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2 => 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT

* The search for New Physics at the LHC is based on our ability to obtain precise predictions
for QCD scattering processes.
» A QCD scattering process is organised as a convolution of parton distribution functions with a

partonic cross section:
do ~ Z / d.fl?ldiCQ fz/Nl (3317 /’L)fj/NQ (3317 FL) da-(xlv X2, {Sab}7 /’L)a
o
 The partonic cross section, in turn, is calculated in terms of the matrix element squared:

X 1
dO'(ZUl,CUQ, {O'Qb},,u) = 2_8’./\/1(3:172?2’ {O-ab}7:u)‘2d¢na S b (pa —|—pb)2

- Which is obtained by squaring (and summing over polarisations) the scattering amplitude.
At the energies of the LHC, scattering amplitudes can be calculated perturbatively as an
expansion in the strong coupling constant:

* Amplitudes are compllcated functions of the kinematical invariants, and their calculation is

object of intense study.
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» Calculation of amplitude at higher orders is non-trivial:

L 3 P1 D4
* Express Feynman integrals in terms of known
functions (harmonic polylogarithms, elliptic
. >
integrals, etc) t channel
. oy : _ s channel
* Amplitudes contains infrared divergences, which
must cancel when summing virtual and real - -

corrections.

* Information and constraints can be obtained by considering kinematical limits:
» it reduces the number of invariants;
* it helps identifying factorisation properties and iterative structures of the amplitude;
* it may be relevant for phenomenology: because of soft and collinear enhancement,
amplitudes in specific kinematic limit develops large logarithms, which may spoil the
convergence of the perturbative expansion in that region of the parameter space.

* Consider 2 — 2 scattering amplitudes in the high-energy limit:

s=(p1+p2)°>—t=—(p1 —ps)° >0

- The amplitude becomes a function of the ratio |s/t|; here we consider the leading power term in

this expansion e il
M(Satnu) o MLP (__ta F) + O (_)
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 Consider, as an example, the gluon-gluon scattering amplitude at tree level:

=

— ——

* In the high-energy limit only the second diagram contributes at leading power. The amplitude is
simply
= &z Us
M<87 t) = A4z Z (—) M(n) (87 t)? MS)—MJ SR (Tib)a1a4 (Tgb)a2a3 5>\1>\45>\2>\3'

T 0

==t
» The amplitude at higher orders contains logarithms of the ratio |s/t|. In the sixties the dominant
behaviour in the high-energy limit was characterised in terms of Regge poles and cuts.These can

now be studied in the context of QCD. One has > >
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Regge, Gribov Mij—)ij‘LL A (
sl

* where the function a(t) is known as the Regge trajectory:
_ N (%) (1) (), o To (et AT i
)= S (3) o0 =3 (F) g

« and rr is a ubiquitous |-loop factor:
CI i ['(1—¢)?T'(1+¢)

I'(1 — 2¢)

EVYE

1 i
%1—§C2€2—§C3€3—|—...

Mp=c



AMPLITUDES IN THE HIGH-ENERGY LIMIT:ANALYTIC STRUCTURE

A

* Beyond LL the structure of factorisation of high-energy logarithms bs

o4

becomes much richer.
* We need to investigate more carefully the analytic structure of the

amplitude, which can be summarised via the dispersion relation
L4 (= K o o di
il = = ! T ) : _ D, (6,1
(5:%) 7T/O 5 ==l (5 )+7T/O W A = = ol (1% t)
« where Ds and D, are discontinuities of M(s, t) in the s- and u-

\ \
\

A
4

channels.

Regge, Griboy, .. see also Collins
* Ds and Dy are real (spectral density of positive energy states propagating in the s- and u-

channels). Parametrise them as a sum of power laws by means of a Mellin transformation:

i o 13 $ =) 1 Y4100 S g
HigS=—— _DS Avt ) DS 7t P e dj a (1 TNEL )
s0-7 [ F060 (3) =5 [ aa0 (3)

- Note that the reality condition of Ds(s,t) implies that the Fourier coefficients admit

(a3 (1)) " = a3(t),

- Substituting the inverse transform into the dispersive representation, swapping the order of

integration and integrating over S and (, one obtains a Mellin representation of the amplitude:

B (g (5 equ (R




AMPLITUDES IN THE HIGH-ENERGY LIMIT:ANALYTIC STRUCTURE

 The dispersion relation allows us to infer useful properties concerning the projection of the
amplitude onto eigenstates of signature, that is crossing symmetry s < u:

MF)(s,¢) = %(M(s,t) + M(—s — t,t)).

* M® and M®) are referred respectively to as the even and odd amplitudes. Restricting to the
region s > 0 and working to leading power as s > |t|, the formula then evaluates to

(+) e dj agr G jL
IS =) G e cos <7> ) e
Y+i00 di . .
53 ) . =
A e [Y—ioo sin(7rj) e (7]) ag. (OLS

* Where aj*)(t) = 1/2(aj*(t) £ a;(t)), and L is the natural signature-even combination of logs:

S T i — 5 — —u — 10
iy H—'—:— 1 1 |
lalEy 2<Og AN 2 >

- The reality properties of a(t), a;(t) implies that M*) and M) are imaginary and real,

respectively, when expressed in powers of L (not log |s/t|).

* At leading power in t/s the Mellin variable j is identical to the spin j which enters conventional
partial wave expansion.

* One could easily extend the discussion to subleading powers replacing the Mellin transform by
the partial wave expansion. For example, (s/t)7~! and (s/t)) would be replaced respectively by
the associated Legendre function Qj(l + 2 s/t) and Legendre polynomials Pj(1 + 2 s/t).
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* The simplest conceivable asymptotic behaviour is a pure power law, whose Mellin transform is
a simple Regge pole, namely

0 t 2 j t e e ole 2 o iy e o o o
G P o WA G s o@ Sinm’;(t) € =

* where the ellipsis indicated subleading contributions. Regge poles give the correct behaviour of
the 2 = 2 amplitude at LL in perturbation theory, where X(t) is interpreted as the gluon Regge
trajectory, X(t) = Og(t) ~ O(s(t)).

* In order to get the precise behavior at higher orders in perturbation theory one needs to take
into account the contribution of Regge cuts, which arises from aj)(t) of the form

T s [B() oL a(t)
sin %(t) g BALSE el

() L
% = G a@yo

— M(_)(S,t)|Reggecut = + ...

» which has a branch point from | + &(t) to —o0, or a multiple pole if B(t) is a positive integer.

* While Regge poles contribute to LL accuracy, therefore to the odd amplitude, Regge cuts start
contributing at the NLL order, to the even amplitude.



AMPLITUDES IN THE HIGH-ENERGY LIMIT: PERTURBATION THEORY

* Write the amplitude as the sum of odd and even component,

M(s,t) = M7 (s, 1) + M) (s,1), ]
* with expansion in the strong coupling constant

[
MB(s,t) = dra, 3 (22) L™ MEL™,

T

)
 The (odd) LL contribution to the amplitude is expected to receive

corrections starting at NLL: these are expected to be of the form

M wiL ~ eCA O L 2.V Dy(t) Z;(t)D;(t) dmay MY

Wl==r o) 1]—19)

* At NLL, 0g(t) contains the first two terms of its power expansion;

Zij(t) Dij(t) are impact factors, representing corrections to the
effective parton-parton-Reggeon vertex: their power expansion reads

i (—) Gl (—) D™ ().
O=2(3) 270, p=3(3) e
 The impact factors are written in a factorised form, according to the > >

infrared factorisation theorem: Zij(t) collects the infrared divergences
of the impact factors.
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/7/_)_‘\
* What about the Regge cut contribution at NLL? It involves the exchange of two Reggeized

gluons, and the symmetry properties of this state dictate that it contributes to the even
amplitude, i.e. to M),

* From the point of view of perturbation theory this contribution arises from diagrams like the
two boxes in the picture above. These diagrams introduce new color structures compared to
the tree-level color factor.

» Using color-flow space notation, we write the amplitude as a vector in color space:

M(s,t) = Z i MUl (s, 1).

)



AMPLITUDES IN THE HIGH-ENERGY LIMIT: PERTURBATION THEORY

* It is convenient to decompose the amplitude in a color orthonormal basis in the t-channel.

* Consider for instance gluon-gluon amplitude:

SRI=198. 8, P10010027T00 =

1
[1] £S 544 5A3
& NC2 i 1 aq ag
0[88] — NC 1 da1a4b da2a3
N2-4 . /N2-1 2
1 1
[8a] i, a1a4b asas
10 2 1 a a a a 1 aia asa
i :\/(N2 S VE ) 20 e e R

* In this basis the symmetry of the color structure mirrors the signature of the corresponding

amplitude coefficients, which can thus be separated into signature odd and even:
odd: M[Sa],/\/l[10+1_0], even: MU MBI A4127] pq[0) (gg scattering) .

* The exchange of one Reggeized gluon contributes only to the antisymmetric octet, so that at

LL only this structure is nonzero:

Mgg%gg(sﬁt)‘LL 50 M[Sa](‘s’t)‘LL‘



AMPLITUDES IN THE HIGH-ENERGY LIMIT: PERTURBATION THEORY

* In order to display the Regge-cut contributions in the most transparent way, it proves useful to
define a “reduced” amplitude by removing from it the Reggeized gluon and collinear

divergences as follows:

A

e Al i G (L
My =ZZ e S O G

* where T¢? represents the colour charge of a Reggeized gluon exchanged in the t-channel and
Zi; stand for collinear divergences.The color operator T, together with other two useful

operators T2 T,? are defined as

A el i BoR—d Rt
T, =T + T3 =-Ty — Ty,
T, =T,+T4,=-T5 —T45.

* These operators are subject to color conservation constraints:
4
MIEEE S s — ) T§+T§+T§:ZC¢ECM.
i=1
* In terms of the reduced amplitude, the NLL odd contribution reads

Qg
1] s

VG (1) (1) 2 (@)
M — [1+ (D@- @)D (t))] dras M7,

T



AMPLITUDES IN THE HIGH-ENERGY LIMIT: PERTURBATION THEORY

* The two-Reggeon cut contribution at NLL reads Caron-Huot, 2013

S ‘NLL—’MTZK' (as) L x dy x dmog MY

’L]—)’L]’

- where the coefficients dfs foIIows from BFKL evolution equation (more

later), and have been calculated up to 4 loops:

i \CR Ly

dy = do[T2, T2 | ( o R >),

d — ts[T2, [T2, T2_,]], ds = (rr)? (813 E Ecg ~ Peta ~ Sl + Ofe ))
ds = dua[ T2, [T, (2, 21| oo = ()" (— g — "2oes + O())

+ iy Ca [T [T2.T2_]), dap = (10 (@— —@—ﬂe@

» The color operator Ts.,> = 1/2(Ts>-T,?) is odd under s < u crossing.

* At NNLL, the even amplitude is expected to receive corrections, similarly

to what happens to the odd amplitude, when going from LL to NLL. —»




AMPLITUDES IN THE HIGH-ENERGY LIMIT: PERTURBATION THEORY

* More interesting are the corrections concerning the odd amplitude at NNLL accuracy.
* In this case one has to take into account for the first time the exchange of three Reggeized

gluons. This implies that, starting at NINLL, one has mixing between one- and three-Reggeons

exchange:

(D, —

Del Duca, Glover, 2001;

Del Duca, Falcioni,
Magnea, LV, 2013

* The mixing between one- and three-Reggeons exchange has significant consequences: f
» It is at the origin of the breaking of the simple power law one has up to NLL accuracy.
Such breaking appears for the first time at two loops.
* It implies that, starting at three loops, there will be a single-logarithmic contribution
originating from the three-Reggeon exchange, and from the interference of the one- and
three-Reggeon exchange: the interpretation of the Regge trajectory at three loops needs

to be clarified.
* Schematically, the whole amplitude at NNLL is composed of

A

&)
Mij—>ij |NNLL MU—Wd ’1 Reggeon + 3-Reggeon g} MU—W;j ’2-Reggeon-



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKL THEORY ABRIDGED

> ) > )

8 g8

* The high-energy limit correspond to a configuration of forward scattering:

S
t =(p1 —psa)? = (p2 — p3)° = —5 (1 —cos),

el

S CRs i = = ([,
w—(p1 — p3)° = (p2 — ps)* = —5(1 + cos 6),
» The high-energy logarithm correspond to the rapidity difference between the target and the
projectile: T
5
» Such kinematical configuration is described conveniently in terms of Wilson lines stretching

n:Lzlog‘ﬂ—i

from —o0 to +00. The Wilson lines follow the paths of color charges inside the projectile, and

are thus null and labelled by transverse coordinates z: Korchemskaya, Korchemsky, 1994, 1996
(E-C)
U(z1) =Pexp [igs/ Ai(;ﬁjx_:O,zL)dgﬁTa :

* The idea is to approximate, to leading power, the fast projectile and target by Wilson lines and
then compute the scattering amplitude between Wilson lines. Babansky, Balitsky, 2002

 The full transverse structure needs to be retained.As a consequence, due to quantum
fluctuations, a projectile necessarily contains multiple color charges at different transverse

positions: the number of Wilson lines cannot be held fixed.
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= > o

I 1

- However, in perturbation theory, the unitary matrices U(z) will be close to identity and so can

be usefully parametrised by a field WV:

U(Z) i eigs T*W*(2) :

* The color-adjoint field W sources a BFKL Reggeised gluon.A generic projectile, created with
four-momentum p| and absorbed with p4, can thus be expanded at weak coupling as

) = 25 (pa)al P00} ~ g5 D1 () [W) + g Dy o(8) [WW) + g2 Di 5 (8) [WWW) + .

2p1
= [Yi,1) + [Yi2) + [Yi3) +
* The factors Dij depend on the transverse coordinates of the W fields, but not on the center of

mass energy. They correspond to the impact factors for the exchange of one-, two- and three-

Reggeons.
* The energy dependence enters from the fact that the Wilson lines have rapidity divergences
which must be regulated, which leads to a rapidity evolution equation (Balitsky-JIMWLK):

d
e [9hs) = H [s).
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° A key feature of the Balitsky-|IMWLK equation is that the Hamiltonian is diagonal in the leading

approximation:

0% Ie iy 0 Hs_ 44

WWWw Hy 3 0 g R

WWWwW

Caron-Huot, 2013

(0 5 e W
PR WWw

0 gt WWW

- After using the rapidity evolution equation to resum all logarithms of the energy, the amplitude
is obtained from the scattering amplitude between equal-rapidity Wilson lines, which depends

only on the transverse scale t:

’i(ZiZj)_l

25s

* Or, in terms of the reduced amplitude,

25s

b ile )

Sl B
— Mijsi; = (ile 5|,

e RS
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» The inner product is by definition the scattering amplitude of VWilson lines renormalized to equal
rapidity.
» For our purposes, it suffices to know that it is Gaussian to leading-order:

: 5a1a’1 i
E— WA e = — = 3= (o e DO
1
« Multi-Reggeon correlators are obtained by Wick contractions:

<W1W2‘W1/W2/> = G11/G22/ —+ G12/G21/ -+ O(g?), Caron-Huot, 2013
(WiWoW3 | W1 Wi W3r) = G11/Goo: Gz + (5 permutations) + O(gg),

* There are also off-diagonal elements, which can be defined to have zero overlap (at equal rapidity):

(Wi WoWs|Wy) = (Wa|W1 WaW3) = 0.

* Starting from a scheme in which the inner products is #0, it is always possible to perform a
scheme transformations (e.2. WWW = WWW - g2 GW) such as to reduce to the condition
above.

» Choosing the |-WV and 3-W states to be orthogonal, combined with symmetry of the
Hamiltonian, (boost invariance):

d
(010 =0 & (HO\|03) = (O1|HO) = (01|H|0),

* implies that in this schemeQ—Ik - k+2 = Hi+2 - «JThis relation is known as projectile-target duality.
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* We can now list the ingredients which build up the amplitude up to three loops. Since the odd and

even sectors are orthogonal and closed under the action of H (signature symmetry), we have

Pa Regge ¢ 0 s o et =
_Mij—m'j gge (./\/l(-+) —|—M( ) )E<¢§-+)|6 HL|¢7;(+)>+<¢§ )|6 HL‘wz( )>.

B o ij—ij ij—>ij
- Using that multi-Reggeon impact factors are coupling-suppressed, Wi ~ g5, and using the suppression

by powers of & of off-diagonal elements in H, the signature odd amplitude becomes to three loops:
T~ (— nee
2—8M§]_)>Zj = <¢j,1\¢i,1>(LO)a

1

~(—) 1-loo ~
28M7(3j—)>1j — —L<¢j,1|H1—>1|¢z',1>(LO) + <wj’1|¢i’1>(NLO),

1

~(—) 2-loops 1 a? ~
28/\47(;3-—)3]‘ P = L3 W0|(H151) 2 i,1) ) — Ly 1| Hin i) )

2
+ (1h;.3]105.3) O+ (a1 a1 ) (NNLO),

RS 3-loops 1 2 1 2
2_8ng—)>733' " _ELBWJJ\(H1—>1)3\¢z',1>(m) i §L2<¢j,1|(H1—>1)2|¢z',1>(NLO)
= L{<¢j,1|ﬁ1—>1|¢i,1>(NNLO) s [<¢j,3!ﬁ3—>3\¢z‘,3> + (5,3 Hios|1s1)

A (LO) 3
(Wl Hasalea)| o+ ialia) O 4 Wl O,

* Recall that we are considering the reduced amplitude: Given that the | = | Hamiltonian is equal minus

the Regge trajectory, the | = | reduced Hamiltonian is actually zero, and many terms vanish:
= Oég(t) =7 ﬁ1—>1 =0, <¢j,1|(ﬁ1—>1)n\¢¢,1>("') = 0.



THE BALITSKY-JIMWLK EQUATION AND
THE THREE LOOP AMPLITUDE




AMPLITUDES IN THE HIGH-ENERGY LIMIT: THE BALITSKY-JIMWLK EQUATION

- The Balitsky-]IMWLK equation for an arbitrary number of Wilson lines U(zj) can be written in

the form AN
d mn
S (e - Uza)] = Y Hig - |Uln). .. Ulza)],
i,j=1
* with
Caron-Huot, 2013
g
Hij = o5 [ [dz]ldz;]ldzol Ko [TgLT;fL T o R)} + O®ad).

- We work now in dimensional regularisation with 2-2& dimensions, and dz = d*?¢z,and TR’s are

generators for left and right color rotations:

5 g S
o i = e

* In our analysis we need only the leading-order conformal invariant kernel Kj;, which has a very

TiC,LL = [T°U(2)]

simple dimension-independent expression in momentum space:

POIRE bR o T + p)? (1 —€)? 2p; - 20
Ki e — Se s dalld iq-(2: —20) , %P (25 —20) Bico) 2 (q dak; Se 2 J
750 (:u )/[ QH p] € € ( 7T ) q2p2 (ILL ) —2€ (231283)1_67

* The corrections to the Balitsky-JIMWLK Hamiltonian are suppressed by Os in a power-

counting where the Wilson lines are generic, U ~ |.This is more general than the perturbative
counting, discussed before, where | - U ~ gs W ~ gs, implying that the equation resums infinite

towers of Reggeon iterations.



AMPLITUDES IN THE HIGH-ENERGY LIMIT: THE BALITSKY-JIMWLK EQUATION
* To see this, expand U in powers of W:

T e A B R 7 i gl WaWb Torh _ ;9 6 WaWch gkl
e W“WbWCWd TRARHETE (Ol  1777)).

* The expansion of the color generators follows by using the Backer-Campbell-Hausdorff
formula. Then, it is possible to expand the leading Hamiltonian Hjj in powers of gs:

H=Hp ., + Hp ;p1o+...

- W
e get e e /[d Nzl Ko (Wi We)? 0
k—k — 27_‘_2 Zq 20 11;0 7 0 5Wz‘a
o /[dz'][dz'][dz | K50 (Wi —Wo ) * (W;—Wo )Y (F*F¥)* ;
92 1 J) 0 17;0 ) 0 ] 0 5Wia(5ij :
* The first non-linear correction is new:
o )
Hk—>k—|—2 = 3—; /[dzz][dZ()] Kz'i;() (WZ—Wo)xW(SJ(Wz—W())Z e [FxFyFZFa} 5W-a
2
i 6_7r [dzi][dz;][dzo] Ksj0 (FEFYF*F?)% [(Wi—WO)ngWoZ(Wj—WO)t

52
5W“(5Wb°

— W (Wi=Wo)Y W5 (W;—Wo)" — (W;—Wo) "W (W;—Wo)? Wt}



AMPLITUDES IN THE HIGH-ENERGY LIMIT: THE BALITSKY-JIMWLK EQUATION

* More on the Balitsky-]IMWLK power counting (U ~ 1) vs the BFKL power-counting (W ~ |):
* Inserting the expansion of U in terms of W in the leading-order Balitsky-|IMVWLK equation, one

finds that an m—m+k transition is proportional to g?*. Thus for k > 0, all the leading
interactions can be extracted from the leading-order equation.

W Hinr— 0 (Hop) (0 Hoo S G
((W)Q ( 0 %\ Fl i i) \ (W)?
i e e S U = Ele e (VR ol (W)3
(W)4 QRESEEER 0 RNy (W)4
\(W)5) \H1—>5 0 H4—>6 (W)B)

fes 0 g

B G2 ()

Ll e R

B tig- 0

\gﬁ s

* On the other hand, interactions with k < 0 are suppressed by at least g2k, which means that
they can first appear in the (|k|+|)-loop Balitsky-JIMWLK Hamiltonian.
* Thus to obtain the m—m=—2 transition by direct calculation of the Hamiltonian would require

three- loop non-planar computation.
* For our purposes this is unnecessary, since the symmetry of H predicts the result.



AMPLITUDES IN THE HIGH-ENERGY LIMIT: THE BALITSKY-JIMWLK EQUATION

° The actual calculation is easier in momentum space: introduce Fourier transform of the
Reggeon-fields WV:

wwmszwWWW@, wwazﬂ@wmwwy

* The k = k transitions then read

el /[dp] Caag(p) We(p) ;

oWa(p)

+ as / [dq)[dp1][dps) Ha2(g; 1, p2) W (p1+q)W¥ (p2—q) (F*F¥)*

) )
5Wa(p1) 5Wb(p2) 7

* where
g
ay(p) = 22 o) (p?) + O(a?)

2 2

3 —as(u)Se(MQ)/[d‘J] p +O(a?) = as(po) Tr <M )e

¢%(p — q)? 2me p?

R wiemr ol m=a
e g o i

+ O(ay), %
* is the Regge trajectory, and § §

- represents the BFKL kernel.



AMPLITUDES IN THE HIGH-ENERGY LIMIT: THE BALITSKY-JIMWLK EQUATION

* More interesting is the | = 3 (3 — |) transition: one has

Hi_3 = o /[Jpl][dpz][dp] Te[FCFPFeFY WP (p1 )W (p2)W % (p3) His(p1, p2,P3) :

SWe(p)’

* and by symmetry the 3 — | transition by symmetry reads

) ) )
R B / [dp1][dp2][dps] Tr[F“FbF ‘FY W (py+patps)

OW(p1) W (p2) W< (p3)

) (p1+p2+ps)?

x (—1
PAP3D3

His(p1,p2,p3),

* with kernel
7 (p1+p2)? (p2+ps3)?
His(py,po, p3) = =—S. (12 / d [ ==
13(]?1 b2 p3) ..,3 (M ) [ CI] qg(p1+p2_q)2 q2(p2—|—p3 —q)2
(p1+p2+p3)2 p%
)%

2 (p1+p2+p3—q)2 % (p2— q

3 g_z K(plﬂiirmy)e ; (;%)6 & ( p1ﬁ92)2 ( p2+p3)2> ]

Y
Y

%é




AMPLITUDES IN THE HIGH-ENERGY LIMIT: THE BALITSKY-JIMWLK EQUATION

» Given the Hamiltonian, all one needs to compute the amplitude are the target and projectile

impact factors:

2

;)29 = ig TIW(p) — %T?T? / [dg) W*(q)W"(p—q)

i 2
5 %TngTff/[d(Jﬂ[d%] Wa(@ll)Wb(%)Wc(P—%—%) +O(N3LL)7

2
) Q) = =2 [z'g TiW(p) D" (p) — T TI T / dq) " (p, @) W (W' (p—g) + ON’LL) |,

) N0 = ()" [ig T (9) DP (p) + O(NLL)|

- The Wilson line is in the representation of particle i,and p in the transferred momentum, p? = -t.

At higher orders in the coupling, the color charge of the projectile is no longer concentrated in a

single point, which leads to a nontrivial momentum dependence for multi-Reggeon impact factors.



AMPLITUDES IN THE HIGH-ENERGY LIMIT: ONE AND TWO LOOPS

» To get the signature-odd amplitude to two loops we need exchanges of one- and three-

Reggeons, the latter first appearing at two loops.

* Let us consider first the single Reggeon exchange: to all orders one has

(Y51

e 18 |gh,1) = Di(t) Dy (8) o dmary M)

ij—ig?
* which up to NNLL gives

Xs 1 .
(Wial5,1) M) = = (DD (@) + DIV (1)) o 4w M)

oL =)

2 . i
s = (2 (0200 +D00f") L o

T S 1) —1]

* the 3 — 3 transition appears first at two loops: it can be cast into the form

2 2
s g Qg
<¢j,3\%,3>(LO) = —im? (rp)? Z[1] B (—) C?E:Q’))

T

- where the color structure can be written in terms of color operators acting on the tree-level

color structure:

@) L o(a) o (b) o (c) NEg et Lo CS
Cs3”" = 36 Z (Tz' i AL >a1a4 <TjTjTj)a2a3 Lo :\\ : '
c€S3
1 2 I 2 b b N N o,
= o2 | (T2 = (WP | (Tasas (T e x ¥ </




AMPLITUDES IN THE HIGH-ENERGY LIMIT: ONE AND TWO LOOPS

- The momentum structure reads

WIS (4W56(p2)>2/[dpl][dp2] 5 3 P N

R P1DPs (P P1 pz)

* Up to three loops, the momentum structure is determined in terms of simple bubble integrals:

d2—2¢ 1 Gl Ba,g(é) A T
| =T ~ G @

F(l—a—e)F(l—ﬁ—e)F(a+5—1—|—e).

with B, g(€) T'(a)T(B)(2 — 2¢ — a — B)

 The transition reads

7'('2 g 2 ) 0
(W5,l958) " = = (=) ()2 Z(1] [(T2_,)% - £(Ca)?] 5 4ma MY, ;.
AN s 2s : g
+ Up to two loops the amplitude then reads Three-Reggeon cut § g
(=D (D) (1) (0
il — (e P e 1/

’L_]—)’Lj

—,2 2 2 il 1 0
M = [D( | D, )( R@)((T?_U)Q—%(C >DM§3LW,




AMPLITUDES IN THE HIGH-ENERGY LIMIT:THREE LOOPS

« At three loops we need to take into account for the first time the H3-3, Hi-3 and H3-

evolutions. The action of H3z-3 gives R R

ﬁ3—>3 Wa(Pl)Wb(pz)Wc(pS)

S3
2

~ 20 12 g, (p—)] W (1) (2) W () _3

p7

— a; (T; —3Ca) S /[d‘q]sz(q;pl,pz) W (p1+q)W°(p2—q) W€ (ps),

- which gives rise to the following transition:
2

(1h; 3| H3_3|1:.3) = 28 (%)3 (rp)? [T? (2Zp—Z,—Z.) + 3C4 (I = Zb)}

(T2_,)7 - %(Ca)?| - dma, MO,

S—U 23

- The transition is completely determined in terms of bubble integrals:

1 A (e s

T =00 e = e o
_€] €’ Bl,l(e) = & e@ g
i p2 ; 4 Bl—i—e 1—|—e(€) 2

el Bl = — — 44 — 66¢eCs + . ..

b L (p1) ] el Bjale) = G3 -

1 p’ ¢ 4 B 1+2e(€) 8 128

g S et e G (GG

6 ((pl —|_p2) > ] 63 B171(€) 363 CS C4



AMPLITUDES IN THE HIGH-ENERGY LIMIT: THE BALITSKY-JIMWLK EQUATION
* The | = 3,3 — | transitions are determined in terms of the same bubble integrals,

A A i /g3 g2
(W5 2+ Wil Haonltis) = 15 (22) 7 () |22e-Ta-T| 5 O3

* and the color structure reads

3 1 a o) o(cC (o) a C C a
C§3)—|—31 — 6 Z Ir [F /i (b)F ( )F (d)] [(Tz )a1a4 (ijTj ng)aza:a + (Tisz' Tid)a1a4 (Tj )aza:J
oceS3

1
OE T - T T T, - (T2,)°00 - (07T

» Collecting the results, we obtain the three loop contribution to the odd amplitude:

s = e et IR 2l e el gl e R (o

1] —1] 1] —17 )
- where the loop functions Rag,c are Caron-Huot, Gardi, LV, 2017
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COMPARISON BETWEEN REGGE AND
INFRARED FACTORIZATION




AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

 The prediction for the reduced amplitude is based solely on evolution equations of the Regge
limit, and has taken no input from the theory of infrared divergences.

* It is therefore a highly nontrivial consistency test that this prediction is consistent with the
known exponentiation pattern and the anomalous dimensions governing infrared divergences.

* Conversely, the prediction for the reduced amplitude can also be seen as a constraint on the
soft anomalous dimension: the high-energy limit of the latter has a very special structure, which
may ultimately help in determining it beyond three loops.

 The infrared divergences of scattering amplitudes are controlled by a renormalization group

equation, whose integrated version takes the form Becher, Neubert, 2009; Gardi, Magnea, 2009

M’n ({pi}mua as(:uz)) N Zn ({pi}aﬂa CVS(MQ)) Hn ({pi}nua CVS(MZ)) 9

- where Z is given as a path-ordered exponential of the soft-anomalous dimension:
- 1 [* dX2 .
Zn ({pz}a Ly O‘S(:u )) o PGXp _5 V Fn ({p1}7 )\7 &8()\ )) )
0
* the dependence on the scale is both explicit and via the 4 — 2€ dimensional coupling. The soft
anomalous dimension for scattering of massless partons (pi2 = 0) is an operators in color space
given, to three loops, by
Ty ({pi} A as(A?) = T3® ({pi} X as (M) + An ({pigr})
Becher, Neubert, 2009; Dixon, Gardi, Magnea, 2009; Del Duca,
Duhr, Gardi, Magnea, White, 201 |; Neubert, LV, 2012, ...



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

- I'%, involves only only pairwise interactions amongst the hard partons, and is therefore referred

Sij
( ) T, T 8 e
= )

+ The term A (i) involves interactions of up to four partons, and is called the “quadrupole

to as the “dipole formula™;

I1dlp ({p@} A ozs()\2) —

correction’’: 00

Anllogd) = 3 (%) AL (o))

=

* The three loop correction has been calculated recently, and reads
1 aoe prcae a C
Aq(zg)({ﬂijkl}) L2 Zf R Z [Tz’ T?TkT? F(pikjt, Piljk)
1<i<j<k<Ii<n
s T?TiTﬁT? Sl i S = TﬁT?TiT% F(Pijlkapiklj)]
C abe prcde - a d b
= R i an T

i=1 1<j<k<n,
J,kF#1 Almelid, Duhr, Gardi, 2015,2016

(—8i5)(—5k1)
G o)

F(pikji, pikj) = F(1 — zigra) — Fzijk), with  F(z) = L10101(2) + 2¢2 (5001(2) i »ClOO(Z))a
* where the & are Brown’s single-valued harmonic polylogarithms, and the constant term reads

C' = (5 + 2¢2(3.

+ where & is a function of cross ratios: p;x; = Explicitly, one has



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

* In the high-energy limit the dipole formula reduces to Del Duca,
dip. , 2\ Regge Vi (as) 2 | M2 Clrot o Dubhr,

I ({pz}, A, (A )) » 5 [L T; +inTo_, + 5 log — 2 + Z% ag) + O ' Gardi,

» and the quadrupole correction reads: Al Magnea,
1 o
o - @ 11@] [ [y [<5 - 4<2<3] b~
(5 o Aol eF R g A :
e, 8 f : % {T Td} ({Ts U’ } - {TS—|—u7 TS—I—u})
f Bl i o 0 0% T2
Only NNLL term e { S— u? }{ s+ur S—I—u} S g A*t (o
. a = La]: a a a X Sl | a a
Where TS—U, = ﬁ (TS _TU,)’ Ts—l—u = % (TS —|—Tu)

Caron-Huot, Gardi, LV, 2017
- Because of the form of I'™?, and A,(0ji) in the High-energy limit, the Z factor factorises

Z ({pi} 1 s (17) = Z (3,10 (12)) Zi (1, 05 (112) 25 (8 1,5 (12))

« where the relevant bit for us is

~

S :
Z (2, ma0(u?) = exp { K (0o(u?) [LT} +imT2_,] + QR }
* The factor K involve an integral over the scale:

K (o) = | D o) - L

* and the quadrupole interaction is contained in the term Qa:

s //ﬂ ) e, G2 AN (RS
e R T2 s 6e s :




AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

 The scalar factors Zjjare the same as those we removed from the reduced amplitude in the
BFKL context,and at LL accuracy the exponent inZ is also very similar to the gluon Regge
trajectory subtracted in the reduced amplitude. This makes the relation between the “infrared-

renormalized” amplitude (hard function) H and reduced matrix element particularly simple:
%’Lj—mj ({pz}a Ly aS(NQ)) e eXp—l {K (QS(MQ)) [L T% A L Tg—u} T Q(ﬁ)}
exp { g (VLT3 } iy () s ul0).

* This equation allows us to pass from directly from the reduced amplitude predicted using BFKL
theory, to the hard function.

» In particular, the statement that the left-hand-side H is finite, which is equivalent to the
exponentiation of infrared divergences, is a highly nontrivial constraint on our result.

» By using Baker-Campbell-Hausdorff formula one gets

S y
Higorig ({pi}, 1 s (1)) = (1 + o) (9n2 L[T2_,, T3, T2_, ]| - i mL? [T, T3, T2_,]])

S—Uu

e e (A3)>-exp{—i7TK(oz3)T2 }

cexp{ (ag(t) - K(@,)) LT3} Mijos; ({pi s ()



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

* In the following we expand in powers of s and L, according to

Hz‘j—w;j ({pi}mua Oés(M2)) = 4o Z Z (%)nLk %(n’k) (;-;) :

o . :O I{:O
- At LL, it is easy to check that one gets N

RO e n!( (1)) (T2)" M

’L]—>’L]

- where we introduced the “finite” Regge trajectory

. Js ~(n Oés(_t) =
Gg(t) = ag(t) — K(as), ag(t) = O‘g ) ( ) ’ Korchemskaya

* and the first two orders read Korchemsky,
1994, 1996




AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

The analysis proceed in a straightforward way: order by order in s we insert the result from

Regge theory, and check consistency with the infrared factorisation formula.
For instance at one loop we have

HOLD = 4 T2 X1,
HOO = MO0 e kW12 MO,

Explicitly, the real and imaginary part of the NLL term are given by

Re[H(10] —((~19),

iIm[HBO] =m0 _ e KO T2 M@,
i.e., from Regge theory,

Re[H1:0)] — (ngl) JrD‘g.l)) MO

i Tm[H 0] = i (dl i K<1>) T2, MO = iza® T2 MO,

Some coefficients, like the impact factors, are not predicted explicitly from Regge theory:in that
case, we can use these equations in the reverse direction, and get

IS OS2
IR el
2 /(0]

o =




AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION
* We get:

67 5 gl i 7 Tk
DL S ok N, (- =t e
9 (72 CQ) T 36" +€[ ( IR 12<3> D (27 24)]

L [N( A il <2+%<3+§—;<4) + (41 2 @—1@3)] + O,

e i STk 36
Tl i 1 1 5 IO s
T v e aorha] e N (e 2
q (72+8§2) +NC( 8@) 36"f+6[ (27 24+6<3)
1 3 7 et : ol s 7 35
e e JE oA L it N, ek i1 X
T ( 16°2 12C3) i ( o7 " 24)} g [ (162 144%? " 3% T 64C4)

1 (ot~ a7 41 5 i 3
+E<4_§_§C3_6_4<4) + Ny (_g—l—ﬁ@‘f—%@)] L0l

* The result for the impact factor must satisfy a nontrivial constraint:

* Quark and gluon impact factor extracted from quark-quark and gluon-gluon amplitude must

give the correct quark-gluon amplitude.



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

 Proceeding in a similar way, the infrared factorisation at two loops predicts

2(2.2) _ %(@(1))2(1‘2)2 M)
HED = @D 4 40T K00 L GO T2 NO)
B RO T T - alVT T M

2/(2,0) — py(2,0) _?(Ku)) (T2_,)2M© —ix {K<2>T2 M(0)+K(1)T§_u/\?l(1’0)].

* Inserting results from the Regge theory one gets

Re[HV] = &l + oV (DI + DIV )| T2 M,

i Im[H (2] = [( dy + 1 (KM)? +K<1>@g1>)[T2 A 2g0 (&gD)QTng_u] MO,

« for the NLL coefficient, which is consistent with infrared factorisation. At NINLL we are able to
predict the real part:

Re[H(20)] — [D@) +D® 4+ DODW _ x2R® L (0,)2

oL (R<2> + LEM)2 4 kW4 (1))( 22| MO,
- Here we see explicitly for the first time the appearance of the contribution from the three-

Reggeon cut: because of it, Regge factorisation (interpreted as exponentiation of the Regge
pole) is broken starting at two loops. Del Duca, Glover, 2001; Del Duca, Falcioni, Magnea, LV, 2013



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

 Our framework can be used to extract the impact factors at two loops: this is given by taking

the projection of the amplitude onto the antisymmetric octet component:

Z) L
2

2 2
D® + DP =

2y e
WO =

2,0)[84
B _ (DW)2 4 12R® e 2R(2) NZ + 24
O TAN Sk

99—99

(2,0)[84] N 2
Mag=ag" 1) p) ) N (_ oo is Fe
OB~ P Ds 12 T

q9—qg /

2 (R 4 ek
Re[%((]q—zcgq ]] i (D(l)) 2R(2) N2 ZR(Q) N4 4N2 _|_ 12
H(O)[Sa] q 117 L 4N?2 )

qq9—qq

Caron-Huot, Gardi, LV, 2017

 The effect of the three-Reggeon cut is evident from the color-dependent term in the equations

above. Once again, consistency requires the three equations above to be satisfied

simultaneously.




AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

* At three loops, at LL and NLL, the infrared factorisation formula predicts

L e o
5 (05) (1)’ M,
7‘[(3’2) e M(B,Q) +OAéé1) T?M@’l) 4 %(@gl))Q(T%)QM(l’O) —l_&él)@g(f) (T%)Z M(O)

+im( - JEDP KDL, (T2 + §aD (K V(T2 T2,)TF - d(KD)[T3, [T, T2 ]| ) MO.

H(?’??’) i

2

* which is consistent with Regge exponentiation and (dipole) infrared factorisation. More in

details,

Re[H(32] = ¢V [@9 + La(n (D§1> o D§1>) ] (T2)2 M@ = Oe),

i Tm[H 3] = ir | 1 (ds — (KD)? - 3K D (a{V)? - 3(KM)2a{) )17, [T3, T2_, ]

(&0)3(T2)2T2_, | M©

SRS (d2 +(EWY2 4 2K<1>@g1>)T§ mZa2

— s (—HCg + O(e)) e art - @)



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

* At NNLL, we see for the first time the effect of the quadrupole correction:

HED = MGD 4+ aVTIME0 4 o@D TZ M0 4 6P TIMO)
2
- = | - s R e b b el e B e

+ iw[—K(l)Ti_uM(Q’l) i (%(K(l))Q[Tf,Ti s K<1>@§>T§_UT§)M“>O>

: A e \
i (K ) el e i i IOl T2L i e u]]) <0>] |
* The effect is in the even sector, therefore we cannot check it expliutly with our computation.

However, the calculation of the odd sector within Regge theory gives

Re[H] = [ +a (D + D) + a0 (D + D + DV (V)| T3 M©
+ 72| R®) _ Lan R(z)} (T2 MO + 726 RO T2(T2_,)?> M©
+ 72 [RY) + LKW (2(KW)? + 360 KD + 3, ) | T2, [T2,T2_,) M©

L 2IRY _ L g® ((K<1>) +3aWKM 4 3(a()? )] T2, T2 T2, M©.

« Which is consistent with infrared factorisation. This is a rather non-trivial check, given that the

two calculations are done in two completely different ways.
Caron-Huot, Gardi, LV, 2017



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

* The Regge theory we have developed, however, allows us also to get some parts of the finite
amplitude. Let’s have a more detailed look at the amplitude: we have

Re[H® V] = [a®) + 4 (D§” 1 D§1>) +alV (D,ﬁ” +DP 4 D§1>D§1>)

Gy Caron-Huot, Gardi, LV, 2017

v (1 R 175§3)
A864 €3 de 2

990 x
+n2 2T (T2, T2, KA 4 m

 Going to an orthonormal basis in the t-channel, in components we have:

203 (12, T2 JT2_, M@ + O(e).

Re[H 1] = {CA a® 1+ @ (D + DY) + &M (D + DI + DV DM)

o bl Sl 223
>_OA 7

A 2
R 0C O — 4{ H;f’ + O(e)}M(O)’[Sa]

* The antisymmetric octet amplitude cannot be predicted entirely, given the unknown Regge

L O )}Mm),[sa]

trajectory at three loops; The 10 + 10 component, however, can be predicted exactly, and it

agrees with a recent calculation of the gluon-gluon scattering amplitude at three loops in N=4

SYM.
Henn, Mistlberger, 2016



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

* Last, consider the relation between the three-loop “gluon Regge trajectory’” and the
logarithmic terms in the three-loop amplitude.

- Starting from three loops the “gluon Regge trajectory” is scheme-dependent. Here we defined
it to be the | = | matrix element of the Hamiltonian 0g(t) = —H|-/Ca, in the scheme where
states corresponding to a different number of Reggeon are orthogonal.

» This can be related to fixed-order amplitudes by taking the logarithm of the amplitude

projected onto the signature-odd adjoint channel:

[8CL] 3
og Mo52es _ 1l g 4 (%2) w2 V. — 2R + 289 + MERO L 4 0(1°,at),
M(O)[Sa] T A B @ s
99—499

* Thanks to a recent calculation of the gluon-gluon amplitude in N=4 SYM, in this theory one has

[8a]7N24 2 3
o Mg?()_;[%g] — [%kl i (%) L (%) phar e ] 7
Mgg—>;g % & 0
* where
A =g SEn s E G S Epll e e G Henn, Mistlberger, 2016
e LG 8 2 71 4l 3
k2—Nc[ SRz o 616C4+6 24C2C3+ 8C5 FONE
lle s 5 1 o
24% 2 = gL TR S (0 [T TRt e X e et s L e Lo
B [ R YRGS RIS +O(€)] 1 [4 ST o +O(€)] |

* Matching these two results we get



AMPLITUDES IN THE HIGH-ENERGY LIMIT: BFKLVS INFRARED FACTORISATION

L Q Qg 2 g\ 3
—H{\LH4SYM = N, —S@gl)‘N:4SYM ah (—8) 0422)’/\/:48\(1\4 iy (—8> Oégg)\N:zLSYM A ||
T T 71y
* With
oY | w—asym = k1, o |v—asym = ko,
Caron-Huot, Gardi, LV, 2017
* and
o e ¢
G _ g & G SR 2, TG NO10+ O(e)] .
o st = Sy T ey S Ao e | U Ol

- Even though to three loop accuracy the adjoint amplitude may look like a Regge pole, e.g. a
pure power-law, it is actually not: starting from two-loops it is really a sum of multiple powers.

- Simply exponentiating the logarithm of the full amplitude at three loops would predict a
definitely incorrect four-loop amplitude.

* The correct, predictive, procedure is to exponentiate the action of the BFKL Hamiltonian.With
the “trajectory” fixed as above, this procedure does not require any new parameter for the

odd amplitude at NNLL to all loop orders.



CONCLUSION

« We have computed the Regge-cut contribution to three loops through NNLL in
the signature-odd sector.

* Our formalism is based on using the non-linear Balitsky-JIMWLK rapidity
evolution equation to derive an effective Hamiltonian acting on states with a fixed
number of Reggeized gluons.

A new effect occurring first at NNLL is mixing between states with k and k+2
Reggeized gluons due non-diagonal terms in this Hamiltonian.

 Our results are consistent with a recent determination of the infrared structure of
scattering amplitudes at three loops, as well as a computation of 2 = 2 gluon
scattering in N = 4 super Yang-Mills theory.

- Combining the latter with our Regge-cut calculation we extract the three-loop
Regge trajectory in this theory.

* Our results open the way to predict high-energy logarithms through NNLL at
higher-loop orders.



