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What is Enumerative Geometry?

How many geometric structures of a given type satisfy a given
collection of geometric conditions?



What is Enumerative Geometry?

Appolonius’ problem (approx. 200 BC)

8 circles tangent to 3 other circles





What is Enumerative Geometry?

I 3264 conics tangent to 5 given conics (1864 Chasles)

I 27 lines on cubic surface (1849 Cayley-Salmon)

I 2875 lines on a quintic threefold (1886 Schubert)

I 609.250 conics on a quintic threefold (1985 Katz)

I 317.206.375 cubics on a quintic threefold (1991
Ellingsrud-Strømme)
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What is Enumerative Geometry?

Question
Number of rational curves of any degree on quintic threefold?

Answer
Mirror symmetry!
1991 Candelas, de la Ossa, Green, Parkes

I 1995 Kontsevich

I 1996 Givental

I Clemens conjecture?
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What is Enumerative Geometry?

Question
How many points in the plane lie at the intersection of two given
lines?

Answer
It depends!

I Lines in general position ⇒ exactly one

I Parallel lines ⇒ none

I Lines coincide ⇒ an infinite number of points
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What is Enumerative Geometry?

I Parameter (moduli) space

I Compactify!

I Do excess intersection theory



Ernest de Jonquières



Disclaimer



de Jonquières’ multitangency conditions

C smooth, genus g
f : C → Pr non-degenerate
Degree of f = #{f(C) ∩H} =: d

d = 3
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de Jonquières’ multitangency conditions
C smooth, genus g
f : C → Pr non-degenerate
Degree of f = #{f(C) ∩H} =: d

f−1{f(C) ∩H} = p1 + 2p2



de Jonquières’ multitangency conditions

de Jonquières counts the number of pairs (p1, p2) such that
there exists a hyperplane H ⊂ Pr with

f−1{f(C) ∩H} = p1 + 2p2



de Jonquières’ multitangency conditions

de Jonquières (and Mattuck, Macdonald) count the n-tuples

(p1, . . . , pn)

such that there exists a hyperplane H ⊂ Pr with

f−1{f(C) ∩H} = a1p1 + . . .+ anpn

where
a1 + . . .+ an = d



de Jonquières’ multitangency conditions

The (virtual) de Jonquières numbers are the coefficients of

t1 · . . . · tn

in
(1 + a21t1 + . . .+ a2ntn)g(1 + a1t1 + . . .+ antn)d−r−g



Constructing the moduli space

An embedding f : C → Pr of degree d is given by

A pair (L, V )

I a line bundle L of degree d on C

I an (r + 1)-dimensional vector space V of sections of L

Choose (σ0, . . . , σr) basis of V
⇓

f : C → Pr
p 7→ [σ0(p) : . . . : σr(p)]
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Constructing the moduli space

Space of all divisors of degree d on C

Cd = C × . . .× C︸ ︷︷ ︸
d times

/Sd

For example
p1 + 2p2 ∈ C3

We define de Jonquières divisors

p1 + . . .+ pn ∈ Cn

such that
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Constructing the moduli space

D = p1 + . . .+ pn is de Jonquières divisor

m

there exists a section σ whose zeros are

a1p1 + . . .+ anpn

m

the map

βD : V → V |a1p1+...+anpn
σ 7→ σ|a1p1+...+anpn

has nonzero kernel
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Constructing the moduli space

the map

βD : V → V |a1p1+...+anpn
σ 7→ σ|a1p1+...+anpn

has nonzero kernel
m

rank(βD) ≤ dimV − 1 = r



Constructing the moduli space

V V |a1p1+...+anpn

D = p1 + . . .+ pn ∈ Cn

βD



Constructing the moduli space

V ⊗OCn F

Cn

β

De Jonquières divisors:

DJn = {D ∈ Cn | rank(βD) ≤ r}

determinantal variety



To summarise...

I Fix curve C of genus g

I Fix embedding given by (L, V )

I Cn := space of divisors of degree n

I Defined de Jonquières divisors via multitangency conditions

I Described space DJn of de Jonquières divisors as
determinantal variety over Cn



Analysing the moduli space

dimDJn ≥ n− d+ r

Relevant questions

I n− d+ r < 0⇒ non-existence of de Jonquières divisors

I n− d+ r ≥ 0⇒ existence of de Jonquières divisors

I n− d+ r = 0⇒ finite number of de Jonquières divisors

I dimDJn = n− d+ r
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Taking a variational perspective

I Allow C to vary in Mg,n

I Vary the de Jonquières structure with it



Taking a variational perspective

Mg,n = moduli space of smooth curves of genus g with n marked
points

(C; p1, . . . , pn) ∈Mg,n

I dimMg,n = 3g − 3 + n

I compactification Mg,n

Question
What is the cohomology of Mg,n?
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Taking a variational perspective

L = KC = bundle of differential forms on C

(L, V ) = (KC ,Γ(C,KC))

Now d = 2g − 2 and r = g − 1

Fix partition µ = (a1, . . . , an) of 2g − 2

Hg(µ) = {(C; p1, . . . , pn) such that
KC admits the de Jonquières divisor a1p1 + . . .+ anpn}



Taking a variational perspective

L = KC = bundle of differential forms on C

(L, V ) = (KC ,Γ(C,KC))

Now d = 2g − 2 and r = g − 1

Fix partition µ = (a1, . . . , an) of 2g − 2

Hg(µ) = {(C; p1, . . . , pn) such that
KC admits the de Jonquières divisor a1p1 + . . .+ anpn}



Taking a variational perspective

Hg(µ) ⊂Mg,n determinantal subvariety

I flat surfaces, dynamical systems, Teichmüller theory:
Masur, Eskin, Zorich, Kontsevich,...
Bainbridge-Chen-Gendron-Grushevsky-Möller (’16), ...

I algebraic geometry: Diaz (’84), Polishchuk (’03),
Farkas-Pandharipande (’15)



Taking a variational perspective

Hg(µ) ⊂Mg,n

Take closure: Hg(µ) ⊂Mg,n

Question
What is the fundamental class [Hg(µ)]?

Answer
(potentially) Cohomological field theory!



Mg,n and 2-dimensional CFT

CFT

I 2-dimensional QFT invariant under conformal transformations

I defined over compact Riemann surfaces

Stick to holomorphic side

CFT = 2-dimensional QFT covariant w.r.t. holomorphic coordinate
changes



Mg,n and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

z 7→ z + εf(z)

Local holomorphic vector field

f(z)
d

dz
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Mg,n and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

z 7→ z + εf(z)

Local meromorphic vector field

f(z)
d

dz

⇓

Virasoro algebra:

Ln = −zn+1 d

dz
⇒ [Ln, Lm] = (m− n)Lm+n, n ∈ Z

etc...



Mg,n and 2-dimensional CFT

Local meromorphic vector field

f(z)
d

dz

m

Infinitesimal deformation of complex structure

m

Infinitesimal deformation of an algebraic curve



Mg,n and 2-dimensional CFT

(C; p1, . . . , pn) ∈Mg,n

~λ = (λ1, . . . , λn) representation labels

V~λ(C; p1, . . . , pn) space of conformal blocks
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Mg,n and 2-dimensional CFT

(C̃; p1, . . . , pn, q+, q−) ∈Mg,n+2

~λ = (λ1, . . . , λn, λ, λ
†) representation labels

V~λ(C̃; p1, . . . , pn, q+, q−) space of conformal blocks



Mg,n and 2-dimensional CFT

Verlinde bundle
V~λ →Mg,n

Each fibre is given by space of conformal blocks

V~λ(C; p1, . . . , pn)→ (C; p1, . . . , pn)



Mg,n and CohFT

The characters ch(V~λ) define a CohFT on Mg,n!

A CohFT

I a vector space of fields U

I a non-degenerate pairing η

I a distinguished vector 1 ∈ U
I a family of correlators

Ωg,n ∈ H∗(Mg,n,Q)⊗ (U∗)⊗n

satisfying gluing...
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Mg,n and CohFT

Quantum multiplication ∗ on U

η(v1 ∗ v2, v3) = Ω0,3(v1 ⊗ v2 ⊗ v3) ∈ Q

(U, ∗) Frobenius algebra of the CohFT

Teleman: classification of all CohFT with semisimple Frobenius
algebra



Mg,n and CohFT

Hg(µ) = {(C; p1, . . . , pn) such that
KC admits the de Jonquières divisor a1p1 + . . .+ anpn}

[Hg(µ)] =?

Maybe [Hg(µ)] is one of the Ωg,n



Hg(µ) and CohFT

[Hg(µ)] is not a CohFT class!

Conjecture (Pandharipande, Pixton, Zvonkine): it is related to one

Witten R-spin class

WR
g,µ ∈ H2g−2(Mg,n,Q)



To summarise...

I Tour of enumerative geometry

I Described de Jonquières divisors on fixed curve C with fixed
embedding (L, V )

I Allowed C to vary in moduli

I Obtained subspace of Mg,n for particular case L = KC

What if L 6= KC?
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