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Motivate Quantum Gravity from Observations 
Cosmology
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Starobinsky Model

Lessons from this workshop so far …

Quadratic Curvature Gravity
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Does a new scale ameliorates Blackholes and 
Cosmological  Singularity Problems ?



Regarding Scales… 

No departure from Newtonian Gravity 
 up to 

10�5 m ⇠ 100 (eV)�1
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Einstein Gravity
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Is there any way to smear 
the Singularity due to a 

Point Source ?



❖ A singularity would always imply 
focusing of geodesics, but focusing alone 
cannot imply a singularity 

⇢+ p � 0

Big Bang Singularity,    Space Time have an edge

“Inflation does not solve the singularity problem”

Cosmological Singularity



UV is Pathological,  
IR Part is Safe 

UV Modification of GravitySq =
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Gravity requires modification at small distances 
and  at early times  

While keeping the General Covariance 

analogous to
Born-Infeld 

theory of E & M



Maxwell’s Electromagnetism

1/r-fall of Coulomb’s 
Potential

Quantum 
Electrodynamics 

(QED)

Classical approach: 
Born-Infeld

Self energy of an 
electron is infinite in 

Maxwell’s theory



Born-Infeld resolves 1/r singularity 
in Coulomb Potential

Nonlinear electrodynamics of Born and Infeld

Born and Infeld used false arguments but obtained a unique theory

LBorn−Infeld = b2

[

√

− det(gµν) −
√

− det(gµν + fµν/b)

]

Born-Infeld electrodynamics has earned its longevity
through its elegant, compact, determinantal form

S. Deser and G. W. Gibbons (1998)
in Born-Infeld-Einstein Actions

Lagrangian density in Minkowski space

LBorn−Infeld = b2
[

1 −
√

1 − (E2 − B2)/b2 − (E ·B)2/b4
]

Born-Infeld electrodynamics – p. 4/11b ! 1 L
Born�Infeld

! L
Maxwell

E
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D = er̂/4⇡r2, E = er̂/4⇡✏r2, B = H = 0

E
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e2

r4
4⇡r2dr = 1

Energy of a point charge

Energy density is integrable for a point particle

∇ · D = eδ(3)(r) B = 0

D =
er

4π|r|3
D2/b2 =

q2

r4

Etot = 4πb2
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0
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=
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e3b

3π
= 1.2361

√
e3b

Finite energy solutions of Born-Infeld theory are now often called BIons

Electromagnetic field of a moving charge is found by Lorentz transformation

Born-Infeld electrodynamics – p. 7/11

Maxwell Born-Infeld



Dealing Pure Gravity similar to QED is extremely 
hard
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One loop pure gravitational action is renormalizable 

Beyond two loops it is hard to compute, number of 
Feynman diagrams increases rapidly 

Quadratic Curvature Gravity is renormalizable, but 
contains “Ghosts”: Vacuum is Unstable 

Utiyama, De Witt (1961), Stelle (1977)



Constructing Singularity Free & 
Ghost Free version for Gravity

Consistent theory of Gravity around Constant Curvature 

Backgrounds 

Criteria for resolving Cosmological Singularity 

Divergence structures in 1 and 2-loops in a scalar Toy 

model
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MpMGR is a good 
approximation in IR

Corrections in 
UV becomes 
important

Without SUSY and SUGRA : SUSY  is broken for a generic 
time dependent scenarios 



Consistent General Covariant 
Quadratic Theories of Gravity with   
Constant Curvature Backgrounds

“Perturbative Unitarity” 

“Ghost Free” 

“Tachyon Free” 

“Correct degrees of freedom in 
Graviton Propagator”

Spin-2 

& 

Spin-0  

components 
of  a 

Graviton 
Propagator



4th Derivative Gravity & Power Counting     
Renormalizability

In four dimensions the expression for the Euler characteristic can be written equivalently as

χ =
1

32π2

∫

d4x
√

g
[

RµνλσRµνλσ − 4RµνRµν + R2
]

(100)

The last result is the four-dimensional analogue of the two-dimensional Gauss-Bonnet formula

χ =
1

2π

∫

d2x
√

g R (101)

where χ = 2(g − 1) and g is the genus of the surface (the number of handles). For a manifold of

fixed topology one can therefore use in four dimensions

RµνλσRµνλσ = 4RµνRµν − R2 + const. (102)

and

CµνλσCµνλσ = 2 (RµνRµν − 1
3R2) + const. (103)

Thus only two curvature squared terms for the gravitational action are independent in four dimen-

sions (Lanczos, 1938), which can be chosen, for example, to be R2 and R2
µν . Consequently the

most general curvature squared action in four dimensions can be written as

I =
∫

d4x
√

g
[

λ0 + k R + aRµνRµν − 1
3 (b + a)R2

]

(104)

with k = 1/16πG, and up to boundary terms. The case b = 0 corresponds, by virtue of Eq. (103), to

the conformally invariant, pure Weyl-squared case. If b < 0 then around flat space one encounters

a tachyon at tree level (Stelle, 1977). It will also be of some interest later that in the Euclidean

case (signature + + ++) the full gravitational action of Eq. (104) is positive for a > 0, b < 0 and

λ0 > −3/4b(16πG)2.

Curvature squared actions for classical gravity were originally considered in (Weyl, 1922) and

(Pauli, 1956). In the sixties it was argued that the higher derivative action of Eq. (104) should be

power counting renormalizable (Utiyama and DeWitt, 1961). Later it was proven to be renormal-

izable to all orders in perturbation theory (Stelle, 1977). Some special cases of higher derivative

theories have been shown to be classically equivalent to scalar-tensor theories (Whitt 1984).

One way to investigate physical properties of higher derivative theories is again via the weak

field expansion. In analyzing the particle content it is useful to introduce a set of spin projection

operators (Arnowitt, Deser and Misner, 1958; van Nievenhuizen, 1973), quite analogous to what

is used in describing transverse-traceless (TT) modes in classical gravity (Misner, Thorne and

Wheeler, 1973). These projection operators then show explicitly the unique decomposition of the

Utiyama, De Witt (1961),   Stelle (1977)

Massive Spin-0        &       Massive Spin-2 ( Ghost )  Stelle (1977)

D / 1

k4 +Ak2
=

1

A
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1

k2
� 1

k2 +A
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Modification of Einstein’s GR

Modification 
of Graviton 
Propagator

Extra propagating 
degree of freedom

Challenge:  to get rid of the extra dof



Higher Order Derivative Theory Generically  
Carry Ghosts ( -ve Risidue ) with real “m”( No-
Tachyon)

Propagator with first 
order poles

Ghosts

Ghosts cannot be cured order by order, finite terms in 
perturbative expansion will always lead to Ghosts !!

No extra states other than the 
original dof.

Moffat (1991),  Tomboulis (1997),  Tseytlin (1997), 
Siegel (2003),   Biswas, Grisaru,  Siegel (2004),  

Biswas,  Mazumdar,  Siegel (2006)



Higher order Construction of Gravity in 
Any Arbitrary Background 

S = SE + Sq

Towards singularity and ghost free theories of gravity
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We present the most general ghost-free gravitational action in a Minkowski vacuum. Apart from
the much studied f(R) models, this includes a large class of non-local actions with improved UV
behavior, which nevertheless recover Einstein’s general relativity in the IR.

The theory of General Relativity (GR) has an ultravi-
olet (UV) problem which is typically manifested in cos-
mological or black-hole type singularities. Any resolution
to this problem requires a theory which is well behaved
in the UV and reduces suitably to Einstein’s gravity in
the infrared (IR)1. In this letter, our aim is to investigate
whether the typical divergences at short distances can be
ameliorated in higher derivative covariant generalizations
of GR.

Higher derivative theories of gravity are generally bet-
ter behaved in the UV and o�er an improved chance
to construct a singularity free theory [2]. Furthermore,
Ref. [3] demonstrated that fourth order theories of grav-
ity are renormalizable, but inevitably su�er from unphys-
ical ghost states. Therefore, before we address the short-
distance behavior of GR, we first ennumerate the subset
of all possible modifications to Einstein’s gravity which
are guaranteed to be ghost-free. To the best of our knowl-
edge, a systematic method for this is not presently avail-
able.
Generic quadratic action of gravity: Let us start
with the most general covariant action of gravity. We im-
mediately realize that to understand both the asymptotic
behavior in the UV and the issue of ghosts, we require
only the graviton propagator. In other words, we look at
metric fluctuations around the Minkowski background

gµ⇤ = �µ⇤ + hµ⇤ , (1)

and consider terms in the action that are quadratic in
hµ⇤ . Since in the Minkowski background Rµ⇤�⌅ vanishes,
every appearance of the Riemann tensor contributes an
O(h) term in the action. Hence, we consider only terms
that are products of at most two curvature terms, and
higher ones simply do not play any role in this analysis.

1
In the light of current cosmic acceleration observations, there

have been e↵orts to modify gravity at large distances, see [1] for

a review, but we do not discuss these models here.

The most general relevant action is of the form

Sq =

�
d4x

⇤
�gRµ1⇤1�1⌅1O

µ1⇤1�1⌅1

µ2⇤2�2⌅2
Rµ2⇤2�2⌅2 , (2)

where O is a di�erential operator containing covariant
derivatives and �µ⇤ . We note that if there is a di�eren-
tial operator acting on the left Riemann tensor, one can
always recast that into the above form by integrating by
parts. The most general action is captured by 14 arbi-
trary functions, the Fi’s, which we display in eq.(27) in
the appendix.
Our next task is to obtain the quadratic (in hµ⇤) free

part of this action. Since the curvature vanishes on the
Minkowski background, the two h dependent terms must
come from the two curvature terms present. This means
the covariant derivatives take on their Minkowski values.
As is obvious, many of the terms simplify and combine
to eventually produce the following action

Sq = �
�

d4x
⇥1
2
hµ⇤a(⇤)⇤hµ⇤ + h⌅

µb(⇤)⌅⌅⌅⇤h
µ⇤ (3)

+ hc(⇤)⌅µ⌅⇤h
µ⇤ +

1

2
hd(⇤)⇤h+ h�⌅ f(⇤)

⇤ ⌅⌅⌅�⌅µ⌅⇤h
µ⇤
⇤
.

The above can be thought of as a higher derivative gener-
alization of the action considered by van Nieuwenhuizen
in Ref. [4]. Here, we have allowed a, b, c, d and f to be
nonlinear functions of the derivative operators that re-
duce in the appropriate limit to the constants a, b, c and
d of Ref. [4]. The function f(⇤) appears only in higher
derivative theories. In the appendix (28-32) we have cal-
culated the contribution from the Einstein-Hilbert term
and the higher derivative modifications to the action in
eq.(3). From the explicit expressions we observe the fol-
lowing relationships:

a+ b = 0 (4)

c+ d = 0 (5)

b+ c+ f = 0 (6)

so that we are left with only two independent arbitrary
functions.

Covariant derivatives Unknown Infinite 
Functions of Derivatives

 Well defined Minkowski Limit: gµ⌫ = ⌘µ⌫ + hµ⌫

R ⇠ O(h) Sq ⇠
Z

d

4
x

p�gO(h2)



Gravitational Form Factors 
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R+RF1(⇤)R+Rµ⌫F2(⇤)Rµ⌫ +Rµ⌫↵�F3(⇤)Rµ⌫↵�

⇤

(1) GR 
(2) Weyl Gravity 
(3) F(R) Gravity 
(4) Gauss-Bonnet Gravity 
(5) Ghost free Gravity

UV completion of Starobinsky Inflation 
up to quadratic in curvature

Biswas,  Mazumdar,  Siegel,    2006,

Chialva, Mazumdar,  2013,

Koshelev,  Modesto,  Rachwal,  Starobinsky,  2016



values, so that
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where some of the terms have dropped because of the antisymmetric properties of the
Riemann tensor.

Our next task is to substitute the linearized expressions of the curvatures in terms
of hµ⇤ :

Rµ⇤�⇧ =
1

2
(�[��⇤hµ⇧] � �[��µh⇤⇧]) (3.11)
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2
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µ) � �⇤�µh�⇤hµ⇤) (3.12)

R = �⇤�µh
µ⇤ �⇤h (3.13)

As is obvious, many of the terms simplify and combine to eventually produce the
following action
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µb(⇤)�⇧�⇤h
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where we have defined the functions a(⇤), b(⇤), c(⇤) and d(⇤) reduce in the appro-
priate limit to the constants a, b, c and d used by van Niewenhuizen. The function
f(⇤) appears only in higher order theories. We will now list all of the terms in the
original action (3.8) individually.

RF1(⇤)R = hF1⇤2h+ h�⇧F1�⇧���µ�⇤h
µ⇤ � hF1⇤�µ�⇤h

µ⇤ � hµ⇤F1⇤�µ�⇤h (3.15)

The third and fourth term in this case can be combined as follows. Ignoring surface
terms it is always possible to commute through the local f(⇤) terms. For non-
polynomial terms it is not clear.
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�
h⇤2h+ h�⇧�⇧���µ�⇤h

µ⇤ � 2h⇤�µ�⇤h
µ⇤
⇥

(3.16)

RF2(⇤)�µ�⇤R
µ⇤ = F2(⇤)

⇤
1

2
h⇤3h+

1

2
h�⇧⇤�⇧���µ�⇤h

µ⇤ � h⇤2�µ�⇤h
µ⇤

⌅
(3.17)

Rµ⇤F3(⇤)Rµ⇤ = F3(⇤)

⇤
1

4
h⇤2h+

1

4
hµ⇤⇤2hµ⇤ � 1

2
h⇧
µ⇤�⇧�⇤h

µ⇤ � 1

2
h⇤�µ�⇤h

µ⇤ +
1

2
h�⇧�⇧���µ�⇤h

µ⇤

⌅
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2
hµ⇤a(⇤)⇤hµ⇤ + h⌅

µb(⇤)⌅⌅⌅⇤h
µ⇤ (3)

+ hc(⇤)⌅µ⌅⇤h
µ⇤ +
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a + b = 0
c + d = 0

b + c + f = 0

3

II. GHOST FREE NONLOCAL GRAVITY ON MINKOWSKI BACKGROUND

In order to understand both the asymptotic behavior in the UV and the issue of ghosts, we require only the graviton
propagator. Thus it is sufficient to perturb the metric fluctuations around the Minkowski background

gµν = ηµν + hµν , (4)

and consider terms in the action that are up to O(h2
µν). Since Rµνλσ vanishes around Minkowski background, only

terms that are products of at most two curvature terms are relevant:

S =

∫
d4x

√
−g

[
R

2
+Rµ1ν1λ1σ1O

µ1ν1λ1σ1

µ2ν2λ2σ2
Rµ2ν2λ2σ2

]
, (5)

where O is a differential operator containing covariant derivatives and gµν , and we have set Mp = 1. We note that if
there is a differential operator acting on the left Riemann tensor, one can always recast that into the above form by
integrating by parts. Using the symmetry properties of the Reimann tensor and the Bianchi identities, it turns out
that the most general action can be captured by 3 arbitrary functions, Fi(!)’s [30],

S =

∫
d4x

√
−g

[
R

2
+RF1(!)R+RµνF2(!)Rµν + CµνλσF3(!)Cµνλσ

]
. (6)

Note that the higher derivatives are suppressed by some mass scale M which could potentially lie anywhere between
approximately 100mev ∼ (10µm)−1, and the Planck scale ∼ 1019GeV . At this point it is worth mentioning that the
above action would be analogous to considering a closed string action in 4 dimensions with all α′ = ℓ2s corrections for
a finite string coupling gs, where the string length, ℓs, is identified with our nonlocality scale: M ∼ 1/ls.
Substituting the background Eq. (4), we obtain the following action

Sq = −
∫
d4x

[
1
2hµνa(!)!hµν + hσ

µb(!)∂σ∂νhµν + hc(!)∂µ∂νhµν + 1
2hd(!)!h+ hλσ f(!)

! ∂σ∂λ∂µ∂νhµν
]
. (7)

where

a(!) = 1− 1

2
F2(!)!− 2F3(!)! (8)

b(!) = −1 +
1

2
F2(!)!+ 2F3(!)! (9)

c(!) = 1 + 2F1(!)!+
1

2
F2(!)! (10)

d(!) = −1− 2F1(!)!− 1

2
F2(!)! (11)

f(!) = −2F1(!)!− F2(!)!− 2F3(!)!. (12)

From the explicit expressions we observe the following relationships:

a+ b = 0; c+ d = 0; b+ c+ f = 0 , (13)

so that we are left with only two independent arbitrary functions. The field equations can be written in the form

a(!)!hµν + b(!)∂σ(∂νh
σ
µ + ∂µh

σ
ν ) + c(!)(ηµν∂ρ∂σh

ρσ + ∂µ∂νh) + ηµνd(!)!h+ f(!)!−1∂σ∂λ∂µ∂νh
λσ = κτµν(14)

or equivalently, Π−1
µν

λσhλσ = κτµν (15)

where Π−1
µν

λσ is the inverse propagator.
While the matter sector obeys stress energy conservation, the geometric part is also conserved as a consequence of

the generalized Bianchi identities:

−κτ∇µτ
µ
ν = 0 = (a+ b)!hµ

ν,µ + (c+ d)!∂νh+ (b+ c+ f)hαβ
,αβν . (16)

It is now clear why eqs.(13) had to be satisfied. What is also remarkable is that these same conditions ensure that
the different spin degrees of the metric decouple and eliminates the vector and the w-scalar which are typically
ghost like: In principle the propagator can contains all the spin projection operators {P 2, P 0

s , P
0
w, P

1
m}, see Ref. [39],

=

Z
d

4
x

p
�g

⇥
R+RF1(⇤)R+Rµ⌫F2(⇤)Rµ⌫ +Rµ⌫↵�F3(⇤)Rµ⌫↵�

⇤

gµ⌫ = ⌘µ⌫ + hµ⌫

Linearised Equations of Motion around Minkowski

Similar analysis has been derived for dS an AdS 
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The field equations can be derived straightforwardly to
yield

a(⇤)⇤hµ⇧ + b(⇤) ⌥( ⇧h
⌥
µ +  µh

⌥
⇧ )

+ c(⇤)(⇥µ⇧ ⌃ ⌥h
⌃⌥ +  µ ⇧h) + ⇥µ⇧d(⇤)⇤h

+ f(⇤)⇤�1 ⌥ ⇤ µ ⇧h
⇤⌥ = �⇤⇧µ⇧ . (7)

While the matter sector obeys stress energy conservation,
the geometric part is also conserved as a consequence of
the generalized Bianchi identities:

� ⇤⇧⌃µ⇧
µ
⇧ = 0 = (a+ b)⇤hµ

⇧,µ + (c+ d)⇤ ⇧h
+ (b+ c+ f)h�⇥

,�⇥⇧ . (8)

It is now clear why eqs.(4-6) had to be satisfied.
Propagator and physical poles: We are now well-
equipped to calculate the propagator. The above field
equations can be written in the form

��1
µ⇧

⇤⌥h⇤⌥ = ⇤⇧µ⇧ (9)

where ��1
µ⇧

⇤⌥ is the inverse propagator. One ob-
tains the propagator using the spin projection operators
{P 2, P 0

s , P
0
w, P

1
m}, see Ref. [4]. They correspond to the

spin-2, the two scalars, and the vector projections, re-
spectively. These form a complete basis. Considering
each sector separately and taking into account the con-
straints in eq.(4-6), we eventually arrive at a rather sim-
ple result

� =
P 2

ak2
+

P 0
s

(a� 3c)k2
. (10)

We note that the vector multiplet and the w-scalar have
disappeared, and the remaining s-scalar has decoupled
from the tensorial structure. Further, since we want to
recover GR in the IR, we must have

a(0) = c(0) = �b(0) = �d(0) = 1 , (11)

corresponding to the GR values. This also means that as
k2 ⇤ 0 we have only the physical graviton propagator:

lim
k2!0

�µ⇧
⇤⌥ = (P 2/k2)� (P 0

s /2k
2) . (12)

A few remarks are now in order: First, let us point out
that although the Ps residue at k2 = 0 is negative, it is
a benign ghost. In fact, P 0

s has precisely the coe⇧cient
to cancel the unphysical longitudinal degrees of freedom
in the spin two part [4]. Thus, we conclude that pro-
vided eq.(11) is satisfied, the k2 = 0 pole just describes
the physical graviton state. Secondly, eq.(11) essentially
means that a and c are non-singular analytic functions
at k2 = 0, and therefore cannot contain non-local inverse
derivative operators (such as a(⇤) ⇥ 1/⇤).

Let us next scrutinize some of the well known special
cases:

f(R) gravity: they are a subclass of scalar-tensor theo-
ries and are studied in great detail both in the context of
early universe cosmology and dark energy phenomenol-
ogy. Here, only the F1 appears as a higher derivative
contribution (see appendix). According to our preced-
ing arguments, we obtain the physical states from the
R2 term. Since a = 1, it is easy to see that only the s-
multiplet propagator is modified. It now has two poles:
� ⇥ �1/2k2(k2 � m2) + . . . . The k2 = 0 pole has, as
usual, the wrong sign of the residue, while the second pole
has the correct sign. This represents an additional scalar
degree of freedom confirming the well known fact [5, 6].
Fourth order modification in Rµ⇧Rµ⇧ : They have
also been considered in the literature. This corresponds
to having an F2 term (see appendix), which modifies the
spin-2 propagator: � ⇥ P2/k2(k2 �m2) + . . . . The sec-
ond pole necessarily has the wrong residue sign and cor-
responds to the well known Weyl ghost, Refs. [5, 6]. In
fact, this situation is quite typical: f(R) type models
can be ghost-free, but they do not improve UV behavior,
while modifications involving Rµ⇧⇤⌥’s can improve the
UV behavior [3] but typically contain the Weyl ghost!
To reconcile the two problems we now propose first to

look at a special class of non-local models with f = 0 or
equivalently a = c. The propagator then simplifies to:

�µ⇧
⇤⌥ =

1

k2a(�k2)

�
P 2 � 1

2
P 0
s

⇥
. (13)

It is obvious that we are left with only a single arbitrary
function a(⇤), since now a = c = �b = �d. Most impor-
tantly, we now realize that as long as a(⇤) has no zeroes,
these theories contain no new states as compared to GR,
and only modify the graviton propagator. In particular,
by choosing a(⇤) to be a suitable entire function we can
indeed improve the UV behavior of gravitons without in-
troducing ghosts. This will be discussed below.
Singularity free gravity: We now analyze the scalar
potentials in these non-local theories, focussing partic-
ularly on the short distance behavior. As is usual, we
solve the linearized modified Einstein’s equations (7) for
a point source:

⇧µ⇧ = ⌅�0µ�
0
⇧ = m�3(⇢r)�0µ�

0
⇧ . (14)

Next, we compute the two potentials, ⇥(r), ⇤(r), corre-
sponding to the metric

ds2 = �(1 + 2⇥)dt2 + (1� 2⇤)dx2 . (15)

Due to the Bianchi identities [7, 8], we only need to solve
the trace and the 00 component of eq.(7). Since the New-
tonian potentials are static, the trace and 00 equation
simplifies considerably to yield

(a� 3c)⇤h+ (4c� 2a+ f) µ ⇧h
µ⇧ = ⇤⌅

a⇤h00 + c⇤h� c µ ⇧h
µ⇧ = �⇤⌅ , (16)

f(⇤) = �1

2
F1(⇤)⇤� 1

4
F2(⇤)⇤2 � 1

4
F3(⇤)⇤� 1

8
F4(⇤)⇤2� 1

8
F5(⇤)⇤3 � 1

8
F7(⇤)⇤2

� 1

2
F10(⇤)⇤� 1

8
F11(⇤)⇤2 � 1

8
F12(⇤)⇤3 (3.29)

From the above expressions we observe the following interesting relations

a+ b = 0 (3.30)

c+ d = 0 (3.31)

b+ c+ f = 0 (3.32)

so that we are really left with two independent arbitrary functions. But of course it
had to be like this! The equations of motion are flat space conserved for any F’s we
choose, and the only way to guarantee that ⇧µ acting on them vanishes is to impose
the above three relations as will be shown below.

3.3 Field Equations & Propagators

What we want to address in this paper is whether we can have a higher derivative
theory of gravity which is consistent and nonsingular. At the perturbative level,
these require the theory to be both ghost and asymptotically free. To analyze these
properties we need to calculate the field equations and propagators corresponding to
(??). The field equations can be derived straight forwardly to yield

a(⇤)⇤hµ⇧ + b(⇤)⇧⌥⇧(⇧h
⌥
µ) + c(⇤)(�µ⇧⇧⌃⇧⌥h

⌃⌥ + ⇧µ⇧⇧h)

+�µ⇧d(⇤)⇤h +
1

4
f(⇤)⇤�1⇧⌥⇧⇤⇧µ⇧⇧h

⇤⌥ = �⇥⇤µ⇧ (3.33)

The matter side is conserved by the stress energy conservation and the geometric part
because of the generalized Bianchi identities. Thus

�⇥⇤⇧µ⇤
µ
⇧ = 0 = (c+ d)⇤⇧⇧h+ (a+ b)⇤hµ

⇧,µ + (b+ c+ f)h�⇥
,�⇥⇧ (3.34)

It is then clear why (3.30-3.32) had to hold. The above field equations can be written
in the form

��1
µ⇧

⇤⌥h⇤⌥ = ⇥⇤µ⇧ (3.35)

where ��1
µ⇧

⇤⌥ is the inverse propagator. One can obtain the propagator using the
spin projection operators {P 2, P 0

s , P
0
w, P

1
m} and the cross-spin operators {P 0

sw, P
0
ws} [3]

which are given in the appendix ?. The result is the following

�µ⇧
⇤⌥ =

P 2

ak2
+
⌅
3(c+ d)

(P 0
sw + P 0

ws)

q0
� (a+ 2b+ 2c+ d)

P 0
s

q
(3.36)

� (a+ 3d)
P 0
w

q
+

P 1
m

(a+ b)k2
(3.37)
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so that we are really left with two independent arbitrary functions. But of course it
had to be like this! The equations of motion are flat space conserved for any F’s we
choose, and the only way to guarantee that ⇧µ acting on them vanishes is to impose
the above three relations as will be shown below.

3.3 Field Equations & Propagators

What we want to address in this paper is whether we can have a higher derivative
theory of gravity which is consistent and nonsingular. At the perturbative level,
these require the theory to be both ghost and asymptotically free. To analyze these
properties we need to calculate the field equations and propagators corresponding to
(??). The field equations can be derived straight forwardly to yield

a(⇤)⇤hµ⇧ + b(⇤)⇧⌥⇧(⇧h
⌥
µ) + c(⇤)(�µ⇧⇧⌃⇧⌥h

⌃⌥ + ⇧µ⇧⇧h)

+�µ⇧d(⇤)⇤h +
1

4
f(⇤)⇤�1⇧⌥⇧⇤⇧µ⇧⇧h

⇤⌥ = �⇥⇤µ⇧ (3.33)

The matter side is conserved by the stress energy conservation and the geometric part
because of the generalized Bianchi identities. Thus
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⇧ = 0 = (c+ d)⇤⇧⇧h+ (a+ b)⇤hµ

⇧,µ + (b+ c+ f)h�⇥
,�⇥⇧ (3.34)

It is then clear why (3.30-3.32) had to hold. The above field equations can be written
in the form
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µ⇧

⇤⌥h⇤⌥ = ⇥⇤µ⇧ (3.35)

where ��1
µ⇧

⇤⌥ is the inverse propagator. One can obtain the propagator using the
spin projection operators {P 2, P 0

s , P
0
w, P

1
m} and the cross-spin operators {P 0

sw, P
0
ws} [3]

which are given in the appendix ?. The result is the following

�µ⇧
⇤⌥ =

P 2

ak2
+
⌅
3(c+ d)

(P 0
sw + P 0

ws)

q0
� (a+ 2b+ 2c+ d)

P 0
s

q
(3.36)

� (a+ 3d)
P 0
w

q
+

P 1
m

(a+ b)k2
(3.37)

5

=
0

=
0

=
0

a + b = 0
c + d = 0

b + c + f = 0

Bianchi Identity

continuum gravitational action for linearized gravity into spin two (transverse-traceless) and spin

zero (conformal mode) parts. The spin-two projection operator P (2) is defined in k-space as

P (2)
µναβ =

1

3k2
(kµkνηαβ + kαkβηµν)

− 1

2k2
(kµkαηνβ + kµkβηνα + kνkαηµβ + kνkβηµα)

+
2

3k4
kµkνkαkβ +

1

2
(ηµαηνβ + ηµβηνα) − 1

3
ηµνηαβ , (105)

the spin-one projection operator P (1) as

P (1)
µναβ =

1

2k2
(kµkαηνβ + kµkβηνα + kνkαηµβ + kνkβηµα)

− 1

k4
kµkνkαkβ (106)

and the spin-zero projection operator P (0) as

P (0)
µναβ = − 1

3k2
(kµkνηαβ + kαkβηµν)

+
1

3
ηµνηαβ +

1

3k4
kµkνkαkβ . (107)

It is easy to check that the sum of the three spin projection operators adds up to unity

P (2)
µναβ + P (1)

µναβ + P (0)
µναβ =

1

2
(ηµαηνβ + ηµβηνα) . (108)

These projection operators then allow a decomposition of the gravitational field hµν into three

independent modes. The spin two or transverse-traceless part

hTT
µν = Pα

µP β
νhαβ − 1

3PµνPαβhβα (109)

the spin one or longitudinal part

hL
µν = hµν − Pα

µP β
νhαβ (110)

and the spin zero or trace part

hT
µν = 1

3PµνPαβhαβ (111)

are such that their sum gives the original field h

h = hTT + hL + hT , (112)

with the quantity Pµν defined as

Pµν = ηµν − 1

∂2
∂µ∂ν (113)

⇧ =
P 2

ak2
+

P 0
s

(a� 3c)k2
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Thus, we finally conclude that provided (17) is satisfied, the k2 = 0 pole just describes the physical graviton state, the
negative ghost-like residue of the scalar propagator has precisely the coefficient to cancel the unphysical longitudinal
degrees of freedom in the spin-2 part [40]. Secondly, the condition that the theory be ghost free boils down to simply
requiring that a(!) is an entire function, and a(!) − 3c(!) has at most a single zero, the corresponding residue at
the pole would necessarily have the correct sign, this is in fact what happens in the simple F (R) gravity models.
If further one does not want to introduce any extra degrees of freedom, one is left with only a single arbitrary entire

function, a(!):

a(!) = c(!) ⇒ 2F1(!) + F2(!) + 2F3(!) = 0 (19)

While several different F ’s can satisfy the above relation, a particularly simple class which mimics the stringy gaussian
nonlocalities is given by

a(!) = e−
!

M2 and F3 = 0 ⇒ F1(!) =
e−

!
M2 − 1

! = −F2(!)

2
(20)

leading to a ghost free action of the form:

S =

∫
d4x

√
−g

[
R

2
+R

[
e

−!
M2 − 1

!

]
R− 2Rµν

[
e−

!
M2 − 1

!

]
Rµν

]
(21)

By construction the above action contains only the graviton as physical degrees of freedom as in GR, but contains an
exponentially damped propagator in the UV which, as we shall now argue, can have profound consequences for the
gravitational singularities.

III. BEYOND QUADRATIC CURVATURE TERMS

Is there a way to extend the above algorithm to include terms which are higher than quadratic in curvatures?
We know that the classical background space-time responds to the matter content of the universe, and one would
imagine that a truly consistent theory of gravity should be free from ghosts and other instabilities around any such
realizable background. This in fact would be a way to impose further restrictions on the allowed terms going beyond
the quadratic curvatures. While analyzing the issue of ghosts and instabilities around arbitrary classical backgrounds
is well beyond the present scope, (anti)de Sitter space-times serves as a relatively tractable playground. For instance,
the facts that the Weyl tensor vanishes on (A)dS space-times, that the Ricci tensor is proportional to the metric, and
finally that the metric is always annihilated by covariant derivatives, allow one to limit oneself to only actions of the
form [30]

S =

∫
d4x

√
−g

[
R

2
+ α0(R,Rµν) + α1(R,Rµν)RF1(!)R+ α2(R,Rµν)RµνF2(!)Rµν + α3(R,Rµν)CµνλσF3(!)Cµνλσ

]
(22)

while studying fluctuations.
To get an idea about how the higher curvatures may enter the arena, let us consider a simple subclass of the above

action which is a generalization of the stringy nonlocal gravity action (21):

S =

∫
d4x

√
−g

[
R

2
+ α1(R)R

[
e−

!
M2 − 1

!/M2

]
R− 2α2(R)Rµν

[
e−

!
M2 − 1

!/M2

]
Rµν − Λ

]
(23)

with

α1(0) = α2(0) = 1 , (24)

so that the action is equivalent to (21) as far as the fluctuations around the Minkowski space-time (Λ = 0) is concerned.
Now, in order to have a consistent (A)dS vacuum we need to make sure that the linear variation of the action

around the (A)dS metric, ḡµν :

gµν = ḡµν + hµν , (25)

vanishes. Since

R̄µν = λḡµν ; R̄ = 4λ and ∇̄µḡνρ = 0 (26)

S =

Z
d

4
x

p
�g


R

2
+RF1(⇤)R� 1

2
R

µ⌫F2(⇤)Rµ⌫

�

Without loss of generality either F1, or F2, or F3 = 0
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II. GHOST FREE NONLOCAL GRAVITY ON MINKOWSKI BACKGROUND

In order to understand both the asymptotic behavior in the UV and the issue of ghosts, we require only the graviton
propagator. Thus it is sufficient to perturb the metric fluctuations around the Minkowski background

gµν = ηµν + hµν , (4)

and consider terms in the action that are up to O(h2
µν). Since Rµνλσ vanishes around Minkowski background, only

terms that are products of at most two curvature terms are relevant:

S =

∫
d4x

√
−g

[
R

2
+Rµ1ν1λ1σ1O

µ1ν1λ1σ1

µ2ν2λ2σ2
Rµ2ν2λ2σ2

]
, (5)

where O is a differential operator containing covariant derivatives and gµν , and we have set Mp = 1. We note that if
there is a differential operator acting on the left Riemann tensor, one can always recast that into the above form by
integrating by parts. Using the symmetry properties of the Reimann tensor and the Bianchi identities, it turns out
that the most general action can be captured by 3 arbitrary functions, Fi(!)’s [30],

S =

∫
d4x

√
−g

[
R

2
+RF1(!)R+RµνF2(!)Rµν + CµνλσF3(!)Cµνλσ

]
. (6)

Note that the higher derivatives are suppressed by some mass scale M which could potentially lie anywhere between
approximately 100mev ∼ (10µm)−1, and the Planck scale ∼ 1019GeV . At this point it is worth mentioning that the
above action would be analogous to considering a closed string action in 4 dimensions with all α′ = ℓ2s corrections for
a finite string coupling gs, where the string length, ℓs, is identified with our nonlocality scale: M ∼ 1/ls.
Substituting the background Eq. (4), we obtain the following action

Sq = −
∫
d4x

[
1
2hµνa(!)!hµν + hσ

µb(!)∂σ∂νhµν + hc(!)∂µ∂νhµν + 1
2hd(!)!h+ hλσ f(!)

! ∂σ∂λ∂µ∂νhµν
]
. (7)

where

a(!) = 1− 1

2
F2(!)!− 2F3(!)! (8)

b(!) = −1 +
1

2
F2(!)!+ 2F3(!)! (9)

c(!) = 1 + 2F1(!)!+
1

2
F2(!)! (10)

d(!) = −1− 2F1(!)!− 1

2
F2(!)! (11)

f(!) = −2F1(!)!− F2(!)!− 2F3(!)!. (12)

From the explicit expressions we observe the following relationships:

a+ b = 0; c+ d = 0; b+ c+ f = 0 , (13)

so that we are left with only two independent arbitrary functions. The field equations can be written in the form

a(!)!hµν + b(!)∂σ(∂νh
σ
µ + ∂µh

σ
ν ) + c(!)(ηµν∂ρ∂σh

ρσ + ∂µ∂νh) + ηµνd(!)!h+ f(!)!−1∂σ∂λ∂µ∂νh
λσ = κτµν(14)

or equivalently, Π−1
µν

λσhλσ = κτµν (15)

where Π−1
µν

λσ is the inverse propagator.
While the matter sector obeys stress energy conservation, the geometric part is also conserved as a consequence of

the generalized Bianchi identities:

−κτ∇µτ
µ
ν = 0 = (a+ b)!hµ

ν,µ + (c+ d)!∂νh+ (b+ c+ f)hαβ
,αβν . (16)

It is now clear why eqs.(13) had to be satisfied. What is also remarkable is that these same conditions ensure that
the different spin degrees of the metric decouple and eliminates the vector and the w-scalar which are typically
ghost like: In principle the propagator can contains all the spin projection operators {P 2, P 0

s , P
0
w, P

1
m}, see Ref. [39],

(1) GR:

(2) F(R) Gravity:

(3) GB Gravity: 

(4) Weyl Gravity:
⇧ = ⇧GR L = R� 1

m2
C2 C2 = Rµ⌫⇢�R

µ⌫⇢� � 2Rµ⌫R
µ⌫ +

1

3
R2
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Most generic action - “Parity Invariant” and “Torsion Free”
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Quadratic order Action 
for spin-2 and spin-0 components

Minkowski limit matches 
with our earlier propagator
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Most generic Ghost FreeGraviton  
Propagator in dS/AdS

Biswas, Koshelev & AM,   1602.08475

✏ = 0, No scalar propagating d.o.f.



Newtonian Limit in Minkowski

2

The field equations can be derived straightforwardly to
yield

a(⇤)⇤hµ⇧ + b(⇤) ⌥( ⇧h
⌥
µ +  µh

⌥
⇧ )

+ c(⇤)(⇥µ⇧ ⌃ ⌥h
⌃⌥ +  µ ⇧h) + ⇥µ⇧d(⇤)⇤h

+ f(⇤)⇤�1 ⌥ ⇤ µ ⇧h
⇤⌥ = �⇤⇧µ⇧ . (7)

While the matter sector obeys stress energy conservation,
the geometric part is also conserved as a consequence of
the generalized Bianchi identities:

� ⇤⇧⌃µ⇧
µ
⇧ = 0 = (a+ b)⇤hµ

⇧,µ + (c+ d)⇤ ⇧h
+ (b+ c+ f)h�⇥

,�⇥⇧ . (8)

It is now clear why eqs.(4-6) had to be satisfied.
Propagator and physical poles: We are now well-
equipped to calculate the propagator. The above field
equations can be written in the form

��1
µ⇧

⇤⌥h⇤⌥ = ⇤⇧µ⇧ (9)

where ��1
µ⇧

⇤⌥ is the inverse propagator. One ob-
tains the propagator using the spin projection operators
{P 2, P 0

s , P
0
w, P

1
m}, see Ref. [4]. They correspond to the

spin-2, the two scalars, and the vector projections, re-
spectively. These form a complete basis. Considering
each sector separately and taking into account the con-
straints in eq.(4-6), we eventually arrive at a rather sim-
ple result

� =
P 2

ak2
+

P 0
s

(a� 3c)k2
. (10)

We note that the vector multiplet and the w-scalar have
disappeared, and the remaining s-scalar has decoupled
from the tensorial structure. Further, since we want to
recover GR in the IR, we must have

a(0) = c(0) = �b(0) = �d(0) = 1 , (11)

corresponding to the GR values. This also means that as
k2 ⇤ 0 we have only the physical graviton propagator:

lim
k2!0

�µ⇧
⇤⌥ = (P 2/k2)� (P 0

s /2k
2) . (12)

A few remarks are now in order: First, let us point out
that although the Ps residue at k2 = 0 is negative, it is
a benign ghost. In fact, P 0

s has precisely the coe⇧cient
to cancel the unphysical longitudinal degrees of freedom
in the spin two part [4]. Thus, we conclude that pro-
vided eq.(11) is satisfied, the k2 = 0 pole just describes
the physical graviton state. Secondly, eq.(11) essentially
means that a and c are non-singular analytic functions
at k2 = 0, and therefore cannot contain non-local inverse
derivative operators (such as a(⇤) ⇥ 1/⇤).

Let us next scrutinize some of the well known special
cases:

f(R) gravity: they are a subclass of scalar-tensor theo-
ries and are studied in great detail both in the context of
early universe cosmology and dark energy phenomenol-
ogy. Here, only the F1 appears as a higher derivative
contribution (see appendix). According to our preced-
ing arguments, we obtain the physical states from the
R2 term. Since a = 1, it is easy to see that only the s-
multiplet propagator is modified. It now has two poles:
� ⇥ �1/2k2(k2 � m2) + . . . . The k2 = 0 pole has, as
usual, the wrong sign of the residue, while the second pole
has the correct sign. This represents an additional scalar
degree of freedom confirming the well known fact [5, 6].
Fourth order modification in Rµ⇧Rµ⇧ : They have
also been considered in the literature. This corresponds
to having an F3 term (see appendix), which modifies the
spin-2 propagator: � ⇥ P2/k2(k2 �m2) + . . . . The sec-
ond pole necessarily has the wrong residue sign and cor-
responds to the well known Weyl ghost, Refs. [5, 6]. In
fact, this situation is quite typical: f(R) type models
can be ghost-free, but they do not improve UV behavior,
while modifications involving Rµ⇧⇤⌥’s can improve the
UV behavior [3] but typically contain the Weyl ghost!
To reconcile the two problems we now propose first to

look at a special class of non-local models with f = 0 or
equivalently a = c. The propagator then simplifies to:

�µ⇧
⇤⌥ =

1

k2a(�k2)

�
P 2 � 1

2
P 0
s

⇥
. (13)

It is obvious that we are left with only a single arbitrary
function a(⇤), since now a = c = �b = �d. Most impor-
tantly, we now realize that as long as a(⇤) has no zeroes,
these theories contain no new states as compared to GR,
and only modify the graviton propagator. In particular,
by choosing a(⇤) to be a suitable entire function we can
indeed improve the UV behavior of gravitons without in-
troducing ghosts. This will be discussed below.
Singularity free gravity: We now analyze the scalar
potentials in these non-local theories, focussing partic-
ularly on the short distance behavior. As is usual, we
solve the linearized modified Einstein’s equations (7) for
a point source:

⇧µ⇧ = ⌅�0µ�
0
⇧ = m�3(⇢r)�0µ�

0
⇧ . (14)

Next, we compute the two potentials, ⇥(r), ⇤(r), corre-
sponding to the metric

ds2 = �(1 + 2⇥)dt2 + (1� 2⇤)dx2 . (15)

Due to the Bianchi identities [7, 8], we only need to solve
the trace and the 00 component of eq.(7). Since the New-
tonian potentials are static, the trace and 00 equation
simplifies considerably to yield

(a� 3c)⇤h+ (4c� 2a+ f) µ ⇧h
µ⇧ = ⇤⌅

a⇤h00 + c⇤h� c µ ⇧h
µ⇧ = �⇤⌅ , (16)

a(⇤) = c(⇤) = e�⇤/M2
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Thus, we finally conclude that provided (17) is satisfied, the k2 = 0 pole just describes the physical graviton state, the
negative ghost-like residue of the scalar propagator has precisely the coefficient to cancel the unphysical longitudinal
degrees of freedom in the spin-2 part [40]. Secondly, the condition that the theory be ghost free boils down to simply
requiring that a(!) is an entire function, and a(!) − 3c(!) has at most a single zero, the corresponding residue at
the pole would necessarily have the correct sign, this is in fact what happens in the simple F (R) gravity models.
If further one does not want to introduce any extra degrees of freedom, one is left with only a single arbitrary entire

function, a(!):

a(!) = c(!) ⇒ 2F1(!) + F2(!) + 2F3(!) = 0 (19)

While several different F ’s can satisfy the above relation, a particularly simple class which mimics the stringy gaussian
nonlocalities is given by

a(!) = e−
!

M2 and F3 = 0 ⇒ F1(!) =
e−

!
M2 − 1

! = −F2(!)

2
(20)

leading to a ghost free action of the form:

S =

∫
d4x
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R− 2Rµν
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]
Rµν

]
(21)

By construction the above action contains only the graviton as physical degrees of freedom as in GR, but contains an
exponentially damped propagator in the UV which, as we shall now argue, can have profound consequences for the
gravitational singularities.

III. BEYOND QUADRATIC CURVATURE TERMS

Is there a way to extend the above algorithm to include terms which are higher than quadratic in curvatures?
We know that the classical background space-time responds to the matter content of the universe, and one would
imagine that a truly consistent theory of gravity should be free from ghosts and other instabilities around any such
realizable background. This in fact would be a way to impose further restrictions on the allowed terms going beyond
the quadratic curvatures. While analyzing the issue of ghosts and instabilities around arbitrary classical backgrounds
is well beyond the present scope, (anti)de Sitter space-times serves as a relatively tractable playground. For instance,
the facts that the Weyl tensor vanishes on (A)dS space-times, that the Ricci tensor is proportional to the metric, and
finally that the metric is always annihilated by covariant derivatives, allow one to limit oneself to only actions of the
form [30]

S =

∫
d4x

√
−g

[
R

2
+ α0(R,Rµν) + α1(R,Rµν)RF1(!)R+ α2(R,Rµν)RµνF2(!)Rµν + α3(R,Rµν)CµνλσF3(!)Cµνλσ

]
(22)

while studying fluctuations.
To get an idea about how the higher curvatures may enter the arena, let us consider a simple subclass of the above

action which is a generalization of the stringy nonlocal gravity action (21):

S =

∫
d4x

√
−g

[
R

2
+ α1(R)R
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R− 2α2(R)Rµν
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]
Rµν − Λ

]
(23)

with

α1(0) = α2(0) = 1 , (24)

so that the action is equivalent to (21) as far as the fluctuations around the Minkowski space-time (Λ = 0) is concerned.
Now, in order to have a consistent (A)dS vacuum we need to make sure that the linear variation of the action

around the (A)dS metric, ḡµν :

gµν = ḡµν + hµν , (25)

vanishes. Since

R̄µν = λḡµν ; R̄ = 4λ and ∇̄µḡνρ = 0 (26)



Resolution of Singularity at short distances

Edholm, Koshelev, Mazumdar (2016)
Frolov & Zelnikov (2015, 2016)

Current Bound : M > 0.01 eV
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Time

Valeri Frolov & Andrei Zelnikov 
Studied various aspects in 5 papers 

(2015, 2016)

Conclusion:   A lump of matter without Horizon
and without Singularity in a Linear regime

Dynamical  Aspects



Cosmological Singularity can be 
resolved in a Full Non-linear Regime 

S =

Z
d

4
x

p
�g

"
R

2
+R

"
e

�⇤
M2 �1

⇤

#
R+ ⇤

#

a(t)

t

Biswas, Mazumdar,  Siegel, JCAP (2006)

⇤R = c1R+ c2

a(t) = a0 cosh

 s
⇤

6M2
pl

t

!



Defocusing Null rays

By The Defocusing Theorem of 
General Relativity

Einstein-Hilbert:

Infinite derivative Gravity:

Rµ⌫k
µk⌫  0,
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3 Criteria for Defocusing Null 
Congruences without Ghosts & Tachyons

⇧ =
P 2

ak2
+

P 0
s

(a� 3c)k2

Massless Graviton 
for :  a=c

(1) Infinite Derivatives 
Locality leads to Starobinsky Model, which 
requires Tachyonic massive Spin-0 states to 

resolve singularity, but it cannot give Inflation !   

(2) Massless Spin-2,  

(3)  Non-Tachyonic Massive 
Spin-0  

Conroy, Koshelev, Mazumdar,   
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Quantum Aspects

How to make Gravity UV Finite ? 

Could we make Gravity weak in UV?

Some interesting progress have been made:

Gravitational entropy,  Boundary action, Hamiltonian, Quantum loop corrections,  
Ultra high energy scatterings, etc.



Quantum aspects
• Superficial degree of divergence goes as

E = V � I. Use Topological relation : L = 1 + I � V

E = 1� L E < 0, for L > 1

• At 1-loop, the theory requires counter term, the 1-
loop, 2 point function yields          divergence 

• At 2-loops, the theory does not give rise to 
additional divergences, the UV behaviour becomes 
finite, at large external momentum, where dressed 
propagators gives rise to more suppression than the 
vertex factors

⇤4

Talaganis,  Biswas, Mazumdar, (2014)



gµ⌫ ! ⌦ gµ⌫

Toy model based on Symmetries

GR e.o.m :

Construct a scalar field theory with infinite derivatives whose 
e.o.m are invariant under
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Ultra High Energy Scatterings of 
Scalar Gravitons



Ultra High Energy Scatterings of many Scalar 
Gravitons :  

Conjecture : Gravity can be made weak not to form a trapped surface

Non-Locality can be spread out on 
Event Horizon scale !

r ⇠ r⇤ ⇠ (2GMstar) � M



Photon Potential



Conclusions
• We have constructed a Ghost Free & Singularity Free   

Theory of Gravity.

• Studying singularity theorems, Hawking radiation, Non-
Singular Bouncing Cosmology , .....,  many interesting 
problems has been studied in this framework.

• Quantum computations also show that Infinite Derivative 
Gravity can ameliorate UV behaviour. 

• Ultra-High energy graviton scatterings do not blow up.

• Quantum effects can be seen on Macroscopic scale. 

All these consequences have ramifications for 
Blackhole, Inflation & Quantum aspects of Gravity: 

Both are Time Dependent Problems 
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Non-Singular Bouncing  Solutions: UV completion of 
Starobinsky Inflation 
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and a constraint specifying the required value of Λ:

Λ = − r2M2
P

4r1
. (43)

So, what kind of cosmological backgrounds do we get? It turns out that if r2 < 0 and r1 > 0, one obtains nonsingular
bouncing solutions which are stable attractors [? ], and asymptotes to a deSitter space-time in the future and the past.
Moreover, it was recently shown that these solutions are also stable under arbitrary spatial fluctuations [? ]. The
evolution of the spatial fluctuations, in fact, preserve the inflationary mechanism of generating near scale-invariant
perturbations and therefore can serve as a way to geodesically complete models of inflation. One can also calculate
the energy density of radiation at the bounce point:

ρ0 =
3M2

p (r1 − 2λf0r2/M2
p )(r2 − 12h1M4

∗ )

12r21 − 4r2
(44)

where h1 = Ḧ/M3
∗ characterizes the acceleration of the universe at the bounce point and plays the role of an “initial

condition”. One can now check that for pure R2 gravity, the radiation density turns out to be negative (ghost-like)
which is what gives rise to the bounce, it is well known that just the presence of an R2 term cannot resolve the
Big Bang singularity. However, one can find several ghost free cF (!)’s for which ρ0 > 0 and therefore provides a
theoretically consistent nonsingular cosmology. A particulary simple analytical solution of this type is the hyperbolic
cosine bounce:

a(t) = cosh

(√
r1
2
t

)
(45)

which was first discovered in [37].
We are still quite far from providing a completely satisfactory resolution of the cosmological singularities: (i) We

found that these theories also admit singular attractor solutions along with nonsingular ones [? ], (ii) so far we have
only been able to analyze the cosmology in the presence of radiation and a cosmological constant, or when the stress
energy tensor completely vanishes [30], how can we generalize the results? (iii) we haven’t yet been able to incorporate
anisotropic dynamics which is known to lead to dangerous chaotic Mixmaster type behavior, and finally (iv) we are
still searching for the physical meaning of the mathematical criteria’s on F(!) that we obtained to have a nonsingular
bouncing solution. Nevertheless, the nonlocal models certainly seems an encouraging way to try and resolve all the
classical singularities in GR.

VI. QUANTUM DIVERGENCES

FIG. 1: An 8-point graph for φ6 vertex.

It is not clear to us what the status of these nonlocal theories should be. One can treat these theories as effective
theories, (6) as an effective action obtained by performing quantum calculations of some hitherto unknown fundamental
theory. While the issue of ghosts in this context is still pertinent, apart from the quantum unitarity problem the
presence of ghosts also make the theories classically unstable, there is certainly no reason to compute quantum loops
in this case. On the other hand, one can also try to view these theories as full-fledged quantum theories where one
is able to consistently compute quantum loops. Indeed, according to string theory these nonlocal actions account for
the α′ corrections as a series expansions, but one is still required to perform quantum loop calculations to obtain
a perturbative expansion in the string coupling, gs. In fact, these theories posses a unique advantage as compared
to their local counterparts, the quantum loop integrals typically yield finite results due to the exponential damping
factors.

Biswas, Mazumdar,  Siegel, JCAP (2006)
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which for the metric eq.(15) simplify to

2(a� 3c)[�2⇥� 4�2⇤] = ⌅⌥

2(c� a)�2⇥� 4c�2⇤ = �⌅⌥ . (17)

We are seeking functions c(⇤) and a(⇤), such that there
are no ghosts and no 1/r divergence at short distances.

For f = 0, the Newtonian potentials are solved easily:

4a(�2)�2⇥ = 4a(�2)�2⇤ = ⌅⌥ = ⌅m⇥3(�r). (18)

Now, we know that in order to avoid the problem of
ghosts, a(⇤) must be an entire function. Let us first il-
lustrate the resolution of singularities by considering the
following functional dependence [2]:

a(⇤) = e�⇤/M2

. (19)

Such exponential kinetic operators appear frequently in
string theory [9]. In fact, quantum loops in such stringy
non-local scalar theories remain finite giving rise to in-
teresting physics, such as linear Regge trajectories [10]
and thermal duality [11]. We note that there are a wide
range of allowed possible energy scales for M , including
roughly the range between � and Mpl.

Taking the Fourier components of eq.(18), in a straight
forward manner one obtains

⇥(r) ⇤ m

M2
p

⇧
d3p

ei⌦p⌦r

p2a(�p2)
=

4⌃m

rM2
p

⇧
dp

p

sin p r

a(�p2)
.

(20)
We note that the 1/r divergent piece comes from the
usual GR action, but now it is ameliorated. For eq. (19)
we have

⇥(r) ⇤ m

M2
p r

⇧
dp

p
e�p2/M2

sin (p r) =
m⌃

2M2
p r

erf

�
rM

2

⇥
,

(21)
and the same for ⇤(r). We observe that as r ⇧ ⌃,
erf(r) ⇧ 1, and we recover the GR limit. On the other
hand, as r ⇧ 0, erf(r) ⇧ r, making the Newtonian
potential converge to a constant ⇤ mM/M2

p . Thus,
although the matter source has a delta function singu-
larity, the Newtonian potentials remain finite! Further,
provided mM ⌅ Mp, our linear approximation can be
trusted all the way to r ⇧ 0.

Let us next verify the absence of singularities in the
spin-2 sector. This will allow us, for example, to derive
a singularity free quadrupole potential. We enforce the
Lorentz gauge as usual so that the generalized field equa-
tions (7) read

a⇤hµ⇤ � f

2
�µ�⇤h � c

2
⇤µ⇤⇤h = �⌅�µ⇤ . (22)

Again for f = 0 we have a simple wave equation for
the graviton a(⇤)⇤h̄µ⇤ = �⌅�µ⇤ . We invert Einstein’s
equations for h̄µ⇤ to obtain the Greens function, Ḡµ⇤ , for

a point-like energy-momentum source. In other words,
we solve for

a(⇤)⇤Ḡµ⇤(x� y) = �⌅�µ⇤⇥
4(x� y), (23)

Under the assumption of slowly varying sources, one has

Ḡµ⇤(r) ⇤
⌅

r
⌃erf

⇤
rM

2

⌅
�µ⇤(r) , (24)

for a(⇤) given in eq.(19). We observe that in the limit
r ⇧ 0, the Greens function remains singularity free. The
improved scaling takes e⌅ect roughly only for r < 1/M .
Cosmological Singularities: The very general frame-
work of this paper allows us to consistently address the
singularities in early universe cosmology. As an example,
we note that a solution to eq.(7) with

h ⇤ diag(0, A sin⇧t, A sin⇧t, A sin⇧t) with A ⌅ 1 (25)

describes a Minkowski space-time with small oscillations
[12]. This configuration is singularity free. Evaluat-
ing the field equations for eq.(25) gives the constraint
a(�⇧2) � 3c(�⇧2) = 0. Thus, our simple f = 0 case
is not su⌥cient and we require an additional scalar de-
gree of freedom in the s-multiplet. Note that this also
explains why a solution such as eq.(25) is absent in GR.
We generalize to f ⌥= 0, but take special care to keep in-
tact our results in eq.(11) and eq.(18). The most general
ghost-free parameterization for a ⌥= c is

c(⇤) ⇥ a(⇤)

3

⇤
1 + 2

�
1� ⇤

m2

⇥
c̃(⇤)

⌅
, (26)

where c̃(⇤), a(⇤) are entire functions. Note that m2 ⇧
⌃ and c̃ = 1 reproduces the f = 0 limit. We now find
that eq.(25) is a solution to the vacuum field equations
with ⇧ = m. How the universe can grow in such models
and also how the matter sector can influence the dynam-
ics can possibly be addressed only with knowledge of the
full curvature terms. We hope to investigate this in future
work, but see Ref. [13] and [14] for similar considerations.

Generality: How general are the above arguments lead-
ing to a lack of singularities? According to the Weier-
strass theorem any entire function is written as a(⇤) =
e��(⇤), where �(⇤) is an analytic function. For a polyno-
mial �(⇤) it is now easy to see that if � > 0 as ⇤ ⇧ ⌃,
the propagator is even more convergent than the expo-
nential case leading to non-singular UV behavior.
Conclusion: We have shown that by allowing higher
derivative non-local operators, we may be able to render
gravity singularity free without introducing ghosts or any
other pathologies around the Minkowski background. It
should be reasonably straight-forward to extend the anal-
ysis to DeSitter backgrounds by including appropriate
cosmological constants. In fact, requiring that the the-
ory remains free from ghosts around di⌅erent classical

Non-Linear Solution

Linear Solution

Biswas,  Gerwick,  Koivisto,  Mazumdar,         
Phys. Rev. Lett. (gr-qc/1110.5249)
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Nonlocal Gravity & Cosmological Singularity 
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Cosmological 
Constant at Bounce

“Einstein Gravity Does Not Permit Such Solution” 
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Gravitational Waves

r =) 0, No Singularity
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