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§ Non-perturbative effects are essential in field theories to
complete the perturbative expansion and lead to results
valid at all couplings

§ In supersymmetric theories, tremendous progress has
been possible thanks to the developement of localization
techniques (Nekrasov ‘02, Nekrasov-Okounkov ’03, Pestun ‘07, Nekrasov-Pestun ‘13)

§ In maximally supersymmetric theories these methods
allowed us to compute exactly several quantities:

• Sphere partition function and free energy
• Wilson loops
• Correlation functions, amplitudes



• We will focus on SYM theories in 4d with N=2
supersymmetry

• They are less constrained than the N=4 theories
• They are sufficiently constrained to be analyzed exactly

• We will be interested in studying how S-duality on the
quantum effective couplings constrains the prepotential
and the observables of N=2 theories

(earlier work	by	Minahan et	al.	’96,	‘97)

• We will make use of these constraints to obtain exact
expressions valid at all couplings
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but it builds on a very vast literature…



1. N=4	SYM

2. N=2*	SYM

3. N=2*	SYM	with	surface	operators

4. Conclusions

Plan of the talk



N=4	SYM



§ Consider	N	=4	SYM	in	d=4	

• This	theory	is	maximally	supersymmetric (16	SUSY	charges)
• The	field	content	is

• All	fields	are	in	the	adjoint repr.	of	the	gauge	group						
• The	b–function	vanishes to	all	orders	in	perturbation	theory
• If																			,	the	theory	is	superconformal (i.e. invariant	
under																						)	also	at	the	quantum	level
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§ The	dynamics	of	N	=4	SYM	is	described	by	the	(complexified)	
coupling	constant	

that	contains	the	gauge	coupling	and	the					angle	of	the	
gauge	theory	:										
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§ The	dynamics	of	N	=4	SYM	is	described	by	the	(complexified)	
coupling	constant	

§ N	=4	SYM	possess	an	exact duality	invariance	which	contains	
the	electro-magnetic	duality														

(Montonen-Olive	‘77,	Vafa-Witten	‘94,	Sen	’94…)
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§ The	dynamics	of	N	=4	SYM	is	described	by	the	(complexified)	
coupling	constant	

§ N	=4	SYM	possess	an	exact duality	invariance	which	contains	
the	electro-magnetic	duality	

(Montonen-Olive	‘77,	Vafa-Witten	‘94,	Sen	’94…)

§ If	the	algebra				of	the	gauge	group							is	simply	laced	(ADE)	
the	modular	group	is ,	whose	generators	are:

§ and																														(																		 )
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§ The	dynamics	of	N	=4	SYM	is	described	by	the	(complexified)	
coupling	constant	

§ N	=4	SYM	possess	an	exact duality	invariance	which	contains	
the	electro-magnetic	duality	

(Montonen-Olive	‘77,	Vafa-Witten	‘94,	Sen	’94…)

§ If	the	algebra				of	the	gauge	group							is	simply	laced	(ADE)	
the	modular	group	is

• It	is	a	weak/strong duality,	acting	on	the	coupling	by

• maps	the	theory	to	itself	but	with	electric and	magnetic
states	exchanged	
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§ The	dynamics	of	N	=4	SYM	is	described	by	the	(complexified)	
coupling	constant

§ N	=4	SYM	possess	an	exact duality	invariance	which	contains	
the	electro-magnetic	duality	

(Montonen-Olive	‘77,	Vafa-Witten	‘94,	Sen	’94…)

§ If	the	algebra				of	the	gauge	group							is	non-simply	laced	
(BCFG)	duality	relation	still	exist,	but	they	are	more	
involved…																																												(see	Billò et	al.	‘15	and	Ashok	et	al.‘16)

§ For	 simplicity	we	will	only	describe	the	case	of	simply	laced		
algebra				,	but	all	the	arguments	can	be	generalized	to	
include	also	the	non-simply	laced	cases
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Let	us	decompose	the	N=4	multiplet into	
• one	N=2	vector	multiplet

• one	N=2	hypermultiplet

N=4		SYM	as	a	N=2	theory
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Let	us	decompose	the	N=4	multiplet into	
• one	N=2	vector	multiplet
• one	N=2	hypermultiplet

By	introducing	the	v.e.v.	

• we	break	the	gauge	group	
• we	spontaneously	break	conformal	invariance	
• we	can	describe	the	dynamics	in	terms	of	a	holomorphic	

prepotential ,	as	in	N=2	theories

N=4		SYM	as	a	N=2	theory
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Let	us	decompose	the	N=4	multiplet into	
• one	N=2	vector	multiplet
• one	N=2	hypermultiplet

By	introducing	the	v.e.v.	

• we	break	the	gauge	group	
• we	spontaneously	break	conformal	invariance	
• we	can	describe	the	dynamics	in	terms	of	a	holomorphic	

prepotential ,	as	in	N=2	theories
• the	magnetic	variable	and	the	effective	gauge	coupling	are:

N=4		SYM	as	a	N=2	theory
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• The	prepotential of	the	N=4	theory	is	simply

• The	dual	variables	are	

• S-duality	relates	the	electric variable					to	the	magnetic
variable							:

N=4		SYM	as	a	N=2	theory

a
aD

S

✓
aD
a

◆
=

✓
0 �1
1 0

◆✓
aD
a

◆
=

✓
�a
aD

◆

aD =
1

2⇡i

@F
@a

= ⌧a

F = i⇡⌧ a2



• Let’s	find	the	S-dual	prepotential:

• S-duality	exchanges	the	description	based	on					with	its	
Legendre-transform,	based	on								:

N=4		SYM	as	a	N=2	theory
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• Let’s	find	the	S-dual	prepotential:

• S-duality	exchanges	the	description	based	on					with	its	
Legendre-transform,	based	on								:

• Thus	

N=4		SYM	as	a	N=2	theory
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• Let’s	find	the	S-dual	prepotential:

• S-duality	exchanges	the	description	based	on					with	its	
Legendre-transform,	based	on								:

• Thus	

• This	structure	is	present	also	in	N=2	theories and	has	
important	consequences	on	their	strong	coupling	dynamics!

N=4		SYM	as	a	N=2	theory
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N=2*	SYM



§ The	N=2*	theory	is	a	mass	deformation	of	the	N=4	SYM	
§ Field	content:

• one	N=2	vector	multiplet for	the	algebra	
• one	N=2	hypermultiplet in	the	adjoint rep.	of					with	
mass	m

§ Half	of	the	supercharges	are	broken,	and	we	have	N=2	SUSY
§ The	b-function	still	vanishes,	but	the	superconformal

invariance	is	explicitly	broken	by	the	mass	m

The	N=2*	set-up

g
g

m ! 0
N = 2⇤

pure N = 2 SYM

N = 4 SYM

decoupling m ! 1



§ The	N=2*	prepotential contains	classical,	1-loop	and	non-
perturbative	terms

§ The	1-loop	term	reads

• is	the	set	of	the	roots	a of	the	algebra	
• is	the	mass	of	the	W-boson	associated	to	the	root	a

Structure	of	the	N=2*	prepotential
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§ The	N=2*	prepotential contains	classical,	1-loop	and	non-
perturbative	terms

§ The	non-perturbative	contributions	come	from	all	instanton	
sectors and	and	can	be	explicitly	computed	using	localization
for	all	classical	algebras		(Nekrasov ‘02,	Nekrasov-Okounkov ‘03,	…,	Billò et	al	15,	...)

§ is	the	instanton	counting	parameter:

Structure	of	the	N=2*	prepotential
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§ The	dual	variables are	defined	as	

§ Applying	S-duality	we	get

§ Computing	the	Legendre	transform	we	get

S-duality	and	the	prepotential
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§ Requiring

implies

Modular	anomaly	equation!

§ This	constraint	has	very	deep	implications!

S-duality	and	the	prepotential
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§ We	organize	the	quantum	prepotential in	a	mass	
expansion

§ From	explicit	calculations,	one	sees	that:

• is	only	1-loop	and	thus	t-independent

• are	both	1-loop	and	non-perturbative and,	
since	the	prepotential has	mass	dimension	2,	they	are	
homogeneous	functions	of	the				’s	of	weight	2-2n										

Modular	anomaly	equation
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§ In	order	to	solve	the	modular	anomaly	equation

we	must	have

Modular	anomaly	equation
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§ In	order	to	solve	the	modular	anomaly	equation
we	must	have

§ Since	the																						are	homogeneous	functions	of	the			’s	
of	weight	2-2n:

§ to	compensate	for	the	factors	of	𝜏 the																					must	be	
(quasi)	modular	of	weight	2n-2:

Modular	anomaly	equation
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• The							‘s	must	be	(quasi)	modular	of	weight	2n-2:

• thus	we	must	require	that		they		depends	on	t through	
“modular”	functions,	i.e

where																																							are	the	Eisenstein	series.

Modular	anomaly	equation
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§ The	Eisenstein	series	are	“modular”	forms	with	a	well-known	
Fourier	expansion in																		:	

§ E4 and	E6 are	truly	modular	forms	of	weight	4	and	6

§ E2 is	quasi-modular of	weight	2

Eisenstein	series
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§ S-duality

§ Modular	anomaly	equation	

Recursion	relation
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§ S-duality

§ Modular	anomaly	equation	

Recursion	relation
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§ We	thus	obtain

which	implies	the	following	recursion	relation
(Minahan	et	al	’97)	

• This	allows	us	to	determine							from	the	lower	coefficients	
up	to	E2-independent	terms.	These	are	fixed	by	
comparison	with	the	perturbative	expressions (or	the	first	
instanton	corrections).	

§ Once	this	is	done,	the	result	is	valid	to	all	instanton	orders.

Recursion	relation
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§ Using	this	recursive	procedure	we	find

where								and											are	root	lattice	sums	of				defined	as

with	

Exploiting	the	recursion
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§ This	procedure	uniquely	determine	the	exact	result	to	all	
instantons	!

§ It	can	be	generalized	to	all	algebras,	even	the	non-simply	
laced	ones

§ For	the	classical	algebras	A,	B,	C	and	D	the	integration	of	the	
moduli	action	over	the instanton	moduli	spaces	can	be	
performed	à la	Nekrasov using	localization	techniques

§ In	principle	straightforward;	in	practice	computationally	
rather	intense.	Not	many	explicit	results	for	the	N=2*	
theories	in	the	literature

Checks	on	the	results

(Billò et	al	‘15)



§ This	procedure	uniquely	determine	the	exact	result	to	all	
instantons	!

§ It	can	be	generalized	to	all	algebras,	even	the	non-simply	
laced	ones

§ For	the	classical	algebras	A,	B,	C	and	D	the	integration	of	the	
moduli	action	over	the instanton	moduli	spaces	can	be	
performed	à la	Nekrasov using	localization	techniques

§ We	worked	it	out:	
• for	An and	Dn with	n<6,	up	to	5	instantons;
• for	Cn with	n<6,	up	to	4	instantons;	
• for	Bn with	n<6,	up	to	2	instantons.

§ The	results	match the	q-expansion	of	those	obtained	above

Checks	on	the	results

(Billò et	al	‘15)



§ This	procedure	uniquely	determine	the	exact	result	to	all	
instantons	!

§ It	can	be	generalized	to	all	algebras,	even	the	non-simply	
laced	ones

§ For	the	classical	algebras	A,	B,	C	and	D	the	integration	of	the	
moduli	action	over	the instanton	moduli	spaces	can	be	
performed	à la	Nekrasov using	localization	techniques

§ For	the	exceptional	algebras,	where	no	ADHM	construction	
is	known,	our results	are	predictions!

Checks	on	the	results

(Billò et	al	‘15)



§ Other	observables	of	the	theory	are	the	chiral	correlators

§ They	can	be	computed	using	equivariant localization																																					

§ The	results	can	be	expressed	in	terms	of	modular	functions	
and	lattice	sums

Chiral	correlators

(Bruzzo et	al.	03,	Losev et	al.	03,		Flume	et	al.	04,	Billò et	al.	’12)
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§ Using	the	explicit	results	for																							,	it	is	possible	to	
change	basis	and	find	the	quantum	symmetric	polynomials	
in	the	a’s

that	transform	as	modular	form	of	weight	n																											

Chiral	correlators

S(An) = ⌧n An

A1 =
X

ii

ai1

A2 =
X

ii<i2

ai1ai2 +

✓
N

2

◆
m2

12
E2 +

m4

288
(E2

2 � E4)C2 + · · ·

< Tr �n >

An(⌧, a) =
X

i1<i2<···<in

ai1ai2 · · · ain + · · ·



§ These	expressions

coincide	with	the	solution	of	the	modular	anomaly	equation
satisfied	by	the	 ’s

that	can	be	obtained	directly	from	its	S-duality	properties!	
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Surface operators	in	N=2*	SYM



§ We	study	SU(N)	N=2*	SYM	in	presence	of	surface	operators,		
i.	e.	non	local	defects	 supported	on	a	2d	plane	in						:

§ When	describing	the	4d	SYM	theory	as	the	world	sheet	
theory	of				 branes	wrapped	on	a	Riemann	surface,	the	2d	
defects	correspond	to		 or	to								branes:

Surface	operators

R4D

M 0
5 M2

R4 : (w1, w2) D : (w1, 0)

M5

M5 x x x x - - x - - - x

M 0
5 x x - - x x x - - - x cod 2

M2 x x - - - - - x - - - cod 4



§ We	study	SU(N)	N=2*	SYM	in	presence	of	surface	operators,		
i.	e.	non	local	defects	 supported	on	a	2d	plane	in						:

§ When	describing	the	4d	SYM	theory	as	the	world	sheet	
theory	of				 branes	wrapped	on	a	Riemann	surface,	the	2d	
defects	correspond	to									or	to								branes

§ In	the	4d-2d	correspondence:
cod	2	defects												conformal	blocks	of	affine	sl(N)	theories

cod	4	defects												conformal	blocks	of	Toda	theory

Surface	operators

R4D

M 0
5 M2

R4 : (w1, w2) D : (w1, 0)

M5

(Alday,	Tachikawa ‘10,	Kozcaz,	Pasquetti,	Passerini,	Wyllard ’11,	…)

(Alday,	Gaiotto,	Gukov,	Tachikawa,	Verlinde ‘10,	…)



§ The	presence	of	the	defect	induce	a	singular	behavior	in	the	
1-form	gauge	connection:

§ The	vector																																								characterizes	the	defect	
and	describes	the	breaking	of	the	gauge	group:

Description	of	surface	operators

A = � diag (�1, · · · , �1, �2, · · · , �2, · · · , · · · , �M , · · · , �M ) d✓
n1 n2 nM

MX

I=1

nI = N

~n = (n1, n2, · · · , nM )

SU(N) ! S
⇥
U(n1)⇥U(n2)⇥ · · ·⇥U(nM )

⇤

w2 = ⇢ei✓
(Gukov,	Witten	’06,	‘08)



§ In	presence	of	the	defect	quantized	magnetic	fluxes	are	
allowed	for	each	group	factor:

§ The	instanton	action	becomes:

§ The	electric	and	magnetic	parameters							and						are	
combined	in	the	complex	M-dimensional	vector	

that	describes	the	charges	of	the	defect.

Description	of	surface	operators

1

2⇡

Z

D
TrFU(nI) = mI

Sinst[~n] = �2⇡i⌧ k � 2⇡i
MX
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�
⌘I + ⌧ �I

�
mI = �2⇡i⌧ k � 2⇡i~t · ~m

�I ⌘I

~t = {tI} = {⌘I + ⌧�I}



§ SU(N)	N=2*	SYM	in	presence	of	a	cod	2	defect	has	been	
shown	to	be	equivalent	to	the	world	volume	theory	of	
fractional	D3-branes	in	the	orbifold

§ In	this	case	the	computation	of	the	non	perturbative	
contribution	can	be	performed	via	localization.

§ In	the	N-S	limit														we	have	

§ is	the	twisted	chiral	superpotential
governing	the	2d	dynamic	on	the	defect.

Twisted	chiral	superpotential

C⇥ C⇥ C2/ZN ⇥ C

✏2 ! 0

logZinst = � F

✏1✏2
+

Winst

✏1

(Kanno,	Tachikawa ‘11)

Winst = Winst(q,m, ✏1, tI)



§ In	the	N=4	case																													

where																													.

Therefore	

and	we	have	(since																																			)		

transforms	as	a	weight	1	modular	form!

S-duality	properties	of	Winst

W ⌘ Wclass = 2⇡i~t · ~a = 2⇡i
NX
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zIaI

zI = tI+1 � t1

W (I) ⌘ 1

2⇡i

@

@zI
W = aI

S(W (I)) = ⌧W (I)

S(aI) = aDI = ⌧aI

W (I)



§ In	the	N=2	case																													

and											can	be	written	as	a	mass	(and					)	expansion

with									homogenous	functions	of	weight											in	the

The	requirement	that	also	in	this	case

implies	that		the									are	combinations	of	elliptic	functions		
and	(quasi)	modular	forms	with	weight				.

S-duality	properties	of	Winst

S(W (I)) = ⌧W (I)

W (I)
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+W
inst
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I
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)(I) = a
I

+
1X
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`
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aI
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`

`



§ The	requirement																											

implies	that											satisfies	a	modular	anomaly	equation

and	that											satisfy	a	recursion	relation

This	allows	to	completely	determine	them,	given	the	
initial	conditions.

Modular	anomaly	eq.	for	Winst
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W (I)
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§ For	instance	in	the	simple	case	of	a	(1,1)	defect	in	SU(2)	
(where	we	have	a	single	z):								

where	

Explicit	results	for	Winst
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§ For	instance	in	the	simple	case	of	a	(1,1)	defect	in	SU(2)	
(where	we	have	a	single	z):								

where	

Explicit	results	for	Winst
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§ For	instance	in	the	case	of	a	(p,N-p)	defect	in	SU(N)	(one	z):								

Explicit	results	for	Winst
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In	summary:
• The	recursion	relation	allows	to	exactly	determine	all	terms	

in	the	mass	expansion	of											knowing	only	the	
perturbative	or	the	first	non-perturbative	contributions

• From										we	can	reconstruct					,	that	turns	out	not	to	have	
definite	transformation	properties	

• Our	results	agree	with	the	explicit	(or	implicit!)	results	that	
are	present	in	the	literature,	surprisingly	also	with	the	
results	relative	to	cod	4	surface	operators!

• This	seems	to	support	the	evidence	of	a	duality	between	the	
two	kinds	of	defects

Explicit	results	for	Winst

W (I)

W (I) W

(Kashani-Poor,	Troost ’12,	Gaiotto,	Gukov,	Seiberg ‘13	)

(Frenkel,	Gukov,	Teschner ’15,	Wyllard ‘13	)



Conclusions



§ The	requirement	that	the	duality	group	acts	simply	as	in	the	
N=4	theories	also	in	the	mass-deformed	cases	leads	to	a	
modular	anomaly	equations

§ This	allows	one	to	efficiently	reconstruct	the	mass-expansion	
of	the	prepotential,	the	chiral	correlators	and	the	twisted	
chiral	superpotential,	resumming all	instanton	corrections	
into	(quasi-)modular	forms	of	the	duality	group

§ The	existence	of	such	modular	anomaly	equations	seems	to	
be	a	rather	general	feature	for	all	the	observables	that	have	
well	defined		transformation	properties	under	S-duality!

Conclusions



§ The	requirement	that	the	duality	group	acts	simply	as	in	the	
N=4	theories	also	in	the	mass-deformed	cases	leads	to	a	
modular	anomaly	equation

§ This	allows	one	to	efficiently	reconstruct	the	mass-expansion	
of	the	prepotential,	the	chiral	correlators	and	the	twisted	
chiral	superpotential,	resumming all	instanton	corrections	
into	(quasi-)modular	forms	of	the	duality	group

§ A	similar	pattern	(although	a	bit	more	intricate)	arises	in	N=2	
conformal	SQCD	theories,	where	it	has	been	possible	to	
describe	the	structure	of	the	low	energy	effective	theory	at	
the	special	vacuum

Conclusions

(Ashok	et	al.	’15	and		‘16)



§ This	approach	can	be	profitably	used	in	other	contexts	to	
study	the	consequences	of	S-duality	on:

• theories	formulated	in	curved	spaces	(e.g.	S4)
• correlation	functions	of	chiral	and	anti-chiral	operators
• other	observables	(e.g.	Wilson	loops,	cusp	anomaly,	…	)
• more	general	extended	observables	(intersecting	surface	
operators,	...)	

• …

with	the	goal	of	studying	the	strong-coupling	regime

Conclusions



§ This	approach	can	be	profitably	used	in	other	contexts	to	
study	the	consequences	of	S-duality	on:

• theories	formulated	in	curved	spaces	(e.g.	S4)
• correlation	functions	of	chiral	and	anti-chiral	operators
• other	observables	(e.g.	Wilson	loops,	cusp	anomaly,	…	)
• more	general	extended	observables	(intersecting	surface	
operators,	...)	

• …

with	the	goal	of	studying	the	strong-coupling	regime

Thank	you	for	your	attention	
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