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Lessons from this workshop so far ...

Motivate Quantum Gravity from Observations
Cosmology
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Starobinsky Model

Quadratic Curvature Gravity
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Does a new scale ameliorates Blackholes and
Cosmological Singularity Problems ?



Regarding Scales...
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Einstein GraV1ty

Is there‘ any‘ wey to smear
the Smgular}ty d11e to a




Cosmological Singularity

lwe could imagine going back
The Big Bang, hntwne,beforethe Big Bang,
a singularity \> | but we encounter a singularity.
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The conven tional theory.

Big Bang Singularity, Space Time have an edge
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‘ * A singularity would always imply
focusing of geodesics, but focusing alone
cannot imply a singularity

“Inflation does not solve the singularity problem”



UV Modification of Gravity

UV is Pathological,
IR Part is Safe

Gravity requires modification at small distances
and at early times

While keeping the General Covariance

analogous to
Born-Infeld

theoryof E& M



Maxwell’s Electromagnetism

Self energy of an
electron is infinite in 1/r-fall of Coulomb’s
Maxwell’s theory Potential

Quantum
Electrodynamics

QED Born-Infeld

Classical approach:



Born-Infeld resolves 1/r singularity
in Coulomb Potential
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Dealing Pure Gravity similar to QED is extremely
hard

One loop pure gravitational action is renormalizable

Beyond two loops it is hard to compute, number of
Feynman diagrams increases rapidly

Quadratic Curvature Gravity is renormalizable, but
contains “Ghosts’”: Vacuum is Unstable

Utiyama, De Witt (1961), Stelle (1977)



Constructing Singularity Free &
Ghost Free version for Gravity

~ Consistent theory of Gravity around Constant Curvature

Backgrounds
~ Criteria for resolving Cosmological Singularity

~ Divergence structures in 1 and 2-loops in a scalar Toy

model

| Corrections in | :

GR is a good [ \/i UV becomes M D

approximation in IR immprbent



Consistent General Covariant
Quadratic Theories of Gravity with
Constant Curvature Backgrounds

Spin-2
“Perturbative Unitarity”
&
“Ghost Free”
Spin-0
“Tachyon Free”
. components
“Correct degrees of freedom in of a
Graviton Propagator” Graviton

Propagator



4th Derivative Gravity & Power Counting
Renormalizability
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Massive Spin-0 &  Massive Spin-28 ( Ghost ) Stelle (1977)
Utiyama, De Witt (1961), Stelle (1977)

Modification of Einstein’s GR

Modification Extra propagating

of Graviton

Propagator Challenge: to get rid of the extra dof

degree of freedom



Ghosts

Higher Order Derivative Theory Generically
Carry Ghosts ( -ve Risidue ) with real ¢“m?” ( No-
Tachyon) ¥

S=[d'z ¢ (O4+m*)p =0
2 S ]- Propagator with first

A(p ) - pQ(p2_|_m2) ~ p2 (p2_|_m2) order poles
w——'—— - R Ee————

Ghosts cannot be cured order by order, finite terms in
perturbative expansion will always lead to Ghosts !!

(e~ _

L O No extra states other than the

original dof.
Moffat (1991), Tomboulis (1997), Tseytlin (1997),
Siegel (2003), Biswas, Grisaru, Siegel (2004),
Biswas, Mazumdar, Siegel (2006)




Higher order Construction of Gravity in
Any Arbitrary Background
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Covariant derivatives Unknown Infinite
Functions of Derivatives

Well defined Minkowski Limit;

R~O(h) S, ~ / /=50 (h?)
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(1) GR

(3) Weyl Gravity

(3) F(R) Gravity

(4) Gauss-Bonnet Gravity
(5) Ghost free Gravity

Gravitational Form Factors
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UV completion of Starobinsky Inflation
up to quadratic in curvature

Biswas, Mazumdar, Siegel,

2006,

Chialva, Mazumdar, 2013,

Koshelev, Modesto, Rachwal, Starobinsky, 2016



Linearised Equations of Motion around Minkowski
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Similar analysis has been derived for dS an AdS




Graviton Propagator around Minkowski

a(D)Ohy + W(D)8,00,hS + (O) (10,0, + 9,0,h)
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Spin projection operators

Let us introduce Ph.D. Thesis : K. d. Barnes, 1963

, 1 1 R. d. Rivers (1963)
P = —=(0,0,,+0,,0,,)—=0,.0,,,
2( o v+ Ouo Bvp) 3 HPe P. Van Nieuwenhuizen,
1
Pl = 5(9‘“’ Wyo + Ougwy, +0,,0,, +6,,0,,),  Nucl.Phys. B60 (1973), 478.
0 1 0
PS — §9u1'9p0 . PW - wu,.wpo s
0 1 0 1
P = —0,w PO = —wu 00, (16)

sw \/§ wv == pa s ws \/§

where the transversal and longitudinal projectors in the momentum space are respec-
tively
k,k, B k, k.,

2 OmT

o k2 '
Note that the operators P are in fact 4-rank tensors, P:n'p »» but we have suppressed
the index notation here.

9;11' =Ny —

Out of the six operators four of them, {P?, Pl,'Pf, 'PS,}, form a complete set of pro-
jection operators:

'p(il'pi = 5”5(11,77; and P*+ P! +'Pf -+ PS, =1, (17)

For the above action, see:
00 0 0 H0 0 OO0 _ 0 )
Pijpk_‘sjkpij’ pijpkl_5i15jkp ’ Pkpij_5fkpij’ . . .
Biswas, Koivisto, Mazumdar

1302.0533



Tree level Graviton Propagator

P- PY
(a — 3c)k?
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No new propagating degree of freedom
other than the massless Graviton

a(U) = c(0) = 2/0) + F2(H) +2F3(H) = 0
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Without loss of generality either f1, or Fo, or F3 =0



Well known Higher Derivative limits

( 1) GR: a(0) =c(0)=-b(0)=—-d(0)=1 é

o(0) = 1 — = Fop(0)0 — 275(00)0

2 lim 17 = (P?/k*) — (P?/2k*) = Mg
b(O) = —1 + %FQ(D)D +2F5(0)0 '.._..’110.._ I
1
c(0) =1+2FA(0O)0O+ - F(O)O C .
: (2) F(R) Gravity: J
d(0) = ~1 - 2A(O)0 - 5 FH(O)0 ) .
£(O) = —27,(0)0 — F(O)0 — 2F:(0)0. L(R)=L(0)+ L'(0)R+ EE"(O)Rz + -
”--w—--- - gy a=-b= 1, c=—d=1- [:”(O)D
P2 Py
: 1=% " earacon T lert
(3) GB Gravity: -
T R ———
L =R+ a(0O)G. .
e b —d—1 (4) Weyl Gravity: }
II=Tlgr L=R-— %02 C? = R,ypo R"P7 — 2R, R™ + %RQ \

a=-b=1-(k/m)?
¢c=—-d=1-(k/m)?/3 and f = —2(k/m)?/3

Biswas, Koivisto, Mazumdar B P2 Py
1302.0532 T e —tmp) 22~ Ten ™

o B B




Complete Field Equations

R
2.3. The Complete Field Equations S = /d4$ vV—g (E + RFI(D)R + R;sz(D)R’w + Cuu'\o}-'B(D)C#uAa)

Ghost-free gravity

Following from this we find the equation of motion for the full action S in (1) to be a
combination of S, S), S, and S; above
1)03 Gu? +4Gu ifl(D)R _+_gu 3RJ,‘ (C])R 4(Vuv3 u JD) }'I(D)R
- 2007 + g*(Q, + Q) + 4R Fy(O)RY

— 9" RLF(O)RY, — 4v,V°(Fo(0) R*) + 20(F(0)R™)

+ 2gui3v“vu(}-2(D)Rpu) . 2Qu3 + g""(QQ‘,’, + Q.’) - 4A33

. uﬂcm ,\a}-%([:]) Ao + 40(;‘ of (D)C,?pua

— 4(Ry + 2V,9,)(F3(0)CH) — 2057 + ¢*°(Q3, + Q) — 8AF”

=T, (52)
where 7% is the stress energy tensor for the matter components in the universe and we
have defined the following symmetric tensors:

n—1 n—1

Qxlxi Zfl Zvu /I VJRH e 1], Q Zf ZRHRM l‘u, (53)

n=1 =0 n=1 =0

n—1 n—1

2" Zfz ER“"U RPN 0y = ZfznZR““ B9, (54)
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n=1
The trace equation is often particularly useful and below we provide it for the general
action (1):
P=-R+120F(0)R 4+ 20(F(Q)R) + 4v,V,(F(O)R*)
+2(Q7 +204) + 2(Qy, + 20) + 2(Q27, + 2Q3) — 4A7 — 8A;
=T = gosT*". (58)
It is worth noting that we have checked special cases of our result against previous work

in sixth order gravity given in [24] and found them to be equivalent at least to the cubic
order (see Appendix C for details).

R(M) = ™R

Biswas, Conroy, Koshelev, Mazumdar
1308.2319 Class.Quant. Grav. (2014)

Cosmological
Bouncing solution is
known exactly

Biswas, Mazumdar, Siegel, 2006,
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Stability of Hamiltonian

Hamiltonian Analysis for Infinite Derivative
Field Theories and Gravity

Anupam Mazumdar *?, Spyridon Talaganis ¢, Ali Teimouri *

¢ Consortium for Fundamental Physics, Lancaster University,
Lancaster, LAl 4YDB, United Kingdom.
» Kapteyn Astronomical Institute, University of Groningen,
9700 AV Groningen, The Netherlands.

E-mail: a.mazumdar@lancaster.ac.uk, s.talaganis@lancaster.ac.uk,

a.teimouri@lancaster.ac.uk

Abstract

Typically higher-derivative theories are unstable. Instabilities man-
ifest themselves from ertra propagating degrees of freedom, which are
unphysical. In this paper, we will investigate infinite derivative field
theories and study their true dynamical degrees of freedom via Hamil-
tonian analysis. In particular, we will show that if the infinite deriva-
tives can be captured by a Gaussian kinetic term, i.e. exponential of
entire function, then it is possible to prove that there are only finite
number of dynamical degrees of freedom. This conclusion is similar to
previous analyses which were performed in the context of Lagrangian
analysis. We will further extend our investigation into infinite deriva-
tive theory of gravity, and in particular concentrate on ghost free and
singularity free theory of gravity, which has been studied extensively
in the Lagrangian approach. Here we will show from the Hamiltonian
perspective that there are only finite number of degrees of freedom.
For a homogeneous case, we will show that the Hamiltonian density
can be bounded form below.

-q

cC o w »

Hamiltonian from a Lagrangian

2.1 Constraints for a singularsystem . . . . ... ... .. ....
2.2  First and second-class constraints . . . . ... ...
2.3 Counting the degrees of freedom . . . . . . ... ... ... ..

Scalar field theory: a Toy model

3.1 Simple homogeneous scalar action . . . . ... ... ... ...

3.2 Finite degrees of freedom and boundedness of the Hamiltonian
density . . . ... e e e e

3.3 Scalar Lagrangian with covariant derivatives . . . . ... ...

3.4 Infinite derivative scalar field theory . . . . . . ... ... ...
3.4.1 Gaussian kinetic term and propagator . . . ... ...

Infinite derivative gravity (IDG)

41 ADMformalism . . .. ... ... ... 0 e
4.2 ADM decomposition of an Infinite derivative gravity . . . . . .
4.3 Equivalent action and decomposition . . . .. ... ... ...

Hamiltonian analysis
5.1 Hamiltonian for f(R) gravity . . ... ... ... ... ....
5.1.1 Classification of constraints for f(R) gravity . . ... .

3.2 Number of physical degrees of freedom for f(R) gravity . . . . [i
5.3 Constraints for IDG . . ... ... ... ... ... .. ... . :
5.3.1 Classifications of constraints for IDG . . . . ... ... :

Physical degrees of freedom for IDG
6.1 Choiceof F(O) . ........ ... .. ... ... .. ...
6.2 Flew) . oo

Conclusion

Hamiltonian density
Auxiliary fields x; and 7,
B(R — A) decomposition

Finding the physical degrees of freedom from propagator
analysis

&l &l Bl &l Bl EER]



Consistent theories of Gravity
around dS and Ads backgrounds

S = /d4$\/_ Po + ZP H(Ozl QzI) %

Most generic action - “Parlty Invariant” and “Torsion Free”

_ R_
R = R = const, R,w Z uau gguv ygua

"—-—w
ra

M2
S = /d4w\/—g [TPR —A+ (Rfl( )R+ S Fa(O) S + Cpung Fa(O CWM)] 3
R —————— —

_ 1

h/u/ — hty + vp,A,',L + vuAt + (vpvv — guv )B + Zguuh

e —— s e
For pure EH action, see D’Hoker, Freedman, Mathur, Matusis, Rastelli (hep-th/9902042)

| =

Full Quadratic action, see: Biswass, Koshelev, Mazumdar, 1602.08475



Quadratic order Action
for spin-8 and spin-0 components

Minkowski limit matches
with our earlier propagator

I : 4

C 1B R 125 ()

{1 2 bR + 3R () )

C ee—— -

ITg

1
h py = EMphy,ya ¢ = 3_2Mp¢
—
Biswass, Koshelev, Mazumdar
1602.08475



Most generic Ghost FreeGraviton
Propagator in dS/AdS

rR =1+ Ras 2] (0-B) no+2 (0-2) 5 (04 2)]

M; M;
_ AR 2 _ _ 1_ _ 2
S(R,O)=1+ MO0 g2 [2(3[:1 +R)A0) + 507 (El + §R)‘

Biswas, Koshelev & AM, 1602.08475



Newtonian Limit in Minkowski

p? PO 0O/ M2
1= e el0) =e(0) =
S /d4x\/jg_§+R eﬁm_l R—2R,, —6_5;_1 RH

ds® = —(1 — 2<I>)dt2 (1 + 2W)dr?

O =V = erf(ﬂ>

2
———

Biswas, Gerwick, Koivisto, Mazumdar, Phys. Rev. Lett. (2012)
(8r-qc/1110.5249)



Resolution of Singularity at short distances

CZ( ) = 6’7( ) Any Entire Function: () = _E _ZCLN (E

Gravitational

Gm rM
O(r)=V(r) = —erf | —
1 % 10% (r) (r) P ( 2 ) Force Vanishes r— O
5. x10° 1.%x1075 | | 5 =x10°  1.x10*
r (metres)
2
gl WIS =2 < i, Current Bound : M > 0.01 eV

Edholm, Koshelev, Mazumdar (2016)
Frolov & Zelnikov (2015, 2016)




Dynamical Aspects

Valeri Frolov & Andrei Zelnikov

Studied various aspects in 5 papers
(2015, 2016)

Time

—

Conclusion: A lump of matter without Horizon
and without Singularity in a Linear regime



Cosmological Singularity can be
resolved in a Full Non-linear Regime

S:/d‘lx\/i—g - R RiA

a(t) a(t) = ag cosh (\/6]\1251 t)

R261R+CQ

Biswas, Mazumdar, Siegel, JCAP (2006)



Defocusing Null rays
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By The Defocusing Theorem of
General Relativity

L Ip2 < Ty
o + 29 <-—-R,,k"k
WiV 1.V
Einstein-Hilbert: R‘“’k kY = /{T/“/k k
ag 1
K 1.V > s o 2 <
R, k'kE” >0, d7'+29 <0
DR - — —————rR—
Infinite derivative Gravity:
dd 1
R, kFEY <0, - =6 >0
. - dr 2~ ~

Conroy, Koshelev, Mazumadar, 1604.01989



3 Criteria for Defocusing Null
Congruences without Ghosts & Tachyons

_ _ _ 2 0
F(O)0 RI) s 0 a(l) — ¢(0) RO s 0 = P | Py
@ T a® 7 ’ ak? " (a — 30)k?
c(0) = a(;j ) [1+2(1—aMz?0)a(0)] Massless Graviton
for: a=c

1

§=> / d'zy/—g[M2R + RF;(O)R]
”——-’-————‘ —— :—N

N~
D 4
N

(1) Infinite Derivatives o I(—kY) = [7’2_ 1 (PS Ps )],

Locality leads to Starobinsky Model, which S a(—k?) | k2 2a(—k?) \ k2 k2 +m?
requires Tachyonic massive Spin-O states to Yo
resolve singularity, but it cannot give Inflation ! IS .
LS
o LS
(2) Massless Spin-2, % .
_ B! 2 2
. . S—§/d v/ —g|My R+ cR”]
(3) Non-Tachyonic Massive
° - 1 PO
SPEELS g2 =Ilgr + -

2k2 +m?
Conroy, Koshelev, Mazumdar, 1604.01989 IR —




Quantum Aspects

How to make Gravity UV Finite ?

Could we make Gravity weak in UV?

Some interesting progress have been made:

Gravitational entropy, Boundary action, Hamiltonian, Quantum loop corrections,
Ultra high energy scatterings, etc.



Quantum aspects

Superficial degree of divergence goes as
E =V — 1. Use Topological relation: L=1+1—-V
EFE=1—-1L E <0, for L >1

s g e - e e——————0

e At 1-loop, the theory requires counter term, the 1-
loop, & point function yields A divergence

e At 2-loops, the theory does not give rise to
additional divergences, the UV behaviour becomes
finite, at large external momentum, where dressed
propagators gives rise to more suppression than the
vertex factors

Talaganis, Biswas, Mazumdar, (2014)



Toy model based on Symmetries

GR e.om : Juv — () Juv {

Around Minkowski space the
e.0o.m are invariant under:

D e ————

hyw = (1 +€)h,, +enu s

|

Construct a scalar field theory with infinite derivatives whose
e.0o.m are invariant under

¢ — (1

Stree = % / d*z(¢p0a(

)9)

1 1

— - — =

[1(k*) =

€)p + €

a(0) = /M

L )M) ‘

e

()

k2ek?



Towards understanding the ultraviolet
behavior of quantum loops in
infinite-derivative theories of gravity

Spyridon Talaganis®, Tirthabir Biswas” and Anupam Mazumdar® ©

* Consortium for Fundamental Physics. Physics Department, Lancaster University,

Lancaster, LA1 4JYB, UK

¥ Department of Physics, Loyola University,
6363 St. Charles Avenue, Box 92,
New Orleans, LA 70118, USA

“ Département de Physique Théorique, Université de Genéve, 24, Quai E Ansermet,
1211 Genéve 4. Switzerland

Abstract

In this paper we will consider quantum aspects of a non-local. infinite deriva-
tive scalar field theory - a toy model depiction of a covariant infinite derivative,
non-local extension of Einstein’s general relativity which has previously been
shown to be free from ghosts around the Minkowski background. The graviton
propagator in this theory gets an exponential suppression making it asymptot-
ically free, thus providing strong prospects of resolving various classical and
quantum divergences. In particular. we will find that at 1-loop, the 2-point
function is still divergent, but once this amplitude is renormalized by adding
appropriate counter terms, the ultraviolet (UV) behavior of all other 1-loop
diagrams as well as the 2-loop, 2-point function remains well under control.
We will go on to discuss how one may be able to generalize our computations

arXiv:1412.3467v1 [hep-th| 10 Dec 2014

and arguments to arbitrary loops.
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Scalar Gravitons

High-Energy Scatterings in Infinite-Derivative Field

Theory and Ghost-Free Gravity

Spyridon Talaganis and Anupam Mazumdar

Consortium for Fundamental Physics, Lancaster University, LA1 4YB, UK

March 14, 2016

Abstract

In this paper, we will consider scattering diagrams in the context of infinite-
derivative theories. First, we examine a finite-order higher-derivative scalar field
theory and find that we cannot eliminate the external momentum divergences of
scattering diagrams in the regime of large external momenta. Then, we employ
an infinite-derivative scalar toy model and obtain that the external momentum
dependence of scattering diagrams is convergent as the external momenta be-
come very large. In order to eliminate the external momentum divergences,
one has to dress the bare vertices of the scattering diagrams by considering
renormalised propagator and vertex loop corrections to the bare vertices. Fi-
nally, we investigate scattering diagrams in the context of a scalar toy model
which is inspired by a ghost-free and singularity-free infinite-derivative theory
of gravity, where we conclude that infinite derivatives can eliminate the ex-
ternal momentum divergences of scattering diagrams and make the scattering
diagrams convergent in the ultraviolet.

- - -

Ultra High Energy Scatterings of



Ultra High Energy Scatterings of many Scalar
Gravitons :

2
M ~e \Messf

’

N e < S
L \ Mess (125n — 206) M

Non-Locality can be spread out on
Event Horizon scale !

in ——

re~1y~ (2GMgpor) > M

Conjecture : Gravity can be made weak not to form a trapped surface



v(r)

Photon Potential

ds? = — (1 — —Erf( - )) dt? + = dr? + r?df? + r? sin®(0)d¢?

1.5x107 18}
1.x1078]

5.x10‘19l

1- ZErf (1)

— Schwarzschild (a=0)

-5.x10-19'-l "

r/GM




Conclusions

We have constructed a Ghost Free & Singularity Free
Theory of Gravity.

Studying singularity theorems, Hawking radiation, Non-
Singular Bouncing Cosmology , ..... , many interesting
problems has been studied in this framework.

Quantum computations also show that Infinite Derivative
Gravity can ameliorate UV behaviour.

Ultra-High energy graviton scatterings do not blow up.

Quantum effects can be seen on Macroscopic scale.

All these consequences have ramifications for
Blackhole, Inflation & Quantum aspects of Gravity:
Both are Time Dependent Problems



Extra Shdes



Non-Singular Bouncing Solutions: UV completion of
Starobinsky Inflation

— p— _D — —
R M2
S:/d%\/?g Lp R
— 2 m

Linear Solution

h ~ diag(0, Asin At, Asin At, Asin At) with A < 1

t

Non-Linear Solution

«—— PAST FUTURE —

N a(t) = cosh 1/ 21)

Fig 02

Biswas, Gerwick, Koivisto, Mazumadar,
Phys. Rev. Lett. (8r-qc/1110.6849) Biswas, Mazumdar, Siegel, JCAP (2006)



Nonlocal Gravity & Cosmological Singularity
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“Einstein Gravity Does Not Permit Such Solution”



Hawking-Penrose Singularity
Theorems & RayChaudhuri Equation
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Gravitational Waves
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r = 0, No Singularity

Biswas, Gerwick, Koivisto, AM,
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