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ASPECTS OF 2 ➔ 2 SCATTERING 
AMPLITUDES IN THE HIGH-ENERGY LIMIT



2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT
• The search for New Physics at the LHC is based on our ability to obtain precise predictions 

for QCD scattering processes. 
• A QCD scattering process is organised as a convolution of parton distribution functions with a 

partonic cross section:

• The partonic cross section, in turn, is calculated in terms of the matrix element squared:

• Which is obtained by squaring (and summing over polarisations) the scattering amplitude.
• At the energies of the LHC, scattering amplitudes can be calculated perturbatively as an 

expansion in the strong coupling constant:

• Amplitudes are complicated functions of the kinematical invariants, and their calculation is 
object of intense study.
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2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT

• Calculation of amplitude at higher orders is non-trivial:
• Express Feynman integrals in terms of known 

functions (harmonic polylogarithms, elliptic 
integrals, etc)

• Amplitudes contains infrared divergences, which 
must cancel when summing virtual and real 
corrections.

• Information and constraints can be obtained by considering kinematical limits:
• it reduces the number of invariants;
• it helps identifying factorisation properties and iterative structures of the amplitude;
• it may be relevant for phenomenology: because of soft and collinear enhancement, 

amplitudes in specific kinematic limit develops large logarithms, which may spoil the 
convergence of the perturbative expansion in that region of the parameter space.

• Consider 2 → 2 scattering amplitudes in the high-energy limit:

• The amplitude becomes a function of the ratio |s/t|; here we consider the leading power term in 
this expansion
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2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT
• Consider, as an example, the gluon-gluon scattering amplitude at tree level:

• In the high-energy limit only the second diagram contributes at leading power. The amplitude is 
simply

• The amplitude at higher orders contains logarithms of the ratio |s/t|. In the sixties the dominant 
behaviour in the high-energy limit was characterised in terms of Regge poles and cuts. These can 
now be studied in the context of QCD. One has

• where the function 𝛼g(t) is known as the Regge trajectory:

• and r𝜞 is a ubiquitous 1-loop factor: 
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AMPLITUDES IN THE HIGH-ENERGY LIMIT: ANALYTIC STRUCTURE

• Ds and Du are real (spectral density of positive energy states propagating in the s- and u-
channels). Parametrise them as a sum of power laws by means of a Mellin transformation: 

• Note that the reality condition of Ds(s,t) implies that the Fourier coefficients admit

• Substituting the inverse transform into the dispersive representation, swapping the order of 
integration and integrating over ŝ and û, one obtains a Mellin representation of the amplitude: 
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• Beyond LL the structure of factorisation of high-energy logarithms 
becomes much richer. 

• We need to investigate more carefully the analytic structure of the 
amplitude, which can be summarised via the dispersion relation

• where  Ds and Du are discontinuities of M(s, t) in the s- and u-
channels.
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• The dispersion relation allows us to infer useful properties concerning the projection of the 
amplitude onto eigenstates of signature, that is crossing symmetry s ↔ u:

• M(+) and M(−) are referred respectively to as the even and odd amplitudes. Restricting to the 
region s > 0 and working to leading power as s ≫ |t|, the formula then evaluates to

• Where aj(±)(t) = 1/2(ajs(t) ± aju(t)), and L is the natural signature-even combination of logs:

• The reality properties of ajs(t), aju(t) implies that M(+) and M(−) are imaginary and real, 
respectively, when expressed in powers of L (not log |s/t|).

• At leading power in t/s the Mellin variable j is identical to the spin j which enters conventional 
partial wave expansion. 

• One could easily extend the discussion to subleading powers replacing the Mellin transform by 
the partial wave expansion. For example, (s/t)−j−1 and (s/t)j would be replaced respectively by 
the associated Legendre function Qj(1 + 2 s/t) and Legendre polynomials Pj(1 + 2 s/t).
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• The simplest conceivable asymptotic behaviour is a pure power law, whose Mellin transform is 
a simple Regge pole, namely

• where the ellipsis indicated subleading contributions. Regge poles give the correct behaviour of 
the 2 → 2 amplitude at LL in perturbation theory, where α(t) is interpreted as the gluon Regge 
trajectory, α(t) = αg(t) ~ O(αs(t)). 

• In order to get the precise behavior at higher orders in perturbation theory one needs to take 
into account the contribution of Regge cuts, which arises from aj(-)(t) of the form

• which has a branch point from 1 + α(t) to −∞, or a multiple pole if β(t) is a positive integer.
• While Regge poles contribute to LL accuracy, therefore to the odd amplitude, Regge cuts start 

contributing at the NLL order, to the even amplitude. 
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• Write the amplitude as the sum of odd and even component, 

• with expansion in the strong coupling constant 

• The (odd) LL contribution to the amplitude is expected to receive 
corrections starting at NLL: these are expected to be of the form

• At NLL, αg(t) contains the first two terms of its power expansion; 
Zi,j(t) Di,j(t) are impact factors, representing corrections to the 
effective parton-parton-Reggeon vertex: their power expansion reads

• The impact factors are written in a factorised form, according to the 
infrared factorisation theorem: Zi,j(t) collects the infrared divergences 
of the impact factors. 
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• What about the Regge cut contribution at NLL? It involves the exchange of two Reggeized 
gluons, and the symmetry properties of this state dictate that it contributes to the even 
amplitude, i.e. to M(+). 

• From the point of view of perturbation theory this contribution arises from diagrams like the 
two boxes in the picture above. These diagrams introduce new color structures compared to 
the tree-level color factor. 

• Using color-flow space notation, we write the amplitude as a vector in color space:
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• It is convenient to decompose the amplitude in a color orthonormal basis in the t-channel.
• Consider for instance gluon-gluon amplitude:

• In this basis the symmetry of the color structure mirrors the signature of the corresponding 
amplitude coefficients, which can thus be separated into signature odd and even:

• The exchange of one Reggeized gluon contributes only to the antisymmetric octet, so that at 
LL only this structure is nonzero:
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• In order to display the Regge-cut contributions in the most transparent way, it proves useful to 
define a “reduced” amplitude by removing from it the Reggeized gluon and collinear 
divergences as follows:

• where Tt2 represents the colour charge of a Reggeized gluon exchanged in the t-channel and 
Zi,j stand for collinear divergences. The color operator Tt2, together with other two useful 
operators Ts2, Tu2 are defined as 

• These operators are subject to color conservation constraints:

• In terms of the reduced amplitude, the NLL odd contribution reads
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• The two-Reggeon cut contribution at NLL reads

• where the coefficients d𝓁s follows from BFKL evolution equation (more 

later), and have been calculated up to 4 loops: 

• The color operator Ts-u2 = 1/2(Ts2-Tu2) is odd under s ↔ u crossing.

• At NNLL, the even amplitude is expected to receive corrections, similarly 
to what happens to the odd amplitude, when going from LL to NLL.
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• More interesting are the corrections concerning the odd amplitude at NNLL accuracy. 
• In this case one has to take into account for the first time the exchange of three Reggeized 

gluons. This implies that, starting at NNLL, one has mixing between one- and three-Reggeons 
exchange:

• The mixing between one- and three-Reggeons exchange has significant consequences:
• It is at the origin of the breaking of the simple power law one has up to NLL accuracy. 

Such breaking appears for the first time at two loops.
• It implies that, starting at three loops, there will be a single-logarithmic contribution 

originating from the three-Reggeon exchange, and from the interference of the one- and 
three-Reggeon exchange: the interpretation of the Regge trajectory at three loops needs 
to be clarified. 

• Schematically, the whole amplitude at NNLL is composed of 
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• The high-energy limit correspond to a configuration of forward scattering: 

• The high-energy logarithm correspond to the rapidity difference between the target and the 
projectile: 

• Such kinematical configuration is described conveniently in terms of Wilson lines stretching 
from −∞ to +∞.  The Wilson lines follow the paths of color charges inside the projectile, and 
are thus null and labelled by transverse coordinates z:

• The idea is to approximate, to leading power, the fast projectile and target by Wilson lines and 
then compute the scattering amplitude between Wilson lines. 

• The full transverse structure needs to be retained. As a consequence, due to quantum 
fluctuations, a projectile necessarily contains multiple color charges at different transverse 
positions: the number of Wilson lines cannot be held fixed.
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• However, in perturbation theory, the unitary matrices U(z) will be close to identity and so can 
be usefully parametrised by a field W:

• The color-adjoint field W sources a BFKL Reggeised gluon. A generic projectile, created with 
four-momentum p1 and absorbed with p4, can thus be expanded at weak coupling as

• The factors Di,j depend on  the transverse coordinates of the W fields, but not on the center of 
mass energy. They correspond to the impact factors for the exchange of one-, two- and three- 
Reggeons. 

• The energy dependence enters from the fact that the Wilson lines have rapidity divergences 
which must be regulated, which leads to a rapidity evolution equation (Balitsky-JIMWLK):
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• A key feature of the Balitsky-JIMWLK equation is that the Hamiltonian is diagonal in the leading 
approximation: 

• After using the rapidity evolution equation to resum all logarithms of the energy, the amplitude 
is obtained from the scattering amplitude between equal-rapidity Wilson lines, which depends 
only on the transverse scale t:

• Or, in terms of the reduced amplitude, 
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• The inner product is by definition the scattering amplitude of Wilson lines renormalized to equal 
rapidity.

• For our purposes, it suffices to know that it is Gaussian to leading-order: 

• Multi-Reggeon correlators are obtained by Wick contractions:

• There are also off-diagonal elements, which can be defined to have zero overlap (at equal rapidity):

• Starting from a scheme in which the inner products is ≠0, it is always possible to perform a 

scheme transformations (e.g. WWW → WWW − gs
2 G W) such as to reduce to the condition 

above. 
• Choosing the 1-W and 3-W states to be orthogonal, combined with symmetry of the 

Hamiltonian, (boost invariance):

• implies that in this scheme Hk → k+2 = Hk+2 → k. This relation is known as projectile-target duality.
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• We can now list the ingredients which build up the amplitude up to three loops. Since the odd and 
even sectors are orthogonal and closed under the action of Ĥ (signature symmetry), we have 

• Using that multi-Reggeon impact factors are coupling-suppressed, |𝜓ik⟩ ~ gs
k, and using the suppression 

by powers of αs of off-diagonal elements in H, the signature odd amplitude becomes to three loops:

• Recall that we are considering the reduced amplitude: Given that the 1→1 Hamiltonian is equal minus 

the Regge trajectory, the 1→1 reduced Hamiltonian is actually zero, and many terms vanish:
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+ h j,1|Ĥ3!1| i,3i
i(LO)o

+ h j,3| i,3i(NLO) + h j,1| i,1i(N
3LO).

H1!1 = �CA ↵g(t) ) Ĥ1!1 = 0, h j,1|(Ĥ1!1)
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THE BALITSKY-JIMWLK EQUATION AND 
THE THREE LOOP AMPLITUDE



• The Balitsky-JIMWLK equation for an arbitrary number of Wilson lines U(zi) can be written in 
the form

• with 

• We work now in dimensional regularisation with 2-2𝜀 dimensions, and dz = d2-2𝜀z, and TL/R’s are 
generators for left and right color rotations: 

• In our analysis we need only the leading-order conformal invariant kernel Kij, which has a very 
simple dimension-independent expression in momentum space:

• The corrections to the Balitsky-JIMWLK Hamiltonian are suppressed by αs in a power-
counting where the Wilson lines are generic, U ~ 1. This is more general than the perturbative 
counting, discussed before, where 1 - U ~ gs W ~ gs, implying that the equation resums infinite 
towers of Reggeon iterations.
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• To see this, expand U in powers of W:

• The expansion of the color generators follows by using the Backer-Campbell-Hausdorff 
formula.  Then, it is possible to expand the leading Hamiltonian Hij in powers of gs: 

• We get  

• The first non-linear correction is new: 
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• More on the Balitsky-JIMWLK power counting (U ~ 1) vs the BFKL power-counting (W ~ 1):
• Inserting the expansion of U in terms of W in the leading-order Balitsky-JIMWLK equation,  one 

finds that an m→m+k transition is proportional to gs
2l+k. Thus for k ≥ 0, all the leading 

interactions can be extracted from the leading-order equation. 

• On the other hand, interactions with k < 0 are suppressed by at least gs
2l+|k|, which means that 

they can first appear in the (|k|+1)-loop Balitsky-JIMWLK Hamiltonian. 
• Thus to obtain the m→m−2 transition by direct calculation of the Hamiltonian would require 

three- loop non-planar computation. 
• For our purposes this is unnecessary, since the symmetry of H predicts the result.
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• The actual calculation is easier in momentum space: introduce Fourier transform of the 
Reggeon-fields W: 

• The k → k transitions then read

• where 

• is the Regge trajectory, and

• represents the BFKL kernel.
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• More interesting is the 1 → 3 (3 → 1) transition: one has 

• and by symmetry the 3 → 1 transition by symmetry reads

• with kernel
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• Given the Hamiltonian, all one needs to compute the amplitude are the target and projectile 
impact factors:

• The Wilson line is in the representation of particle i, and p in the transferred momentum, p2 = -t. 

• At higher orders in the coupling, the color charge of the projectile is no longer concentrated in a 
single point, which leads to a nontrivial momentum dependence for multi-Reggeon impact factors.
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• To get the signature-odd amplitude to two loops we need exchanges of one- and three-
Reggeons, the latter first appearing at two loops. 

• Let us consider first the single Reggeon exchange: to all orders one has

• which up to NNLL gives 

• the 3 → 3 transition appears first at two loops: it can be cast into the form 

• where the color structure can be written in terms of color operators acting on the tree-level 
color structure: 
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• The momentum structure reads 

• Up to three loops, the momentum structure is determined in terms of simple bubble integrals:

• The transition reads

• Up to two loops the amplitude then reads 

• with
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• At three loops we need to take into account for the first time the H3→3, H1→3 and H3→1 
evolutions. The action of H3→3 gives 

• which gives rise to the following transition: 

• The transition is completely determined in terms of bubble integrals: 
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• The 1 → 3, 3 → 1 transitions are determined in terms of the same bubble integrals, 

• and the color structure reads 

• Collecting the results, we obtain the three loop contribution to the odd amplitude: 

• where the loop functions RA,B,C are 
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COMPARISON BETWEEN REGGE AND 
INFRARED FACTORIZATION



• The prediction for the reduced amplitude is based solely on evolution equations of the Regge 
limit, and has taken no input from the theory of infrared divergences. 

• It is therefore a highly nontrivial consistency test that this prediction is consistent with the 
known exponentiation pattern and the anomalous dimensions governing infrared divergences.

• Conversely, the prediction for the reduced amplitude can also be seen as a constraint on the 
soft anomalous dimension: the high-energy limit of the latter has a very special structure, which 
may ultimately help in determining it beyond three loops. 

• The infrared divergences of scattering amplitudes are controlled by a renormalization group 
equation, whose integrated version takes the form 

• where Z is given as a path-ordered exponential of the soft-anomalous dimension: 

• the dependence on the scale is both explicit and via the 4 − 2ε dimensional coupling. The soft 
anomalous dimension for scattering of massless partons (pi2 = 0) is an operators in color space 
given, to three loops, by
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• 𝜞dip
n involves only only pairwise interactions amongst the hard partons, and is therefore referred 

to as the “dipole formula”: 

• The term 𝜟n(𝜌ijkl) involves interactions of up to four partons, and is called the “quadrupole 
correction”: 

• The three loop correction has been calculated recently, and reads

• where 𝓕 is a function of cross ratios:                                 Explicitly, one has 

• where the ℒ are Brown’s single-valued harmonic polylogarithms, and the constant term reads 
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• In the high-energy limit the dipole formula reduces to 

• and the quadrupole correction reads:

• where

• Because of the form of 𝜞dip
n and 𝜟n(𝜌ijkl) in the High-energy limit, the Z factor factorises 

• where the relevant bit for us is 

• The factor K involve an integral over the scale:

• and the quadrupole interaction is contained in the term Q𝜟:
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• The scalar factors Zi,j are the same as those we removed from the reduced amplitude in the 
BFKL context, and at LL accuracy the exponent in    is also very similar to the gluon Regge 
trajectory subtracted in the reduced amplitude. This makes the relation between the “infrared-
renormalized” amplitude (hard function) H and reduced matrix element particularly simple: 

• This equation allows us to pass from directly from the reduced amplitude predicted using BFKL 
theory, to the hard function. 

• In particular, the statement that the left-hand-side H is finite, which is equivalent to the 
exponentiation of infrared divergences, is a highly nontrivial constraint on our result. 

• By using Baker-Campbell-Hausdorff formula one gets
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• In the following we expand in powers of αs and L, according to

• At LL, it is easy to check that one gets 

• where we introduced the “finite” Regge trajectory

• and the first two orders read
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The analysis proceed in a straightforward way: order by order in αs we insert the result from 
Regge theory, and check consistency with the infrared factorisation formula. 
For instance at one loop we have

Explicitly, the real and imaginary part of the NLL term are given by

i.e., from Regge theory, 

Some coefficients, like the impact factors, are not predicted explicitly from Regge theory: in that 
case, we can use these equations in the reverse direction, and get 
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• We get: 

• The result for the impact factor must satisfy a nontrivial constraint: 

• Quark and gluon impact factor extracted from quark-quark and gluon-gluon amplitude must 
give the correct quark-gluon amplitude.
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• Proceeding in a similar way, the infrared factorisation at two loops predicts

• Inserting results from the Regge theory one gets 

• for the NLL coefficient, which is consistent with infrared factorisation. At NNLL we are able to 
predict the real part:

• Here we see explicitly for the first time the appearance of the contribution from the three-
Reggeon cut: because of it, Regge factorisation (interpreted as exponentiation of the Regge 
pole) is broken starting at two loops. 
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• Our framework can be used to extract the impact factors at two loops: this is given by taking 
the projection of the amplitude onto the antisymmetric octet component: 

• The effect of the three-Reggeon cut is evident from the color-dependent term in the equations 
above. Once again, consistency requires the three equations above to be satisfied 
simultaneously.
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• At three loops, at LL and NLL, the infrared factorisation formula predicts 

• which is consistent with Regge exponentiation and (dipole) infrared factorisation. More in 
details, 
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• At NNLL, we see for the first time the effect of the quadrupole correction:

• The effect is in the even sector, therefore we cannot check it explicitly with our computation. 
However, the calculation of the odd sector within Regge theory gives

• Which is consistent with infrared factorisation. This is a rather non-trivial check, given that the 
two calculations are done in two completely different ways. 

H(3,1) = M̂(3,1) + ↵̂(1)
g T2

tM̂(2,0) + ↵̂(2)
g T2

tM̂(1,0) + ↵̂(3)
g T2

tM̂(0)

+
⇡2

6

h
� 3↵̂(1)

g (K(1))2(T2
s�u)

2T2
t + (K(1))3

⇣
2T2

s�u[T
2
t ,T

2
s�u] + [T2

t ,T
2
s�u]T

2
s�u

⌘i
M̂(0)

+ i⇡
h
�K(1)T2

s�uM̂(2,1) +
⇣

1
2 (K

(1))2[T2
t ,T

2
s�u]�K(1)↵̂(1)

g T2
s�uT

2
t

⌘
M̂(1,0)

+
⇣
K(1)K(2)[T2

t ,T
2
s�u]�K(2)↵̂(1)

g T2
s�uT

2
t �K(1)↵̂(2)

g T2
s�uT

2
t �

⇣3
24✏

[T2
t , [T

2
t ,T

2
s�u]]

⌘
M̂(0)

i
.

Re[H(3,1)] =
h
↵̂(3)
g + ↵̂(2)

g

⇣
D(1)

i +D(1)
j

⌘
+ ↵̂(1)

g

⇣
D(2)

i +D(2)
j +D(1)

i D(1)
j

⌘i
T2

t M̂(0)

+ ⇡2
h
R(3)

C � 1
12 ↵̂

(1)
g R(2)

i
(T2

t )
3 M̂(0) + ⇡2 ↵̂(1)

g R̂(2) T2
t (T

2
s�u)

2 M̂(0)

+ ⇡2
h
R(3)

A + 1
6 K

(1)
⇣
2(K(1))2 + 3↵̂(1)

g K(1) + 3d2
⌘i

T2
s�u[T

2
t ,T

2
s�u]M̂(0)

+ ⇡2
h
R(3)

B � 1
3 K

(1)
⇣
(K(1))2 + 3↵̂(1)

g K(1) + 3(↵̂(1)
g )2

⌘i
[T2

t ,T
2
s�u]T

2
s�u M̂(0).

AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKL VS INFRARED FACTORISATION

Caron-Huot, Gardi, LV, 2017



• The Regge theory we have developed, however, allows us also to get some parts of the finite 
amplitude. Let’s have a more detailed look at the amplitude: we have 

• Going to an orthonormal basis in the t-channel, in components we have:

• The antisymmetric octet amplitude cannot be predicted entirely, given the unknown Regge 
trajectory at three loops; The              component, however,  can be predicted exactly, and it 
agrees with a recent calculation of the gluon-gluon scattering amplitude at three loops in N=4 
SYM. 
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• Last, consider the relation between the three-loop “gluon Regge trajectory” and the 
logarithmic terms in the three-loop amplitude. 

• Starting from three loops the “gluon Regge trajectory” is scheme-dependent. Here we defined 
it to be the 1→1 matrix element of the Hamiltonian αg(t) = −H1→1/CA, in the scheme where 
states corresponding to a different number of Reggeon are orthogonal.

• This can be related to fixed-order amplitudes by taking the logarithm of the amplitude 
projected onto the signature-odd adjoint channel:

• Thanks to a recent calculation of the gluon-gluon amplitude in N=4 SYM, in this theory one has 

• where

• Matching these two results we get 
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• With

• and 

• Even though to three loop accuracy the adjoint amplitude may look like a Regge pole, e.g. a 
pure power-law, it is actually not: starting from two-loops it is really a sum of multiple powers. 

• Simply exponentiating the logarithm of the full amplitude at three loops would predict a 
definitely incorrect four-loop amplitude. 

• The correct, predictive, procedure is to exponentiate the action of the BFKL Hamiltonian. With 
the “trajectory” fixed as above, this procedure does not require any new parameter for the 
odd amplitude at NNLL to all loop orders.
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CONCLUSION

• We have computed the Regge-cut contribution to three loops through NNLL in 
the signature-odd sector.

• Our formalism is based on using the non-linear Balitsky-JIMWLK rapidity 
evolution equation to derive an effective Hamiltonian acting on states with a fixed 
number of Reggeized gluons.

• A new effect occurring first at NNLL is mixing between states with k and k+2 
Reggeized gluons due non-diagonal terms in this Hamiltonian. 

• Our results are consistent with a recent determination of the infrared structure of 
scattering amplitudes at three loops, as well as a computation of 2 → 2 gluon 
scattering in N = 4 super Yang-Mills theory. 

• Combining the latter with our Regge-cut calculation we extract the three-loop 
Regge trajectory in this theory. 

• Our results open the way to predict high-energy logarithms through NNLL at 
higher-loop orders.


