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Introduction

The theory of the CMB is quite simple and elegant. But the most amazing success
story is how it helped us to determine the parameters describing the present Universe
with 1% precision. Virtually all precise numbers in cosmology come from CMB
observations.
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Ruth Durrer, The Cosmic Microwave Background, Cambridge University Press, 2008
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The cosmic microwave background discovery 1965 by Penzias & Wilson

Ruth Durrer (Université de Genéve) QVG mtp



The cosmic microwave background (CMB)
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The Universe is expanding. In the past it was much denser and hotter.

At T > 3000K hydrogen was ionised and the 'cosmic plasma’ of protons, electrons
and photons was strongly coupled by Thomson scattering and in thermal
equilibrium.

At T ~ 3000K protons and electrons combined to neutral hydrogen.

The photons became free and their distribution evolved simply by redshifting of the
photon energies to a thermal distribution with T, = 2.7255 + 0.0006K today.

This corresponds to about 400 photons per cm?® with typical energy of
E, = kTo ~ 2.3 x 107 *eV ~ 140GHz (A ~ 0.25cm). This is the observed CMB.

At T > 9300K~ 0.8eV the Universe was 'radiation dominated’, i.e. its energy
density was dominated by the contribution from these photons (and 3 species of
relativistic neutrinos which made up about 35%). Hence initial fluctuations in the
energy density of the Universe should be imprinted as fluctuations in the CMB
temperature.

Much later, at z ~ 7-8 the Universe was re-ionized (probably due to uv radiation
from star formation.
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The cosmic microwave background (CMB)
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Calculating CMB anisotropies

They are determined within linear perturbation theory. After decoupling, CMB photons
move along perturbed geodesics:

. f -
6[’10 = [hoo =+ holnl] — %/ huunp‘nl’d)\
1

To first order in linear perturbation theory their energy shift (temperature shift) is (scalar
perts.)
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E,’i T B (n'u)i N Taec
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To treat decoupling correctly one has to solve the perturbed Boltzmann equation for the
photon distribution function, taking into account Thompson scattering. The main
additional effects are:

@ Silk damping on small scales
@ Polarisation
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Polarisation of the CMB
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The physics of CMB fluctuations

@ In the radiation dominated Universe small density fluctuations perform acoustic
oscillations at constant amplitude, § « cos(kf ¢sd7). On large scales, the
gravitational potential (metric fluctuation) is constant, on 'sub-Hubble scales’,

kT > 1 it decays like a=2.
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gravitational potential (metric fluctuation) is constant, on 'sub-Hubble scales’,
kT > 1 it decays like a=2

@ The wavelength corresponding to the first acoustic peak is A\, = 27/k. with
K. fOT* csdT = . In a matter-radiation Universe this gives (wx = QxH?)

Ho 4 WJrW 3w
h

(1+z*))\*:\/mlog 1+z*(1+\/;1m') , r_m.

@ In the matter dominated Universe density fluctuations grow ¢ o a and the
gravitational potential remains constant.

@ On small scales fluctuations are damped by free streaming (Silk damping).
@ In a A-dominated Universe ¢ is constant and the gravitational potential decays.
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The distance to the CMB

The angle onto which the scale k. is projected depends on the angular diameter
distance to the CMB, 0. = \./(2da(z.) This is the best measured quantity in
cosmology, with a relative error of about 3 x 10™*

I's -

0. = =
T da(zs)

(1.04069 + 0.00031) x 1072,

(Planck Collaboration: Planck results 2016 XLVI [1605.02985])
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(Planck Collaboration: Planck results 2016 XLVI [1605.02985])

Os

(1.04069 + 0.00031) x 1072,

The distance to the CMB is given by

_ ﬂ /Z* 1 dz
Ho Jo  \/wm(1+ 2)% 4+ wk(1 + 2)2 + wx(2)

(14 z.)da(2.) = /Oz* H(z) 'dz
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Fluctuations in the CMB
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Polarisation

Polarisation defines a vector field on the CMB sky which is split into a gradient
component called E-polarisation and a curl component called B-polarisation.

At first order, scalar perturbations only generate E-polarisation.

B-polarisation is generated by vector and tensor perturbations and by higher order
scalar perturbations.

E-polarisation is correlated with temperature anisotropies.

B-polarisation has opposite parity to E polarisation and temperature anisotropies,
hence in a parity conserving Universe (EB) = (TB) =0
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Polarization spectra
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CMB lensing

Due to the foreground gravitational potential the CMB temperature anisotropies and
polarisation are lensed:

Tops(N) = T(N + dn), on=Vo,

/ dr r) (P +WV)(rn, 70 — 1)

Lensing of the CMB is a second order effect. Lensing E polarisation induces B
polarisation.
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Lensing spectrum (Planck 2015 arXiv:1502.01591)
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Lensing B modes
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Cosmological parameters

The CMB fluctuations into a direction n in the instant decoupling approximation are
given by
AT
T

The power spectrum C, of CMB fluctuations is given by

T2 <AT(n)£( )> _ 417 S @+ 1)CPu(n - 1)
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The Planck 'base’ model

@ Curvature K =0
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(Qn =1 — (wp + we)/HP).

@ optical depth to reionization
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Cosmological parameters from Planck 2015 arXiv:1502.01589
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Lensing breaks degeneracies
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Inflation

Slow-roll inflationary models can be described with a few (mainly 2) slow-roll
parameters and the Hubble scale during inflation, H.. The scalar and tensor spectra
from inflation are given by
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Neutrino properties

Single extension best constraints:

(Planck 2015 arXiv:1502.01589)
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Cosmic neutrinos are collisionless
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(E. Sellentin & RD
arXiv:1412.6427)

Treating neutrinos as perfect fluid
or viscous fluid affects CMB spectra
significantly.

(Here fixing the other parameters.)

Marginalizing over the other param-
eters
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Cosmic neutrinos are collisionless

(E. Sellentin & RD
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Lensing beyond the Born approximation

The effect of lensing is very strong, especially on small scales.
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In this lensing signal the effect of the first order deflection angle is fully resummed. This
resummation is required at the present accuracy of data.
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Lensing beyond the Born approximation

This prompted us to study the effects of second and third order lensing:
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Lensing beyond the Born approximation

The vector part of second order perturbations leads to rotation of the polarisation
tensor: This induced more B-modes from E polarisation.
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Marozzi, Di Dio, Fanizza & RD, arXiv:1612.07263
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Lensing beyond the Born approximation

Despite the fact that these terms are significantly smaller than cosmic variance for
each fixed ¢. They have to be taken into account for the nest generation of CMB

experiments (S4).
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Conclusion

@ The CMB is the most precious cosmological dataset. It is very precisely observed
and very well understood.
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@ Cosmological perturbations are generated by quantum excitation in a time
dependent background.
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