From de Jonquières' Counts to Cohomological Field Theories

Mara Ungureanu

Women at the Intersection of Mathematics and High Energy Physics 9 March 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

How many geometric structures of a given type satisfy a given collection of geometric conditions?

Appolonius' problem (approx. 200 BC)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

8 circles tangent to 3 other circles

▶ 3264 conics tangent to 5 given conics (1864 Chasles)

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ 3264 conics tangent to 5 given conics (1864 Chasles)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ 27 lines on cubic surface (1849 Cayley-Salmon)

▶ 3264 conics tangent to 5 given conics (1864 Chasles)

- 27 lines on cubic surface (1849 Cayley-Salmon)
- ▶ 2875 lines on a quintic threefold (1886 Schubert)

- ▶ 3264 conics tangent to 5 given conics (1864 Chasles)
- 27 lines on cubic surface (1849 Cayley-Salmon)
- ▶ 2875 lines on a quintic threefold (1886 Schubert)
- ▶ 609.250 conics on a quintic threefold (1985 Katz)

- ▶ 3264 conics tangent to 5 given conics (1864 Chasles)
- 27 lines on cubic surface (1849 Cayley-Salmon)
- ▶ 2875 lines on a quintic threefold (1886 Schubert)
- ▶ 609.250 conics on a quintic threefold (1985 Katz)
- 317.206.375 cubics on a quintic threefold (1991 Ellingsrud-Strømme)

Question

Number of rational curves of any degree on quintic threefold?

Question

Number of rational curves of any degree on quintic threefold?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Answer Mirror symmetry! 1991 Candelas, de la Ossa, Green, Parkes

Question

Number of rational curves of any degree on quintic threefold?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Answer

Mirror symmetry! 1991 Candelas, de la Ossa, Green, Parkes

- 1995 Kontsevich
- 1996 Givental
- Clemens conjecture?

Question

How many points in the plane lie at the intersection of two given lines?

Question

How many points in the plane lie at the intersection of two given lines?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Answer

It depends!

- Lines in general position \Rightarrow exactly one
- Parallel lines \Rightarrow none
- Lines coincide \Rightarrow an infinite number of points

- Parameter (moduli) space
- Compactify!
- Do excess intersection theory

Ernest de Jonquières

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Disclaimer

 $\label{eq:constraint} \begin{array}{l} C \text{ smooth, genus } g \\ f:C \to \mathbb{P}^r \text{ non-degenerate} \\ \text{Degree of } f = \#\{f(C) \cap H\} =:d \end{array}$

Sac

C smooth, genus g $f: C \to \mathbb{P}^r$ non-degenerate Degree of $f = \#\{f(C) \cap H\} =: d$

Sac

C smooth, genus g $f:C\to \mathbb{P}^r \text{ non-degenerate}$ Degree of $f=\#\{f(C)\cap H\}=:d$

Sac

de Jonquières counts the number of pairs (p_1,p_2) such that there exists a hyperplane $H\subset \mathbb{P}^r$ with

$$f^{-1}\{f(C) \cap H\} = p_1 + 2p_2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

de Jonquières (and Mattuck, Macdonald) count the *n*-tuples

 (p_1,\ldots,p_n)

such that there exists a hyperplane $H \subset \mathbb{P}^r$ with

$$f^{-1}{f(C) \cap H} = a_1p_1 + \ldots + a_np_n$$

where

$$a_1 + \ldots + a_n = d$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

The (virtual) de Jonquières numbers are the coefficients of

 $t_1 \cdot \ldots \cdot t_n$

in

$$(1 + a_1^2 t_1 + \ldots + a_n^2 t_n)^g (1 + a_1 t_1 + \ldots + a_n t_n)^{d-r-g}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An embedding $f:C\to \mathbb{P}^r$ of degree d is given by

A pair (L, V)

- a line bundle L of degree d on C
- ▶ an (r+1)-dimensional vector space V of sections of L

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

An embedding $f:C\to \mathbb{P}^r$ of degree d is given by

A pair (L, V)

- a line bundle L of degree d on C
- ▶ an (r+1)-dimensional vector space V of sections of L

Choose
$$(\sigma_0, \dots, \sigma_r)$$
 basis of V
 \downarrow
 $f: C \to \mathbb{P}^r$
 $p \mapsto [\sigma_0(p): \dots: \sigma_r(p)]$

Space of all divisors of degree d on C

$$C_d = \underbrace{C \times \ldots \times C}_{d \text{ times}} / S_d$$

For example

 $p_1 + 2p_2 \in C_3$

Space of all divisors of degree d on C

$$C_d = \underbrace{C \times \ldots \times C}_{d \text{ times}} / S_d$$

For example

$$p_1 + 2p_2 \in C_3$$

We define de Jonquières divisors

$$p_1 + \ldots + p_n \in C_n$$

such that

$$f^{-1}{f(C) \cap H} = a_1p_1 + \ldots + a_np_n$$

 $D = p_1 + \ldots + p_n$ is de Jonquières divisor

$\$

there exists a section σ whose zeros are

 $a_1p_1+\ldots+a_np_n$

 $D = p_1 + \ldots + p_n$ is de Jonquières divisor

 \uparrow

there exists a section σ whose zeros are

 $a_1p_1+\ldots+a_np_n$

↕

the map

$$\beta_D: V \to V|_{a_1p_1 + \dots + a_np_n}$$
$$\sigma \mapsto \sigma|_{a_1p_1 + \dots + a_np_n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

has nonzero kernel

the map

$$\beta_D: V \to V|_{a_1p_1 + \dots + a_n p_n}$$
$$\sigma \mapsto \sigma|_{a_1p_1 + \dots + a_n p_n}$$

has nonzero kernel

(ロ)、(型)、(E)、(E)、 E) の(の)

・ロト・(四ト・(ヨト・(日下・))の(の)

De Jonquières divisors:

$$DJ_n = \{ D \in C_n \mid rank(\beta_D) \le r \}$$

determinantal variety

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- ▶ Fix curve *C* of genus *g*
- Fix embedding given by (L, V)
- $C_n :=$ space of divisors of degree n
- Defined de Jonquières divisors via multitangency conditions

 Described space DJ_n of de Jonquières divisors as determinantal variety over C_n

Analysing the moduli space

 $\dim DJ_n \ge n - d + r$

Analysing the moduli space

$$\dim DJ_n \ge n - d + r$$

Relevant questions

- ▶ $n d + r < 0 \Rightarrow$ non-existence of de Jonquières divisors
- ▶ $n d + r \ge 0 \Rightarrow$ existence of de Jonquières divisors
- ▶ $n d + r = 0 \Rightarrow$ finite number of de Jonquières divisors

• dim $DJ_n = n - d + r$

- Allow C to vary in $\mathcal{M}_{g,n}$
- Vary the de Jonquières structure with it

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{M}_{g,n} = \text{moduli space of smooth curves of genus } g \text{ with } n \text{ marked points}$

$$(C; p_1, \ldots, p_n) \in \mathcal{M}_{g,n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• dim
$$\mathcal{M}_{g,n} = 3g - 3 + n$$

• compactification $\overline{\mathcal{M}}_{g,n}$

 $\mathcal{M}_{g,n} = \text{moduli space of smooth curves of genus } g \text{ with } n \text{ marked points}$

$$(C; p_1, \ldots, p_n) \in \mathcal{M}_{g,n}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

• dim
$$\mathcal{M}_{g,n} = 3g - 3 + n$$

• compactification $\overline{\mathcal{M}}_{g,n}$

Question

What is the cohomology of $\overline{\mathcal{M}}_{g,n}$?

$$L = K_C = \text{bundle of differential forms on } C$$

$$(L,V) = (K_C, \Gamma(C,K_C))$$
 Now $d = 2g-2$ and $r = g-1$

◆□ → <□ → < Ξ → < Ξ → < Ξ → < </p>

$$L = K_C$$
 = bundle of differential forms on C
 $(L,V) = (K_C, \Gamma(C, K_C))$
Now $d = 2g - 2$ and $r = g - 1$

Fix partition
$$\mu = (a_1, \ldots, a_n)$$
 of $2g - 2$

 $\mathcal{H}_g(\mu) = \{ (C; p_1, \dots, p_n) \text{ such that} \\ K_C \text{ admits the de Jonquières divisor } a_1 p_1 + \dots + a_n p_n \}$

 $\mathcal{H}_g(\mu) \subset \mathcal{M}_{g,n}$ determinantal subvariety

 flat surfaces, dynamical systems, Teichmüller theory: Masur, Eskin, Zorich, Kontsevich,...
 Bainbridge-Chen-Gendron-Grushevsky-Möller ('16), ...

 algebraic geometry: Diaz ('84), Polishchuk ('03), Farkas-Pandharipande ('15)

$$\mathcal{H}_g(\mu)\subset \mathcal{M}_{g,n}$$
Take closure: $\overline{\mathcal{H}}_g(\mu)\subset \overline{\mathcal{M}}_{g,n}$

Question

What is the fundamental class $[\overline{\mathcal{H}}_g(\mu)]$?

Answer

(potentially) Cohomological field theory!

CFT

- 2-dimensional QFT invariant under conformal transformations
- defined over compact Riemann surfaces

Stick to holomorphic side

 $\mathsf{CFT}=2\text{-dimensional}\ \mathsf{QFT}\ \mathsf{covariant}\ w.r.t.$ holomorphic coordinate changes

Infinitesimal change of holomorphic coordinate

$$z \mapsto z + \epsilon f(z)$$

Local holomorphic vector field

$$f(z)\frac{d}{dz}$$

Infinitesimal change of holomorphic coordinate

$$z \mapsto z + \epsilon f(z)$$

Local meromorphic vector field

$$f(z)\frac{d}{dz}$$

Infinitesimal change of holomorphic coordinate

 $z \mapsto z + \epsilon f(z)$

Local meromorphic vector field

$$f(z)\frac{d}{dz}$$

$$\Downarrow$$

Virasoro algebra:

$$L_n = -z^{n+1} \frac{d}{dz} \Rightarrow [L_n, L_m] = (m-n)L_{m+n}, n \in \mathbb{Z}$$

etc...

Local meromorphic vector field

$$f(z)\frac{d}{dz}$$

↕

Infinitesimal deformation of complex structure

$\$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Infinitesimal deformation of an algebraic curve

・ロト ・個ト ・モト ・モト

æ

990

$$(C; p_1, \dots, p_n) \in \overline{\mathcal{M}}_{g,n}$$

 $\vec{\lambda} = (\lambda_1, \dots, \lambda_n)$ representation labels
 $V_{\vec{\lambda}}(C; p_1, \dots, p_n)$ space of conformal blocks

・ロト ・個ト ・モト ・モト

æ

590

$$(C; p_1, \dots, p_n) \in \overline{\mathcal{M}}_{g,n}$$

 $\vec{\lambda} = (\lambda_1, \dots, \lambda_n)$ representation labels
 $V_{\vec{\lambda}}(C; p_1, \dots, p_n)$ space of conformal blocks

$$(\widetilde{C}; p_1, \dots, p_n, q_+, q_-) \in \overline{\mathcal{M}}_{g,n+2}$$

 $\vec{\lambda} = (\lambda_1, \dots, \lambda_n, \lambda, \lambda^{\dagger})$ representation labels
 $V_{\vec{\lambda}}(\widetilde{C}; p_1, \dots, p_n, q_+, q_-)$ space of conformal blocks

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Verlinde bundle

$$\mathcal{V}_{ec{\lambda}} o \overline{\mathcal{M}}_{g,n}$$

Each fibre is given by space of conformal blocks

$$V_{\vec{\lambda}}(C; p_1, \dots, p_n) \to (C; p_1, \dots, p_n)$$

 $\overline{\mathcal{M}}_{g,n}$ and CohFT

The characters $ch(\mathcal{V}_{\vec{\lambda}})$ define a CohFT on $\overline{\mathcal{M}}_{g,n}!$

$\overline{\mathcal{M}}_{g,n}$ and CohFT

The characters $ch(\mathcal{V}_{\vec{\lambda}})$ define a CohFT on $\overline{\mathcal{M}}_{g,n}$!

A CohFT

- ► a vector space of fields U
- a non-degenerate pairing η
- \blacktriangleright a distinguished vector $\mathbf{1} \in U$
- a family of correlators

$$\Omega_{g,n} \in H^*(\overline{\mathcal{M}}_{g,n}, \mathbb{Q}) \otimes (U^*)^{\otimes n}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

satisfying gluing...

 $\overline{\mathcal{M}}_{g,n}$ and CohFT

Quantum multiplication * on U

$$\eta(v_1 * v_2, v_3) = \Omega_{0,3}(v_1 \otimes v_2 \otimes v_3) \in \mathbb{Q}$$

(U, *) Frobenius algebra of the CohFT

Teleman: classification of all CohFT with semisimple Frobenius algebra

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{M}_{a,n}$ and CohFT

 $\mathcal{H}_g(\mu) = \{ (C; p_1, \dots, p_n) \text{ such that} \\ K_C \text{ admits the de Jonquières divisor } a_1 p_1 + \dots + a_n p_n \}$

 $[\overline{\mathcal{H}}_g(\mu)] = ?$

Maybe $[\overline{\mathcal{H}}_g(\mu)]$ is one of the $\Omega_{g,n}$

 $[\overline{\mathcal{H}}_g(\mu)]$ is not a CohFT class!

Conjecture (Pandharipande, Pixton, Zvonkine): it is related to one

Witten R-spin class

$$W_{g,\mu}^R \in H^{2g-2}(\overline{\mathcal{M}}_{g,n}, \mathbb{Q})$$

► Tour of enumerative geometry

- Tour of enumerative geometry
- \blacktriangleright Described de Jonquières divisors on fixed curve C with fixed embedding (L,V)

- Tour of enumerative geometry
- \blacktriangleright Described de Jonquières divisors on fixed curve C with fixed embedding (L,V)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Allowed C to vary in moduli

- Tour of enumerative geometry
- \blacktriangleright Described de Jonquières divisors on fixed curve C with fixed embedding (L,V)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- Allowed C to vary in moduli
- Obtained subspace of $\overline{\mathcal{M}}_{g,n}$ for particular case $L = K_C$

- Tour of enumerative geometry
- \blacktriangleright Described de Jonquières divisors on fixed curve C with fixed embedding (L,V)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- Allowed C to vary in moduli
- Obtained subspace of $\overline{\mathcal{M}}_{g,n}$ for particular case $L = K_C$

What if $L \neq K_C$?