
thors of ref. [17] arrived to the same conclusion (on de-
coupling of the topological terms from conventional fluc-
tuating photons with non-zero momentum), though in a
di⇥erent context of topological insulators in the presence
of the ⇤ = ⌅ term.

The classical action for configuration (12) takes the
form

1

2

�
d4x �B2

top =
2⌅2k2⇥L3

e2L1L2
(15)

To simplify our analysis further in computing Ztop we
consider a geometry where L1, L2 ⌃ L3,⇥ similar to con-
struction relevant for the Casimir e⇥ect [1, 2]. In this

case our system is closely related to 2d Maxwell theory
by dimensional reduction: taking a slice of the 4d sys-
tem in the xy-plane will yield precisely the topological
features of the 2d torus considered in section II. Further-
more, with this geometry our simplification (12) when
we consider exclusively the magnetic fluxes in z direction
is justified as the corresponding classical action (15) as-
sumes a minimal possible values. With this assumption
we can consider very small temperature, but still we can
not take a formal limit ⇥ ⌥ � in our final expressions
as a result of our technical constraints in the system.
With these additional simplifications the topological

partition function becomes [1, 2]:

Ztop =

 
2⌅⇥L3

e2L1L2

⌥

k⇥Z
e
� 2⇥2k2�L3

e2L1L2 =
�
⌅⇧
⌥

k⇥Z
e�⇥2⇤k2

,(16)

where we introduced the dimensionless parameter

⇧ ⌅ 2⇥L3/e
2L1L2. (17)

Formula (16) is essentially the dimensionally reduced ex-
pression for the topological partition function (6) for 2d
Maxwell theory analyzed in section II. One should note
that the normalization factor

�
⌅⇧ which appears in eq.

(16) does not depend on topological sector k, and essen-
tially it represents our convention of the normalization
Ztop ⌥ 1 in the limit L1L2 ⌥ � which corresponds to
a convenient set up for the Casimir -type experiments as
discussed in [1, 2].

B. External magnetic field

In this section we want to generalize our results for the
Euclidean Maxwell system in the presence of the exter-
nal magnetic field. Normally, in the conventional quan-
tization of electromagnetic fields in infinite Minkowski
space, there is no direct coupling between fluctuating vac-
uum photons and an external magnetic field as a conse-
quence of linearity of the Maxwell system. The coupling
with fermions generates a negligible e⇥ect ⇧ �2B2

ext/m
4
e

as the non-linear Euler-Heisenberg E⇥ective Lagrangian
suggests, see [1] for the details and numerical estimates.
The interaction of the external magnetic field with topo-
logical fluctuations (12), in contrast with coupling with
conventional photons, will lead to the e⇥ects of order of
unity as a result of interference of the external magnetic
field with fluxes- instantons.
The corresponding partition function can be easily con-

structed for external magnetic field Bext
z pointing along

z direction, as the crucial technical element on decou-
pling of the background fields from quantum fluctuations
assumes the same form (14). In other words, the physi-
cal propagating photons with non-vanishing momenta are
not sensitive to the topological k sectors, nor to the ex-
ternal uniform magnetic field, similar to our discussions
after (14).
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has the following form
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where �E and �B are the dynamical quantum fluctuations
of the gauge field. The key point is that the classical
topological portion of the action decouples from quantum
fluctuations, such that the quantum fluctuations do not
depend on topological sector k and can be computed in
topologically trivial sector k = 0. Indeed, the cross term

�
d4x �B · �Btop =
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d4x Bz = 0 (14)

vanishes because the magnetic portion of quantum fluc-
tuations in the z-direction, represented by Bz =  xAy �
 yAx, is a periodic function as �A is periodic over the do-
main of integration. This technical remark in fact greatly
simplifies our analysis as the contribution of the physi-
cal propagating photons is not sensitive to the topolog-
ical sectors k. This is, of course, a specific feature of
quadratic action (13), in contrast with non-abelian and
non-linear gauge field theories where quantum fluctua-
tions of course depend on topological k sectors. The au-
thors of ref. [17] arrived to the same conclusion (on de-
coupling of the topological terms from conventional fluc-
tuating photons with non-zero momentum), though in a
di⇥erent context of topological insulators in the presence
of the ⇤ = ⌅ term.

The classical action for configuration (12) takes the
form
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top =
2⌅2k2⇥L3

e2L1L2
(15)

To simplify our analysis further in computing Ztop we
consider a geometry where L1, L2 ⌃ L3,⇥ similar to con-
struction relevant for the Casimir e⇥ect [1, 2]. In this

case our system is closely related to 2d Maxwell theory
by dimensional reduction: taking a slice of the 4d sys-
tem in the xy-plane will yield precisely the topological
features of the 2d torus considered in section II. Further-
more, with this geometry our simplification (12) when
we consider exclusively the magnetic fluxes in z direction
is justified as the corresponding classical action (15) as-
sumes a minimal possible values. With this assumption
we can consider very small temperature, but still we can
not take a formal limit ⇥ ⌥ � in our final expressions
as a result of our technical constraints in the system.
With these additional simplifications the topological

partition function becomes [1, 2]:
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where we introduced the dimensionless parameter

⇧ ⌅ 2⇥L3/e
2L1L2. (17)

Formula (16) is essentially the dimensionally reduced ex-
pression for the topological partition function (6) for 2d
Maxwell theory analyzed in section II. One should note
that the normalization factor

�
⌅⇧ which appears in eq.

(16) does not depend on topological sector k, and essen-
tially it represents our convention of the normalization
Ztop ⌥ 1 in the limit L1L2 ⌥ � which corresponds to
a convenient set up for the Casimir -type experiments as
discussed in [1, 2].

B. External magnetic field

In this section we want to generalize our results for the
Euclidean Maxwell system in the presence of the exter-
nal magnetic field. Normally, in the conventional quan-
tization of electromagnetic fields in infinite Minkowski
space, there is no direct coupling between fluctuating vac-
uum photons and an external magnetic field as a conse-
quence of linearity of the Maxwell system. The coupling
with fermions generates a negligible e⇥ect ⇧ �2B2

ext/m
4
e

as the non-linear Euler-Heisenberg E⇥ective Lagrangian
suggests, see [1] for the details and numerical estimates.
The interaction of the external magnetic field with topo-
logical fluctuations (12), in contrast with coupling with
conventional photons, will lead to the e⇥ects of order of
unity as a result of interference of the external magnetic
field with fluxes- instantons.
The corresponding partition function can be easily con-

structed for external magnetic field Bext
z pointing along

z direction, as the crucial technical element on decou-
pling of the background fields from quantum fluctuations
assumes the same form (14). In other words, the physi-
cal propagating photons with non-vanishing momenta are
not sensitive to the topological k sectors, nor to the ex-
ternal uniform magnetic field, similar to our discussions
after (14).
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we consider exclusively the magnetic fluxes in z direction
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In this section we want to generalize our results for the
Euclidean Maxwell system in the presence of the exter-
nal magnetic field. Normally, in the conventional quan-
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uum photons and an external magnetic field as a conse-
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as the non-linear Euler-Heisenberg E⇥ective Lagrangian
suggests, see [1] for the details and numerical estimates.
The interaction of the external magnetic field with topo-
logical fluctuations (12), in contrast with coupling with
conventional photons, will lead to the e⇥ects of order of
unity as a result of interference of the external magnetic
field with fluxes- instantons.
The corresponding partition function can be easily con-

structed for external magnetic field Bext
z pointing along

z direction, as the crucial technical element on decou-
pling of the background fields from quantum fluctuations
assumes the same form (14). In other words, the physi-
cal propagating photons with non-vanishing momenta are
not sensitive to the topological k sectors, nor to the ex-
ternal uniform magnetic field, similar to our discussions
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I. INTRODUCTION. MOTIVATION.

The main motivation for present studies is as fol-
lows. It has been recently argued [1, 2] that if the free
Maxwell theory (without any interactions with charged
particles) is defined on a small compact manifold than
some novel terms in the partition function will emerge.
These terms are not related to the propagating photons
with two transverse physical polarizations, which are re-
sponsible for the conventional Casimir e�ect. Rather,
these novel terms occur as a result of tunnelling events
between topologically di�erent but physically identical
states. These states play no role when the system is
defined in Minkowski space-time R1,3. But these states
become important when the system is defined on a finite
compact manifold such as torus T4.

In particular, it has been explicitly shown in [1, 2] that
these novel terms lead to a fundamentally new contri-
butions to the Casimir vacuum pressure, which can not
be expressed in terms of conventional propagating phys-
ical degrees of freedom. Instead, the new vacuum contri-
butions appear as a result of tunnelling events between
di�erent topological sectors |k⇧. Mathematically, these
sectors emerge as a result of non-triviality of the funda-
mental group �1[U(1)] ⇥= Z when the system is defined
on a torus.

The crucial for the present studies observation is as fol-
lows. While the Maxwell Electrodynamics is the theory
of massless particles (photons), the topological portion
of the system decouples from dynamics of these massless
propagating photons. Indeed, as we discuss below, the to-
tal partition function Z can be represented as a product
Z = Z0 � Ztop. The conventional partition function Z0

describing physical photons is not sensitive to the topo-
logical sectors |k⇧ of the system which itself is described
by Ztop. The topological portion of the partition func-
tion Ztop behaves very much as topological quantum field
theory (TQFT) as argued in [2]. Furthermore, it demon-
strates many features of topologically ordered systems,
which were initially introduced in context of condensed
matter (CM) systems, see original papers [3–6] and re-

cent reviews [7–11].
In particular, Ztop demonstrates the degeneracy of the

system which can not be described in terms of any local
operators. Instead, such a degeneracy can be formulated
in terms of some non-local operators [2]. Furthermore,
our system exhibits some universal sub-leading correc-
tions to the thermodynamical entropy which can not be
expressed in terms of propagating photons with two phys-
ical polarizations. Instead, the corresponding universal
contribution to the entropy is expressed in terms of the
“instantons” describing the tunnelling events between
topologically di�erent but physically identical topolog-
ical sectors |k⇧.
As a result of these similarities, the key question ad-

dressed in the present work is as follows. It has been
known for sometime [3–11] that some key features of
topologically ordered systems can be formulated in terms
of the so-called Berry’s connection in momentum space.
To address this question we formulate the topological fea-
tures of the system in terms of an auxiliary topological
field. Such a formulation exhibits a close mathematical
similarity between the auxiliary topological field describ-
ing the Maxwell vacuum state and the Berry’s connec-
tion in topologically ordered CM systems. Such a simi-
larity looks very instructive and suggestive, and further
supports our arguments [2] that the ground state of the
Maxwell theory defined on a small compact manifold be-
haves as a TQFT.
The structure of our presentation is as follows. In the

next section II, we review the relevant parts of the two di-
mensional Maxwell “empty” theory which does not have
any physical propagating degrees of freedom. Still, it
demonstrates a number of very nontrivial topological fea-
tures present in the system. In section III we generalize
our description for 4d Maxwell theory defined on four
torus. In our main section IV we introduce the auxil-
iary fields which e�ectively account for the topological
sectors of the system. We study the behaviour of these
auxiliary fields in the far infrared (IR) at small k ⇤ 0
in momentum space. We observe a striking similarity
of the obtained structure with analogous formula for the
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A. Construction

We follow [1, 2] in our construction of the partition
function Ztop where it was employed for computation of
the corrections to the Casimir e⇥ect due to these novel
type of topological fluctuations. The crucial point is that
we impose the periodic boundary conditions on gauge Aµ

field up to a large gauge transformation. In what follows
we simplify our analysis by considering a clear case with
winding topological sectors |k⌦ in the z-direction only.
The classical configuration in Euclidean space which de-
scribes the corresponding tunnelling transitions can be
represented as follows:

�Btop = ��⇤ �Atop =
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0, 0,
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, (12)
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in close analogy with the 2d case (2).
The Euclidean action of the system is quadratic and

has the following form
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where �E and �B are the dynamical quantum fluctuations
of the gauge field. The key point is that the classical
topological portion of the action decouples from quantum
fluctuations, such that the quantum fluctuations do not
depend on topological sector k and can be computed in
topologically trivial sector k = 0. Indeed, the cross term

�
d4x �B · �Btop =
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eL1L2

�
d4x Bz = 0 (14)

vanishes because the magnetic portion of quantum fluc-
tuations in the z-direction, represented by Bz =  xAy �
 yAx, is a periodic function as �A is periodic over the do-
main of integration. This technical remark in fact greatly
simplifies our analysis as the contribution of the physi-
cal propagating photons is not sensitive to the topolog-
ical sectors k. This is, of course, a specific feature of
quadratic action (13), in contrast with non-abelian and
non-linear gauge field theories where quantum fluctua-
tions of course depend on topological k sectors. The au-
thors of ref. [17] arrived to the same conclusion (on de-
coupling of the topological terms from conventional fluc-
tuating photons with non-zero momentum), though in a
di⇥erent context of topological insulators in the presence
of the ⇤ = ⌅ term.

The classical action for configuration (12) takes the
form
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top =
2⌅2k2⇥L3

e2L1L2
(15)

To simplify our analysis further in computing Ztop we
consider a geometry where L1, L2 ⌃ L3,⇥ similar to con-
struction relevant for the Casimir e⇥ect [1, 2]. In this

case our system is closely related to 2d Maxwell theory
by dimensional reduction: taking a slice of the 4d sys-
tem in the xy-plane will yield precisely the topological
features of the 2d torus considered in section II. Further-
more, with this geometry our simplification (12) when
we consider exclusively the magnetic fluxes in z direction
is justified as the corresponding classical action (15) as-
sumes a minimal possible values. With this assumption
we can consider very small temperature, but still we can
not take a formal limit ⇥ ⌥ � in our final expressions
as a result of our technical constraints in the system.
With these additional simplifications the topological

partition function becomes [1, 2]:
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where we introduced the dimensionless parameter
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Formula (16) is essentially the dimensionally reduced ex-
pression for the topological partition function (6) for 2d
Maxwell theory analyzed in section II. One should note
that the normalization factor

�
⌅⇧ which appears in eq.

(16) does not depend on topological sector k, and essen-
tially it represents our convention of the normalization
Ztop ⌥ 1 in the limit L1L2 ⌥ � which corresponds to
a convenient set up for the Casimir -type experiments as
discussed in [1, 2].

B. External magnetic field

In this section we want to generalize our results for the
Euclidean Maxwell system in the presence of the exter-
nal magnetic field. Normally, in the conventional quan-
tization of electromagnetic fields in infinite Minkowski
space, there is no direct coupling between fluctuating vac-
uum photons and an external magnetic field as a conse-
quence of linearity of the Maxwell system. The coupling
with fermions generates a negligible e⇥ect ⇧ �2B2
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as the non-linear Euler-Heisenberg E⇥ective Lagrangian
suggests, see [1] for the details and numerical estimates.
The interaction of the external magnetic field with topo-
logical fluctuations (12), in contrast with coupling with
conventional photons, will lead to the e⇥ects of order of
unity as a result of interference of the external magnetic
field with fluxes- instantons.
The corresponding partition function can be easily con-

structed for external magnetic field Bext
z pointing along

z direction, as the crucial technical element on decou-
pling of the background fields from quantum fluctuations
assumes the same form (14). In other words, the physi-
cal propagating photons with non-vanishing momenta are
not sensitive to the topological k sectors, nor to the ex-
ternal uniform magnetic field, similar to our discussions
after (14).
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we consider exclusively the magnetic fluxes in z direction
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sumes a minimal possible values. With this assumption
we can consider very small temperature, but still we can
not take a formal limit ⇥ ⌥ � in our final expressions
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a convenient set up for the Casimir -type experiments as
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In this section we want to generalize our results for the
Euclidean Maxwell system in the presence of the exter-
nal magnetic field. Normally, in the conventional quan-
tization of electromagnetic fields in infinite Minkowski
space, there is no direct coupling between fluctuating vac-
uum photons and an external magnetic field as a conse-
quence of linearity of the Maxwell system. The coupling
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as the non-linear Euler-Heisenberg E⇥ective Lagrangian
suggests, see [1] for the details and numerical estimates.
The interaction of the external magnetic field with topo-
logical fluctuations (12), in contrast with coupling with
conventional photons, will lead to the e⇥ects of order of
unity as a result of interference of the external magnetic
field with fluxes- instantons.
The corresponding partition function can be easily con-

structed for external magnetic field Bext
z pointing along

z direction, as the crucial technical element on decou-
pling of the background fields from quantum fluctuations
assumes the same form (14). In other words, the physi-
cal propagating photons with non-vanishing momenta are
not sensitive to the topological k sectors, nor to the ex-
ternal uniform magnetic field, similar to our discussions
after (14).

exp(�1/e2)



7. Topological Casimir effect in a time-
dependent background   

The dynamical Casimir Effect (DCE): real physical 
photons can be radiated from the vacuum  due to 
the time- dependent boundary conditions. 

Our case: the extra energy is generated due to the 
tunnelling transitions between topological 
sectors                       .  The emission occurs from 
E&M configurations describing these transitions. 

Technical obstacle: tunnelling transitions are 
formulated in terms of Euclidean configurations, 
while radiation of physical photons is inherently 
a real-time Minkowskian phenomenon.  

The problem has been resolved by introducing 
auxiliary topological fields + Wick rotation.  
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Radiation of real photons due to the tunnelling transitions in a 
time-dependent background. The    are emitted from  E&M 
configurations interpolating between        sectors in contrast 
with conventional DCE when virtual     become real 
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This is exactly solvable Maxwell system with 
topological terms and auxiliary fields. 

One can explicitly see how the vacuum transfers 
its “non-dispersive” vacuum energy to emit real 
physical photons in a time dependent background. 

Technically this problem was motivated by 
inflation when the vacuum energy should be 
transferred to the real physical propagating 
particles, so called “reheating epoch”.  

For this simplified system this problem has been 
solved. The Euclidean tunnelling transitions are 
reformulated in terms of the auxiliary fields.  
Their  anomalous interaction with physical fields  
induce the radiation from vacuum (“reheating”).     



8. Applications to the axion search 
experiments and          in Maxwell theory  

It is normally assumed that               in the abelian 
Maxwell Electrodynamics (in contrast with QCD) is 
unphysical parameter, and can be always  removed 
from the system (trivial              ).   

A conventional argument is based on observation 
that                    is total derivative for                   , 
does not change the equations of motion.   

This argument is flamed for non-simply connected 
manifolds (rings with                as discussed above).  
It is also incorrect if an external magnetic field 
enforces the nontrivial boundary conditions.       

it opens up a new perspective with axion searches 
when effects are proportional to     , not 
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Indeed, the     term in the background of the 
magnetic field in the given topological sector       
can be represented as   

!

Non-trivial topological sector                      is 
enforced   by external field similar to AB phase. 

4d formula for    -term is reduced to 2d Schwinger 
model where       is obviously a physical parameter 
of the system due to the nontrivial 

The effect is similar to Witten effect when       
becomes a physical parameter in the monopole  
sector and the monopole becomes the dyon with 
electric charge 
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In both cases the     parameter becomes a 
physically observable parameter not in vacuum 
but in a heavy topological sector (monopole’s   
charge in Witten’s case, magnetic flux in our case) 

In both cases the topology is enforced by some 
external fields, in contrast with our previous 
discussions when the topology is enforced by non-
simply connected  manifolds (rings).  

The effect is proportional  to     without 
tunnelling suppression factor  

it opens up a new perspective with axion searches 
because the effects are proportional to static    
and because it is proportional to strength of the 
magnetic field  (topological sector      )
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In particular, if we take  a cylinder in the 
background of the magnetic field, than in  the 
presence of the passing axion         the electric 
field will be induced along the magnetic field  

!

If we place the plates at the ends of the cylinder 
this induced field will induce the charges on 
plates 

This charge separation effect  due to        
generates the potential difference  
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If we connect two plates with a wire there will 
be induced current due to induced charges 

!

The dual picture with electric external field 
suggests that the magnetic field will be induced 
in the presence of  

!

The induced magnetic field can be interpreted as 
the surface persistent current on the ring
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There is a fundamentally new type of the vacuum 
energy   which can not be expressed in terms of 
the scattering amplitudes (the S-matrix elements).  

It emerges as a result of tunnelling processes 
between degenerate topological sectors, and 
formulated in terms of the “non-dispersive” 
contact terms and nonlocal holonomy.   

We identify this new type of energy (generated in 
QCD) with cosmological vacuum energy, e.g.  

Interpretation: the QCD vacuum energy is slightly 
different from its Minkowski value due to 
expansion or/and  topology. This difference          is 
what we observe (similar to the Casimir vacuum 
energy)

9. Conclusion. Speculations.  

⇢DE = �E ⇠ L�1⇤3
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We suggest to test these ideas in a tabletop 
experiments in 4D Maxwell system defined on a 
nontrivial manifold.  

A deep reason of why all these new effects emerge   
is that a conventional quantization procedure does 
not remove all unphysical dof: instead, the so-
called Gribov’s ambiguities will also emerge  in  
QED (phenomena is known to mathematicians) when 
it is formulated on a nontrivial  manifold. 

           is physical parameter (similar to    in QCD) in 
the presence of external magnetic flux 

This 4d maxwell system is highly sensitive to the    
parameter (axion). It opens up a new perspective in 
the axons search experiments as the effects are 
directly proportional to the   .   
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