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super Yang-Mills in 4d
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where partial derivatives act on any term on the right, and we recall

Ai

j

=
1p
2z̃2

�̃
M

⇢MNi

j

z̃
N

� 1p
2z̃

�̃ �i
j

+ i
z̃
N

z̃2
⇢MNi

j

@
t

z̃M (3.2)

A†
i

j = � 1p
2z̃2

�̃
M

⇢MN

i

j z̃
N

� 1p
2z̃

�̃ �
i

j � i
z̃
N

z̃2
⇢MN

i

j @
t

z̃M . (3.3)

4 lattice talk

N = 4 (4.1)

� � 1 (4.2)

� ⌧ 1 (4.3)
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Framework
AdS/CFT, string/gauge correspondence, addresses together

I understanding gauge theories at all values of the coupling
I understanding string theories in non-trivial backgrounds
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Type IIB strings in  

Non-linear sigma models for AdS/CFT

Strings in AdS5 ⇥ S5

Non-linear sigma model
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Motivation
Beautiful progress in obtaining exact results within AdS/CFT
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I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.
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ẋµ

+�

i

ẏi
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ẋµ

+�

i

ẏi
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ẏi

) ds
�O ⌘ E 

R ⇥ S1 (2)

“Quark-antiquark” potential
g
AdS/CFT

gS =

4⇡�

N
(3)

f(g) (4)

g :=

p
�

4⇡
=

q
g2Y M N

4⇡
⌘ R2

4⇡↵0 (5)

g

Motivation

Beautiful progress in obtaining exact results within AdS/CFT

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

Gauge/string correspondence
Main merit: allows studying regimes not accessible via standard analytical tools.
Beautiful recent progress within AdS/CFT: for relevant gauge theory observables
as Wilson loops (i.e. minimal string surfaces)
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I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

Motivation

Superstrings in AdS backgrounds with RR fluxes: complicated interacting 2d field
theory which may be subtle also perturbatively.

Call for genuine 2d QFT to cover the finite-coupling region.

Lattice techniques in AdS/CFT:
exciting program on the 4d susy CFT side,
subtleties with supersymmetry,
control on the perturbative region.
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Motivation

The relevant string sigma-model (Green-Schwarz superstrings in AdS backgrounds
with RR-fluxes) is a complicated interacting 2d field theory which has subtleties also
perturbatively.

Need of Genuine 2d QFT to cover the finite-coupling region.

Lattice techniques in AdS/CFT:
exciting program on the 4d susy CFT side,
subtleties with supersymmetry,
control on the perturbative region.
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Lattice techniques in AdS/CFT

Exciting program on the
4d susy CFT side,
subtleties with supersymmetry.
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ẋµ

+�

i

ẏi
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Lattice techniques in AdS/CFT

Exciting program on the 4d susy CFT side,
subtleties with supersymmetry.

[Catterall et al.]



Motivation

Talks by Shaich, Giedt, Anosh
Lattice for superstring world-sheet
in AdS

5

⇥ S5

Features:
I 2d: computationally cheap
I no supersymmetry (only as flavour symmetry, Green-Schwarz)
I all gauge symmetries are fixed (no formulation à la Wilson),

only scalar fields (some of which anti-commuting)
Non-trivial 2d qft with strong coupling analytically known,
finite-coupling (numerical) prediction.

[previous study: Roiban McKeown 2013]
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ẏi

) ds
�O ⌘ E 

R ⇥ S1 (2)

“Quark-antiquark” potential
f(g)
AdS/CFT

gS =

4⇡�

N
(3)

f(g) (4)

g :=

p
�

4⇡
=

q
g2Y M N

4⇡
⌘ R2

4⇡↵0 (5)

Framework
String/gauge correspondence, addresses together

I understanding gauge theories at all values of the coupling
I understanding string theories in non-trivial backgrounds

C (1)

hW [C]i = 1

N
TrP e

H
(iA

µ

ẋµ
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subtleties with supersymmetry.

Motivation

Talks by Shaich, Giedt, Anosh
Lattice for superstring world-sheet
in AdS

5

⇥ S5

Features:
I 2d: computationally cheap
I no supersymmetry (Green-Schwarz formulation)
I all local (diffeo, ) symmetries are fixed, only scalar fields

(some of which Graßmann-valued)
Non-trivial 2d qft with strong coupling analytically known,
finite-coupling (numerical) prediction.



The model in perturbation theory



Green-Schwarz string in AdS
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Symmetries:
I global PSU(2, 2|4), local bosonic (diffeomorphism) and fermionic (-symmetry)
I hidden classical integrability

AdS5 S5x
[Metsaev Tseytlin 1998]
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Rich mathematics (CMC surfaces, Willmore surfaces, etc.).
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Green-Schwarz string in AdS

5

⇥ S

5 + RR flux

Non-linear sigma-model on G/H =

PSU(2,2|4)
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Symmetries:
I global PSU(2, 2|4), local bosonic (diffeomorphism) and fermionic (-symmetry)
I hidden classical integrability

AdS5 S5x
[Metsaev Tseytlin 1998]



Green-Schwarz string in AdS
5

⇥ S5 + RR flux perturbatively

I General analysis of fluctuations in terms of background geometry,
e.g. Tr(M) = a (2)R+ bTr(K2

).

I Explicit analytic form of one-loop partition function Z = detOF /
p
detOB

for a class of effectively one-dimensional problems.
Non-trivial differential operators, e.g. elliptic-function potentials:
O = �@2

� + !2

+ k2sn2(�, k2). Then use Gelf’and-Yaglom method:

O �(x) = ��(x) , �(0) = �(L) = 0

detO
detO

free

=

u(L)

u
free

(L)

where u are solutions of auxiliary boundary value problem, u(0) = 0 , u0
(0) = 1.

Several configurations (GKP string, quark-antiquark potential, generalized cusp)
have been “solved” this way at one loop, and agree with predictions.

[VF  Beccaria Dunne Tseytlin, Drukker, Giangreco Ohlson Sax  Vescovi .... ]

[Drukker Gross Tseytlin 00] [VF Giangreco Griguolo Seminara Vescovi 15]
[Alvarez-Gaume, Freedman, Mukhi, 81]
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Localization versus perturbation theory

1/2 BPS circular Wilson loop
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Usual method (Gelf’and Yaglom ’60, Forman ’87) fails.
Perturbative heat-kernel (near AdS2 expansion) agrees.

> unphysical cutoff
> different regulariz. in ⌧ and in �
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Usual (Gelf’and Yaglom) method fails.
Perturbative heat-kernel (near AdS
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expansion) agrees.
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Green-Schwarz string in AdS

5

⇥ S

5 + RR flux perturbatively

Highly non-linear, to quantize it use semiclassical methods
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2 loops is current limit: “homogenous” configs, “AdS light-cone” gauge-fixing

Efficient alternative to Feynman diagrams for on-shell objects (worldsheet S-matrix)

unitarity cuts (on-shell methods) in d=2

Indirect evidence of quantum integrability!
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Indirect evidence of quantum integrability!

Two loops

UV divergences: set to zero power-divergent massless tadpoles (as in dimreg),
all remaining log-divergent integrals cancel out in the sum (no need of reg. scheme).

[Metsaev, Tseytlin] [Metsaev, Thorn, Tseytlin]



Unitarity cuts

Efficient alternative to Feynman diagrams for on-shell objects: worldsheet amplitudes,
building blocks of worldsheet S-matrix appearing in the Bethe equations.

Unitarity cuts in d = 2, for worldsheet amplitudes (integrable S-matrix)

Standard unitarity (two-particle cuts)

Loop momenta frozen: pull tree-level amplitudes out and
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Inherently finite, bypasses any regularization issue: may miss rational terms.
A large class of 2-d models, relativistic and not (including string worldsheet models
in AdS), appears to be cut-constructible.
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Figure 1: Diagrams representing s-, t- and u-channel cuts contributing to the four-point
one-loop amplitude.

cut-constructible piece of the amplitude
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The structure of (2.11) shows the di↵erence between the s-channel, for which there are
two solutions of the �-function constraints in (2.8) (for positive energies), and the t- and
u-channels, for which there is only one.
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Restore loop momentum off-shell 

Use the zeroes of    - functions in the         � eA(0)

f(x) �(x) = f(0) �(x)           (like                                     )

Two-particle cuts in d=2 at one loop are maximal cuts.

(c) Develop the unitarity approach with massive particles. Di�culties with respect to the

massless case are related to point (b) above and to the fact that massive tadpoles cannot

be set to zero. Also, even in presence of supersymmetry, it has been less developed.

(d) some Feynman diagram calculations (R. Roiban, private communication) give a UV

divergent answer, and it is not clear why unitarity should give a di↵erent answer. And

if it does, how is one going to decide whether it is the right answer, given that Feynman

diagrams gave an answer that made no sense.

9 Quadrupole cuts/maximal cuts
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A1�loop

4 =
X

(Atree

4 )4 I
box

(3)

where the sum is over possible boxes. Similar flavor! If you normally just do standard unitarity,

you start with 4-dimensional momentum integral, you have two delta functions which leaves

you 2 dimensions. But here, if you count you have 4 delta so that you completely localize
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generalized unitarity, that in 2d something similar happens.

We are bypassing all issues having to do with regularization. It gives the right answer for
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very rare that people bother about calculating S-matrices by computations in 2 dimensions.

It does seem remarkable that nobody did this. However: The integrable field

theory story is actually rather subtle, because you can’t just.. If you do standard
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need to include some additional counter terms that can be understood in terms of

gauged WZW model, so doing some path integral formulation. This story is less
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S-matrix was written down in 1991 using integrability), Witten and Shenkar had

a paper a bit earlier but not so many.

Notice that you couldn’t use this formalism for o↵-shell stu↵. This is heavily relying on ...

this is where Thomas and Tristan are trying to go with the form factor story. And also what

Roiban in 4 dimensions for correlations functions.

At one loop unitarity works for N=4 SYM,
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Can pull tree-level amplitudes out of the integral

and uplift

[Bianchi VF Hoare 13][Engelund, Roiban 13][Bianchi Hoare 14]

Green-Schwarz string in AdS
5

⇥ S5 + RR flux perturbatively

I General analysis of fluctuations in terms of background geometry,
e.g. Tr(M) = a (2)R+ bTr(K2

).

I Explicit analytic form of one-loop partition function Z = detOF /
p
detOB

for a class of effectively one-dimensional problems.
Appearance of special, integrable, differential operators allows closed
(albeit in integral form) expressions for the one loop partition function.
Still, subtleties remain.

Needed: rigorous evaluation/regularization of relevant functional determinants.
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The cusp anomaly of N = 4 SYM from string theory

Completely solved via integrability.

Expectation value of a light-like cusped Wilson loop

hW [Ccusp]i ⇠ e
�f(g)� ln
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Zcusp =

Z
[D�X][D�✓] e�SIIB(Xcusp+�X,�✓)

= e��eff ⌘ e�f(g)V2

String partition function with “cusp” boundary conditions, evaluated perturbatively

A lattice approach prefers expectation values
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[Beisert Eden Staudacher 2006]

�-model respectively), analytic calculations are available for the scaling function
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RM could guarantee that what they plotted is f(g) only because (as referred by

Roiban) they could compare with the strong coupling results in (1.6), as in Table 2

(again, at small g the agreement is far from being good, see Table 3).

• The background here is not the trivial one. There is also in principle no guarantee that

the cusp solution - which is a saddle point - also represents a minimum. That is why

(referring to Figure 1) starting with a lower value [as Mattia did] it could mean that

one encounters other states with lower energy and does not thermalizes to the state one

hope for, but to another one with lower energy. Again, it is only because EM had a

good fit with (1.6) that they were sure it was the cusp they were calculating.

2 Remarks

• [Roiban email:] The quantity that is of interest (here) is the log of the partition func-

tion which is also the e↵ective action. The way the calculation proceeds, one generates

classical field configurations and then randomly accepts of rejects them. For each of

the accepted ones one should evaluate e�S

and then average them and take the log. So

for each data point, computing lnZ or S is the same. The potential issue related to

averaging. The fact that the field configurations that are generated are distributed on

a gaussian says that no matter what function that is evaluated on them, the result will

also be distributed on a Gaussian. Since the log is a monotonic function, if the errors

3

[Bern et al. 2006]

[Giombi et al. 2009]
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We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type

IIB superstring. We use them for measuring the action, from which we extract the cusp

anomalous dimension of planar N = 4 SYM as derived from AdS/CFT, as well as the mass

of the two AdS excitations transverse to the relevant null cusp classical string solution.

We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algo-

rithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6)

symmetry of the model. We compare our results with the expected behavior at various

values of g =
p
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4⇡ . For both the observables, we find a good agreement for large g, which

is the perturbative regime of the sigma-model. For smaller values of g, the expectation

value of the action exhibits a deviation compatible with the presence of quadratic diver-

gences. After their non-perturbative subtraction the continuum limit can be taken, and

suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT.

Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that

for small g leads to a sign problem not treatable via standard reweigthing. The continuum

extrapolations of the observables in the two di↵erent discretizations agree within errors,

which is strongly suggesting that they lead to the same continuum limit.
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The cusp anomaly of N = 4 SYM from string theory
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Roiban) they could compare with the strong coupling results in (1.6), as in Table 2

(again, at small g the agreement is far from being good, see Table 3).

• The background here is not the trivial one. There is also in principle no guarantee that

the cusp solution - which is a saddle point - also represents a minimum. That is why

(referring to Figure 1) starting with a lower value [as Mattia did] it could mean that

one encounters other states with lower energy and does not thermalizes to the state one

hope for, but to another one with lower energy. Again, it is only because EM had a

good fit with (1.6) that they were sure it was the cusp they were calculating.

2 Remarks

• [Roiban email:] The quantity that is of interest (here) is the log of the partition func-

tion which is also the e↵ective action. The way the calculation proceeds, one generates

classical field configurations and then randomly accepts of rejects them. For each of

the accepted ones one should evaluate e�S

and then average them and take the log. So

for each data point, computing lnZ or S is the same. The potential issue related to

averaging. The fact that the field configurations that are generated are distributed on

a gaussian says that no matter what function that is evaluated on them, the result will

also be distributed on a Gaussian. Since the log is a monotonic function, if the errors

3
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Abstract

We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type

IIB superstring. We use them for measuring the action, from which we extract the cusp

anomalous dimension of planar N = 4 SYM as derived from AdS/CFT, as well as the mass

of the two AdS excitations transverse to the relevant null cusp classical string solution.

We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algo-

rithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6)

symmetry of the model. We compare our results with the expected behavior at various

values of g =
p
�

4⇡ . For both the observables, we find a good agreement for large g, which

is the perturbative regime of the sigma-model. For smaller values of g, the expectation

value of the action exhibits a deviation compatible with the presence of quadratic diver-

gences. After their non-perturbative subtraction the continuum limit can be taken, and

suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT.

Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that

for small g leads to a sign problem not treatable via standard reweigthing. The continuum

extrapolations of the observables in the two di↵erent discretizations agree within errors,

which is strongly suggesting that they lead to the same continuum limit.

Part of the results discussed here were presented earlier in [1].

1

lorenzo.bianchi@desy.de

2

m.s.bianchi@qmul.ac.uk

3{valentina.forini,leder,edoardo.vescovi}@ physik.hu-berlin.de

[Frolov Tseytlin 02]
[Gubser Klebanov Polyakov 02]

� = i�

Green-Schwarz string in AdS

5

⇥ S

5 + RR flux perturbatively

Scusp = g

Z
Lcusp (1)

Sigma-model on G/H =

PSU(2,2|4)
SO(1,4)⇥SO(5) . J↵ = g�1@↵g = J↵0 + J↵1 + J↵2 + J↵3

S =

p
�

4⇡

Z
d⌧d� Str

⇥
g↵�J↵2�2 + i ✏↵�J↵1J↵3

⇤

=

p
�

4⇡

Z
d⌧d�

⇥
@aX

µ@aX⌫ Gµ⌫ +

¯✓ � (D + F5 ) ✓ @X +

¯✓ @✓ ¯✓ @✓ + . . .
⇤

Highly non-linear, to quantize it use semiclassical methods

X = Xcl +
˜X �! E = g

h
E0 +

E1

g
+

E2

g2
+ . . .

i
, g =

p
�

4⇡

The cusp anomaly of N = 4 SYM from string theory

Completely solved via integrability.

Expectation value of a light-like cusped Wilson loop

hW [Ccusp]i ⇠ e
�f(g)� ln

L

IR

✏

UV

Zcusp =

Z
[D�X][D�✓] e�S

IIB

(X
cusp

+�X,�✓)
= e��

eff ⌘ e�f(g)V
2

String partition function with “cusp” boundary conditions, evaluated perturbatively

A lattice approach prefers expectation values

hScuspi =

R
[D�X][D� ]Scusp e�S

cusp

R
[D�X][D� ] e�S

cusp

= �g
d lnZcusp

dg
⌘ g

V2

8

f 0
(g)



Simulations in lattice QFT

Spacetime grid with as lattice spacing a, size L = N a,
⇠ = (an1, an2) ⌘ an and fields � ⌘ �n

a) natural cutoff for the momenta, �⇡
a
< pµ  ⇡

a

b) path integral measure [D�] =
Q

n d�n.

Then
R Q

n d�n e�Sdiscr can be studied via Monte Carlo: generate an ensamble

{�1, . . . ,�K} of field configurations, each weighted by P [�i] =
e�S

E

[�
i

]

Z
.

Ensemble average hAi = R
[D�]P [�]A[�] =

1
K

PK
i=1 A[�i] +O� 1p

K

�

Graßmann-odd fields are formally integrated out: P [�i] =
e�S

E

[�
i

]detO
F

Z

I action must be quadratic in fermions (linearization via auxiliary fields):
here, interactions at most quartic (AdS light cone gauge)

I determinant must be definite positive

detOF �!
q

det(OF O†
F ) =

Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄(O

F

O†
F

)
� 1

4 ⇣

⌘

Simulations in lattice QFT

Spacetime grid with lattice spacing a, size L = N a,
points ⇠ = (an

1

, an
2

) ⌘ an and fields � ⌘ �n

a) natural cutoff for the momenta, �⇡
a
< pµ  ⇡

a

b) path integral measure [D�] =
Q

n d�n.

Then
R Q

n d�n e�S
discr can be studied via Monte Carlo methods.

Ensamble of configurations {�
1

, . . . ,�K}, with P [�i] =
e�S

E

[�

i

]

Z
:

Ensemble average hAi = R
[D�]P [�]A[�] =

1

K

PK
i=1

A[�i] +O�
1p
K

�

Graßmann-odd fields are formally integrated out: P [�i] =
e�S

E

[�

i

]

detO
F

Z

I action must be quadratic in fermions (linearization via auxiliary fields):

I determinant must be definite positive

detOF �!
q

det(OF O†
F ) =

Z
D⇣D¯⇣ e�

R
d2⇠ ¯⇣(O

F

O†
F

)

� 1

4 ⇣

(me↵

x )

2

m2

m2

x

m2

gc (5)

Courtesy of B. Basso

Introduce auxiliary fields
(complex bosons)

(me↵

x )

2

m2

m2

x

m2

determinant must be positive definite

Courtesy of B. Basso

Introduce auxiliary fields
(complex bosons)

Linearization and discretization: first setting
The relevant (gauge-fixed) action has quartic fermionic interactions

To formally integrate out Graßmann-odd fields, P [�i] =
e�S

E

[�

i

]detO
F

Z

linearize

and enforce definite positive weight

detOF �!
q

det(O†
F OF ) ⌘

Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄(O†

F

O
F

)
� 1

2 ⇣

Pf OF �! (detO†
F OF )

1

4 ⌘
Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄ (O†

F

O
F

)
� 1

4 ⇣



Simulations in lattice QFT

Spacetime grid with as lattice spacing a, size L = N a,
⇠ = (an1, an2) ⌘ an and fields � ⌘ �n

a) natural cutoff for the momenta, �⇡
a
< pµ  ⇡

a

b) path integral measure [D�] =
Q

n d�n.

Then
R Q

n d�n e�Sdiscr can be studied via Monte Carlo: generate an ensamble

{�1, . . . ,�K} of field configurations, each weighted by P [�i] =
e�S

E

[�
i

]

Z
.

Ensemble average hAi = R
[D�]P [�]A[�] =

1
K

PK
i=1 A[�i] +O� 1p

K

�

Graßmann-odd fields are formally integrated out: P [�i] =
e�S

E

[�
i

]detO
F

Z

I action must be quadratic in fermions (linearization via auxiliary fields):
here, interactions at most quartic (AdS light cone gauge)

I determinant must be definite positive

detOF �!
q

det(OF O†
F ) =

Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄(O

F

O†
F

)
� 1

4 ⇣

⌘

Simulations in lattice QFT

Spacetime grid with lattice spacing a, size L = N a,
points ⇠ = (an

1

, an
2

) ⌘ an and fields � ⌘ �n

a) natural cutoff for the momenta, �⇡
a
< pµ  ⇡

a

b) path integral measure [D�] =
Q

n d�n.

Then
R Q

n d�n e�S
discr can be studied via Monte Carlo methods.

Ensamble of configurations {�
1

, . . . ,�K}, with P [�i] =
e�S

E

[�

i

]

Z
:

Ensemble average hAi = R
[D�]P [�]A[�] =

1

K

PK
i=1

A[�i] +O�
1p
K

�

Graßmann-odd fields are formally integrated out: P [�i] =
e�S

E

[�

i

]

detO
F

Z

I action must be quadratic in fermions (linearization via auxiliary fields):

I determinant must be definite positive

detOF �!
q

det(OF O†
F ) =

Z
D⇣D¯⇣ e�

R
d2⇠ ¯⇣(O

F

O†
F

)

� 1

4 ⇣

(me↵

x )

2

m2

m2

x

m2

gc (5)

Courtesy of B. Basso

Introduce auxiliary fields
(complex bosons)

(me↵

x )

2

m2

m2

x

m2

determinant must be positive definite

Courtesy of B. Basso

Introduce auxiliary fields
(complex bosons)

Linearization and discretization: first setting
The relevant (gauge-fixed) action has quartic fermionic interactions

To formally integrate out Graßmann-odd fields, P [�i] =
e�S

E

[�

i

]detO
F

Z

linearize

and enforce definite positive weight

detOF �!
q

det(O†
F OF ) ⌘

Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄(O†

F

O
F

)
� 1

2 ⇣

Pf OF �! (detO†
F OF )

1

4 ⌘
Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄ (O†

F

O
F

)
� 1

4 ⇣



Simulations in lattice QFT

Spacetime grid with as lattice spacing a, size L = N a,
⇠ = (an1, an2) ⌘ an and fields � ⌘ �n

a) natural cutoff for the momenta, �⇡
a
< pµ  ⇡

a

b) path integral measure [D�] =
Q

n d�n.

Then
R Q

n d�n e�Sdiscr can be studied via Monte Carlo: generate an ensamble

{�1, . . . ,�K} of field configurations, each weighted by P [�i] =
e�S

E

[�
i

]

Z
.

Ensemble average hAi = R
[D�]P [�]A[�] =

1
K

PK
i=1 A[�i] +O� 1p

K

�

Graßmann-odd fields are formally integrated out: P [�i] =
e�S

E

[�
i

]detO
F

Z

I action must be quadratic in fermions (linearization via auxiliary fields):
here, interactions at most quartic (AdS light cone gauge)

I determinant must be definite positive

detOF �!
q

det(OF O†
F ) =

Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄(O

F

O†
F

)
� 1

4 ⇣

⌘

Simulations in lattice QFT

Spacetime grid with lattice spacing a, size L = N a,
points ⇠ = (an

1

, an
2

) ⌘ an and fields � ⌘ �n

a) natural cutoff for the momenta, �⇡
a
< pµ  ⇡

a

b) path integral measure [D�] =
Q

n d�n.

Then
R Q

n d�n e�S
discr can be studied via Monte Carlo methods.

Ensamble of configurations {�
1

, . . . ,�K}, with P [�i] =
e�S

E

[�

i

]

Z
:

Ensemble average hAi = R
[D�]P [�]A[�] =

1

K

PK
i=1

A[�i] +O�
1p
K

�

Graßmann-odd fields are formally integrated out: P [�i] =
e�S

E

[�

i

]

detO
F

Z

I action must be quadratic in fermions (linearization via auxiliary fields):

I determinant must be definite positive

detOF �!
q

det(OF O†
F ) =

Z
D⇣D¯⇣ e�

R
d2⇠ ¯⇣(O

F

O†
F

)

� 1

4 ⇣

(me↵

x )

2

m2

m2

x

m2

gc (5)

Courtesy of B. Basso

Introduce auxiliary fields
(complex bosons)

(me↵

x )

2

m2

m2

x

m2

determinant must be positive definite

Courtesy of B. Basso

Introduce auxiliary fields
(complex bosons)

Linearization and discretization: first setting
The relevant (gauge-fixed) action has quartic fermionic interactions

To formally integrate out Graßmann-odd fields, P [�i] =
e�S

E

[�

i

]detO
F

Z

linearize

and enforce definite positive weight

detOF �!
q

det(O†
F OF ) ⌘

Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄(O†

F

O
F

)
� 1

2 ⇣

Pf OF �! (detO†
F OF )

1

4 ⌘
Z
D⇣D¯⇣ e�

R
d2⇠ ⇣̄ (O†

F

O
F

)
� 1

4 ⇣

potential  
ambiguity!



2 The model in the continuum and its linearization

In the continuum, the AdS
5

⇥S5 superstring “cusp” action, which describes quantum fluctu-

ations above the null cusp background can be written after Wick-rotation as [8]
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Above, x, x⇤ are the two bosonic AdS
5

(coordinate) fields transverse to the AdS
3

subspace of

the classical solution. Together with zM (M = 1, · · · , 6) (z =
p

zMzM ), they are the bosonic

coordinates of the AdS
5

⇥ S5 background in Poincaré parametrization remaining after fixing

a “AdS light-cone gauge” [42, 43]. In Appendix A we briefly review the steps leading to the

action (2.1). The fields ✓i, ⌘i, i = 1, 2, 3, 4 are 4+4 complex anticommuting variables for which

✓i = (✓i)†, ⌘i = (⌘i)†. They transform in the fundamental representation of the SU(4) R-

symmetry and do not carry (Lorentz) spinor indices. The matrices ⇢Mij are the o↵-diagonal

blocks of SO(6) Dirac matrices �M in the chiral representation

�M ⌘
 

0 ⇢†M
⇢M 0

!

=

 

0 (⇢M )ij

(⇢M )ij 0

!

(2.2)

The two o↵-diagonal blocks, carrying upper and lower indices respectively, are related by

(⇢M )ij = �(⇢Mij )
⇤ ⌘ (⇢Mji )

⇤, so that indeed the block with upper indices, denoted (⇢†M )ij , is

the conjugate transpose of the block with lower indices. (⇢MN ) j
i = (⇢[M⇢†N ]) j

i and (⇢MN )ij =

(⇢†[M⇢N ])ij are the SO(6) generators.

In the action (2.1), as standard in the literature, the light-cone momentum has been con-

sistently set to the unitary value, p+ = 1. Clearly, in the perspective adopted here it is crucial

to keep track of dimensionful quantities, which are in principle subject to renormalization. In

the following we will make explicit the presence of one massive parameter, defined as m, as

well as its dimensionless counterpart M = am. The latter and the (dimensionless) g are the

only “bare” parameters characterizing the model in the continuum.

In (2.1), local bosonic (di↵eomorphism) and fermionic (-) symmetries originally present

in the Type IIB superstring action on AdS
5

⇥ S5 [44] have been fixed in a “AdS light-

cone gauge” [42, 43]. On the other hand two important global symmetries are explicitly

realized. The first one is the SU(4) ⇠ SO(6) symmetry originating from the isometries of

S5, which is una↵ected by the gauge fixing. Under this symmetry the fields zM change in

the 6 representation (vector representation), the fermions {⌘i, ✓i} and {⌘i, ✓i} transform in

the 4 and ¯

4 (fundamental and anti-fundamental) respectively, whereas the fields x and x⇤ are

simply neutral. The second global symmetry is a SO(2) ⇠ U(1) arising from the rotational

symmetry in the two AdS
5

directions orthogonal to AdS
3

(i.e. transverse to the classical

solution) and therefore, contrary to the previous case, the fields x and x⇤ are charged (with
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p
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Manifest global symmetry is SO(6)⇥ SO(2).

charges 1 and �1 respectively) while the zM are neutral. The invariance of the action simply

requires the fermions ⌘i and ✓i to have charge 1

2

and consequently ⌘i and ✓i acquire charge

�1

2

. An optimal discretization should preserve the full global symmetry of the model. In

Section 3 we will see that in the case of the SO(2) symmetry this is not possible.

With the action (2.1) one can directly proceed to the perturbative evaluation of the e↵ective

action in (1.2), as done in [8] up to two loops in sigma-model perturbation theory, obtaining

for the cusp anomaly (K is the Catalan constant)

f(g) = 4 g
⇣

1� 3 log 2

4⇡ g
� K

16⇡2 g2
+O(g�3)

⌘

. (2.3)

Furthermore, with the same action it is possible to study perturbatively the (non-relativistic)

dispersion relation for the field excitations over the classical string surface. For example, the

corrections to the masses of the bosonic fields x, x⇤ in (2.1) (defined as the values of energy

at vanishing momentum) read [9]

m2
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, (2.4)

where, as mentioned above, we restored the dimensionful parameter m. Both (2.3) and

(2.4) are results obtained in a dimensional regularization scheme in which power divergent

contributions are set to zero. In what follows, we will compute the lattice correlators of the

fields x, x⇤ so to study whether our discretization changes the renormalization pattern above.

While the bosonic part of (2.1) can be easily discretized and simulated, Graßmann-odd

fields are either ignored (quenched approximation) or formally integrated out, letting their

determinant become part - via exponentiation in terms of pseudofermions, see (2.9) below

- of the Boltzmann weight of each configuration in the statistical ensemble. In the case of

higher-order fermionic interactions – as in (2.1), where they are at most quartic – this is

possible via the introduction of auxiliary fields realizing a linearization. Following [33], one

introduces 7 auxiliary fields, one scalar � and a SO(6) vector field �M , with the following

Hubbard-Stratonovich transformation
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Above, in the second line we have written the Lagrangian for �M so to emphasize that it has

an imaginary part. Indeed, the bilinear form in round brackets is hermitian

⇣

i ⌘i⇢
MNi
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i , (2.6)

as follows from the properties of the SO(6) generators (A.13). Since the auxiliary vector

field �M has real support, the Yukawa-term for it sets a priori a phase problem 10, the only

10In other words, the second quartic interaction in (2.5) is the square of an hermitian object and comes

in the exponential as a “repulsive” potential. This has the final e↵ect of an imaginary part in the auxiliary

Lagrangian, precisely as the i b x in e�
b2

4a ⇠ R
dx e�ax

2
+ibx, with b 2 R.
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2 The model in the continuum and its linearization

In the continuum, the AdS
5

⇥S5 superstring “cusp” action, which describes quantum fluctu-

ations above the null cusp background can be written after Wick-rotation as [8]
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Above, x, x⇤ are the two bosonic AdS
5

(coordinate) fields transverse to the AdS
3

subspace of

the classical solution. Together with zM (M = 1, · · · , 6) (z =
p

zMzM ), they are the bosonic

coordinates of the AdS
5

⇥ S5 background in Poincaré parametrization remaining after fixing

a “AdS light-cone gauge” [42, 43]. In Appendix A we briefly review the steps leading to the

action (2.1). The fields ✓i, ⌘i, i = 1, 2, 3, 4 are 4+4 complex anticommuting variables for which

✓i = (✓i)†, ⌘i = (⌘i)†. They transform in the fundamental representation of the SU(4) R-

symmetry and do not carry (Lorentz) spinor indices. The matrices ⇢Mij are the o↵-diagonal

blocks of SO(6) Dirac matrices �M in the chiral representation

�M ⌘
 

0 ⇢†M
⇢M 0

!

=

 

0 (⇢M )ij

(⇢M )ij 0

!

(2.2)

The two o↵-diagonal blocks, carrying upper and lower indices respectively, are related by

(⇢M )ij = �(⇢Mij )
⇤ ⌘ (⇢Mji )

⇤, so that indeed the block with upper indices, denoted (⇢†M )ij , is

the conjugate transpose of the block with lower indices. (⇢MN ) j
i = (⇢[M⇢†N ]) j

i and (⇢MN )ij =

(⇢†[M⇢N ])ij are the SO(6) generators.

In the action (2.1), as standard in the literature, the light-cone momentum has been con-

sistently set to the unitary value, p+ = 1. Clearly, in the perspective adopted here it is crucial

to keep track of dimensionful quantities, which are in principle subject to renormalization. In

the following we will make explicit the presence of one massive parameter, defined as m, as

well as its dimensionless counterpart M = am. The latter and the (dimensionless) g are the

only “bare” parameters characterizing the model in the continuum.

In (2.1), local bosonic (di↵eomorphism) and fermionic (-) symmetries originally present

in the Type IIB superstring action on AdS
5

⇥ S5 [44] have been fixed in a “AdS light-

cone gauge” [42, 43]. On the other hand two important global symmetries are explicitly

realized. The first one is the SU(4) ⇠ SO(6) symmetry originating from the isometries of

S5, which is una↵ected by the gauge fixing. Under this symmetry the fields zM change in

the 6 representation (vector representation), the fermions {⌘i, ✓i} and {⌘i, ✓i} transform in

the 4 and ¯

4 (fundamental and anti-fundamental) respectively, whereas the fields x and x⇤ are

simply neutral. The second global symmetry is a SO(2) ⇠ U(1) arising from the rotational

symmetry in the two AdS
5

directions orthogonal to AdS
3

(i.e. transverse to the classical

solution) and therefore, contrary to the previous case, the fields x and x⇤ are charged (with
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charges 1 and �1 respectively) while the zM are neutral. The invariance of the action simply

requires the fermions ⌘i and ✓i to have charge 1

2

and consequently ⌘i and ✓i acquire charge

�1

2

. An optimal discretization should preserve the full global symmetry of the model. In

Section 3 we will see that in the case of the SO(2) symmetry this is not possible.

With the action (2.1) one can directly proceed to the perturbative evaluation of the e↵ective

action in (1.2), as done in [8] up to two loops in sigma-model perturbation theory, obtaining

for the cusp anomaly (K is the Catalan constant)

f(g) = 4 g
⇣

1� 3 log 2

4⇡ g
� K

16⇡2 g2
+O(g�3)

⌘

. (2.3)

Furthermore, with the same action it is possible to study perturbatively the (non-relativistic)

dispersion relation for the field excitations over the classical string surface. For example, the

corrections to the masses of the bosonic fields x, x⇤ in (2.1) (defined as the values of energy

at vanishing momentum) read [9]

m2

x(g) =
m2

2

⇣

1� 1

8 g
+O(g�2)

⌘

, (2.4)

where, as mentioned above, we restored the dimensionful parameter m. Both (2.3) and

(2.4) are results obtained in a dimensional regularization scheme in which power divergent

contributions are set to zero. In what follows, we will compute the lattice correlators of the

fields x, x⇤ so to study whether our discretization changes the renormalization pattern above.

While the bosonic part of (2.1) can be easily discretized and simulated, Graßmann-odd

fields are either ignored (quenched approximation) or formally integrated out, letting their

determinant become part - via exponentiation in terms of pseudofermions, see (2.9) below

- of the Boltzmann weight of each configuration in the statistical ensemble. In the case of

higher-order fermionic interactions – as in (2.1), where they are at most quartic – this is

possible via the introduction of auxiliary fields realizing a linearization. Following [33], one

introduces 7 auxiliary fields, one scalar � and a SO(6) vector field �M , with the following

Hubbard-Stratonovich transformation

exp
n

� g

Z

dtds
h

� 1

z2

�

⌘i⌘i
�

2

+
⇣

i
z2
zN⌘i⇢

MNi
j⌘

j
⌘

2

i

} (2.5)

⇠
Z

D�D�M exp
n

� g

Z

dtds [1
2

�2 +
p
2

z � ⌘2 + 1

2

(�M )2 � i
p
2

z2
�M

�

i
z2
zN⌘i⇢

MNi
j⌘

j
�

]
o

.

Above, in the second line we have written the Lagrangian for �M so to emphasize that it has

an imaginary part. Indeed, the bilinear form in round brackets is hermitian

⇣

i ⌘i⇢
MNi

j⌘
j
⌘†

= �i(⌘j)†(⇢MNi
j)

⇤(⌘i)
† = �i⌘j ⇢

MN
i
j ⌘i = i⌘j ⇢

MNj
i ⌘

i , (2.6)

as follows from the properties of the SO(6) generators (A.13). Since the auxiliary vector

field �M has real support, the Yukawa-term for it sets a priori a phase problem 10, the only

10In other words, the second quartic interaction in (2.5) is the square of an hermitian object and comes

in the exponential as a “repulsive” potential. This has the final e↵ect of an imaginary part in the auxiliary

Lagrangian, precisely as the i b x in e�
b2

4a ⇠ R
dx e�ax

2
+ibx, with b 2 R.
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question being whether the latter is treatable via standard reweighting. Below we will see

that this is not the case for small values of g, suggesting that a di↵erent setting (alternative

linearization) should be provided to explore the full nonperturbative region.

After the transformation (2.5), the Lagrangian reads
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1p
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�M⇢
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2z
� + i

zN
z2
⇢MN @tz

M . (2.8)

Notice that (2.7) and the integration measure involve only the field  and not its complex

conjugate 11, thus formally integrating out generates a Pfa�an Pf OF rather than a determi-

nant. In order to enter the Boltzmann weight and thus be interpreted as a probability, Pf OF

should be positive definite. For this reason, we proceed as in [33]

Z

D e�
R

dtds TOF = Pf OF ⌘ (detOF O†
F )

1

4 =

Z

D⇠D⇠̄ e�
R
dtds ¯⇠(O

F

O†
F

)

� 1

4 ⇠ , (2.9)

where the second equivalence obviously ignores potential phases or anomalies.

3 Discretization and lattice perturbation theory

In order to investigate the lattice model corresponding to (2.7), we introduce a two-dimensional

grid with lattice spacing a. We assign the values of the discretised (scalar) fields to each

lattice site, with periodic boundary conditions for all the fields except for antiperiodic tem-

poral boundary conditions in the case of fermions. The discrete approximation of continuum

derivatives are finite di↵erence operators defined on the lattice. While this works well for the

bosonic sector, a Wilson-like lattice operator must be introduced such that fermion doublers

are suppressed. Due to the rather non-trivial structure of the Dirac-like operator in (2.8)

there are in principle many possible ways of introducing a Wilson-like operator. An optimal

discretization should preserve all the symmetries of the continuum action and should lead

to lattice perturbative calculations reproducing, in the a ! 0 limit, the continuum behavior

(2.3). Furthermore, in order not to prevent Montecarlo simulations the discretization should

11The vector  in (2.7) collects the 8 complex ✓ and ⌘ in a formally “redundant” way which includes both

the fields and their complex conjugates. Explicitating real and imaginary parts of ✓, ⌘, it is easy to see that the

fermionic contribution coming from this 16⇥16 complex operator O
F

is then the one of 16 real anti-commuting

degrees of freedom.
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Given the structure of the Wilson term in the vacuum it is quite natural to generalize the

prescription to the interacting case. The discretized fermionic operator reads
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(3.13)

with

W± =
r

2 z2
�

p̂2
0

± i p̂2
1

�

⇢MzM , (3.14)

where a factor 1/z2 is present, which appears to be useful for stability in the simulations (to

clarify/justify this structure a two-loop calculation in lattice perturbation theory would be

needed). As we said, together with the requirement that the resulting determinant (in combi-

nation with the bosonic contribution) should reproduce the number in (3.12), one important

point is that the discretization should not induce (additional) complex phases. Indeed, con-

sider the continuum fermionic operator obtained setting to zero in (2.8) those auxiliary fields

�M whose Yukawa-term is responsible for the phase problem. It is easy to check that it satis-

fies the properties (antisymmetry and a constraint which is reminiscent of the �
5

-hermiticity

in lattice QCD [45])

�

OF |�M

=0

�T
= �OF |�M

=0

,
�

OF |�M

=0

�†
= �

5

�

OF |�M

=0

�

�
5

(3.15)

where �
5

is the following unitary, antihermitian matrix

�
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=

0

B

B

B

@

0 1 0 0

�1 0 0 0

0 0 0 1
0 0 �1 0

1

C
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C

A

, �†
5

�
5

= 1 �†
5

= ��
5

. (3.16)

The properties (3.15) are enough to ensure that detOF |�M

=0

is real and non-negative. Re-

quiring that the addition of Wilson terms in the discretization of the (full) fermionic operator

should preserve (3.15) is one of the criteria leading to ÔF in (3.13). This is indeed what hap-

pens, as can be checked both numerically and analytically, confirming that the phase problem

described in Section 4.3 is only due to the Hubbard-Stratonovich transformation.

To answer the question about how restricted the choice of Wilson-like operator introduced

in (3.6) is, one can show that starting from a generic 16 ⇥ 16 matrix shift V such that

K̂F = KF + V it is possible to impose a set of constraints singling out the structure (3.6).

Here we summmarize these requirements:

• SO(6) invariance;

• Antisymmetry K̂T
F = �K̂F ;

• �
5

-hermiticity K̂†
F = �

5

K̂F �
5

;
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Discretization

Suppress fermion doublers with the Wilson-like discretization
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± i p̂2
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�
⇢MuM , |r| = 1, and p̂µ ⌘ 2

a
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. It is such that

det

ˆKF =

⇣
p̊2
0

+ p̊2
1

+

r2

4

�
p̂4
0

+ p̂4
1

�
+

M2

4

⌘
8

and

Straightforward generalization to the interacting case (where auxiliary fields appear).

Discretization and lattice perturbation theory

A naive discretization pµ ! �
pµ ⌘ 1

a
sin(a pµ) leads to fermion doublers.

i.e. identical propagator at 2d points where one or more components pµ are
at the corners of the first Brillouin zone
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4
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Add to the action a “Wilson term”, KF +W ⌘ KW
F such that

I SO(6) invariance is maintained,
I No (additional) complex phase is introduced
I For a ! 0 continuum perturbation theory is reproduced

Using its determinant in the one-loop effective action �

(1)

LAT

= ln
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The simulation: parameter space

I In the continuum model there are two parameters, g =

p
�

4⇡
and m ⇠ P

+

.
In perturbation theory divergences cancel, dimensionless quantities are
pure functions of the (bare) coupling

F = F (g)

I Our discretization cancels (1-loop) divergences, and reproduces the 1-loop
cusp anomaly. Assume it is true nonperturbatively, for lattice regularization.

Only additional scale: lattice spacing a.

Three dimensionless (input) parameters:

g , N ⌘ L

a
, M ⌘ ma

Therefore
F
LAT

= F
LAT

(g,N,M)



Line of constant physics

The continuum limit must be taken through a series of simulations in a controlled way:
lattice spacing a ! 0 while physical (renormalized) quantities should be kept constant.

Line of constant physics: curves in the bare parameter space, where dimensionless
physical quantities are kept fixed as a changes.

In the continuum, “effective” masses undergo a finite renormalization

m2

x(g) =
m2

2

⇣
1� 1

8 g
+O(g�2

)

⌘
(?)

The dimensionless physical quantity to keep constant when a ! 0 is

L2 m2

x = const , leading to (Lm)

2 ⌘ (NM)

2

= const ,

if (?) is still true on the lattice and g is not (infinitely) renormalized.

[Basso 2010]
[Giombi Ricci Roiban Tseytlin 2010]



Continuum limit a ! 0

We assume that, on the lattice, no further scale but a is present.

A generic observable

FLAT = FLAT(g,N,M) = F (g) +O
⇣
1

N

⌘
+O

⇣
e�MN

⌘

where

g =

p
�

4⇡
, N =

L

a
, M = am .

Recipe:

I fix g

I fix MN , large enough so to to keep small finite volume effects
I evaluate FLAT for N = 6, 8, 10, 12, 16, · · ·
I obtain F (g) extrapolating to N ! 1.

finite lattice spacing 
(~a) effects

finite volume 
(~ m L) effects



Measurement I: hx, x⇤i correlator

From the correlator of the x fields

Cx(t; 0) =

X

s
1

, s
2

hx(t, s
1

)x⇤
(0, s

2

)i

=

X

n

|cn|2e�tE
x

(0;n)

t�1⇠ e�tm
x

LAT

extract the x-mass

mx
LAT

= lim

t!1me↵

x

⌘ lim

t!1
1

a
log

Cx(t; 0)

Cx(t+ a; 0)

No infinite renormalization occurring, no need of tuning m to adjust for it.

This corroborates our choice of line of constant physics.
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Figure 2: Correlator Cx(t) =
P

s
1
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hx(t, s
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)x⇤(0, s
2

)i of bosonic fields x, x⇤ (left panel) and

corresponding e↵ective mass me↵

x = 1

a ln
C

x

(t)
C

x

(t+a) normalized by m2 (right panel), plotted

as functions of the time t in units of mx
LAT

for di↵erent g and lattice sizes. The flatness

of the e↵ective mass indicates that the ground state saturates the correlation function, and

allows for a reliable extraction of the mass of the x-excitation. Data points are masked by

large errorbars for time scales greater than unity because the signal of the correlator degrades

exponentially compared with the statistical noise.

On the lattice, the physical mass mx
LAT

is usefully obtained as a limit of an e↵ective mass

me↵

x , defined at a given timeslice extension T and fixed timeslice pair (t, t+a) by the discretized

logarithmic derivative of the timeslice correlation function (4.5) at zero momentum
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a
log
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Cx(t+ a; 0)
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Figure 2 shows the e↵ective mass measured from (4.8) as a function of the time t in units

of mx
LAT

for di↵erent g and lattice sizes. To reduce uncertainty about the saturation of the

ground state in the correlation function - in (4.7), corrections to the limit are proportional to

e��E t, where �E is the energy splitting with the nearest excited state – in our simulations

the lattice temporal extent T is always twice the spatial extent L. The flatness of the e↵ective

mass in Fig. 2 (right) indicates that the ground state saturates the correlation function, and

allows for a reliable extraction of the mass of the x-excitation. Data points are masked by large

errorbars for time scales greater than unity because the signal in (4.8) degrades exponentially

compared with the statistical noise. Our simulations provide an estimate for the x mass,

m2

x/m
2 = 1

2

that appears to be consistent with the classical, large g prediction (2.4). We do

not see a clear signal yet for the expected bending down at smaller g. For decreasing couplings

simulations become compute-intensive and to obtain smaller errors longer/parallel runs would

be necessary.

The most important corollary of the analysis for the hxx⇤i correlator is the following. As

it happens in the continuum, also in the discretized setting there appears to be no infinite

renormalization occurring for (2.4), and thus no need of tuning the bare parameter m to
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Figure 3: Left panel: Plot of m2

xLAT

(N, g)/m2 = mx(g)+O(1/N), as from plateaux average

of results which for g = 30 are shown in Fig. 2 (right panel). To ensure better visibility of the

fits at di↵erent g values, ln g has been added. Dashed lines represent a linear fit to all the data

points for one value of g, while for dotted lines the fit is to a constant and only includes the

two smallest lattice spacings. Multiple points at the same value of g and N indicate multiple

replica. Right panel: Continuum extrapolation corresponding to the linear fits in the left

panel. The simulations represented by the orange point (mL = 6) are used for a check of

the finite volume e↵ects, that appear to be within statistical errors. The extrapolation is

plotted as a function of the continuum coupling gc = 0.04 g to facilitate the comparison with

the prediction coming from the perturbative expectation (PT) (2.4), and uses the matching

procedure performed for the observable action. The latter is described in Section 4.2 and

commented further in Section 5.

adjust for it. This corroborates the choice of (4.1) as the line of constant physics along which

a continuum limit can be taken.

4.2 The cusp action

In measuring the action (1.3) on the lattice, exploring first the “weak coupling” (large g)

region we are supposed to recover the following general linear behavior in g 15

hS
LAT

i ⌘ c

2
(2N2) + S

0

, g � 1, where S
0

=
1

2
(2N2)M2 g . (4.9)

Above, we reinserted the parameter m, used the leading, classical behavior f(g) = 4 g in (2.3),

and used that V
2

⌘ T L = a2 (2N2) since, as written above, in our simulations the lattice

temporal extent T is always twice the spatial extent L (therefore T = a 2N = 2L). We also

introduced S
0

(which is linear in g) for later convenience, to remind that in each simulation –

performed at fixed g and at fixed (N M)2 – S
0

is also fixed. In (4.9) we also added c
2

N2, namely

a contribution constant in g and (in the continuum limit N ! 1) quadratically divergent.

This constant can be extrapolated for very large values of g with a fit linear in 1

N2

from data

points for hSi
2N2

= c
2

+ S
0

2N2

. For g = 100, 50, 30 this gives c/2 = 7.5(1) – red, green and violet

15We omit the label “cusp” in what follows.
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Consistent with large g prediction, no clear signal of bending down.

No infinite renormalization occurring, no need of tuning m to adjust for it.

This corroborates our choice of line of constant physics.
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Figure 4: Left panel: Plots of hS
LAT

i
2N2

, where fits (dashed lines) to data points are linear in

1/N2. To ensure better visibility of the fits at di↵erent g values, ln g has been added. The

extrapolation to the continuum limit (symbol at infinite N) determines the coe�cient c/2 of

the divergent (⇠ N2) contribution in (4.9)-(4.10) and is represented in the diagram of the

right of this figure. Right panel: Data points estimate the continuum value of c/2 as from

the extrapolations of the linear fits above. The simulations at g = 30, mL = 6 (orange point)
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fits in Fig. 4, left, respectively 17 – consistently with the number 15 = 8 + 7 of bosonic fields

appearing in the path integral. Namely, such a contribution to the vev hSi = �@ lnZ/@ ln g in

(4.9), field-independent and proportional to the lattice volume, is simply counting the number

of degrees of freedom which appear quadratically, and multiplying g, in the action. Indeed,

for very large g the theory is quadratic in the bosons 18 and equipartition holds, namely

integration over the bosonic variables yields a factor proportional to g�
(2N

2

)

2 for each bosonic

field species 19.

Having determined with good precision the coe�cient of the divergence, we can proceed

first fixing it to be exactly c = 15 and subtracting from hS
LAT

i the corresponding contribution.
Having in mind an analysis at finite g, we perform simulations in order to determine the ratio

hSLAT i � c
2

(2N2)

S
0

⌘ f 0(g)
LAT

4
. (4.10)

On the right hand side we restored the general definition (1.3), which is the main aim of our

17Recall that in Fig. 4 ln g has been added to ensure better visibility of the fits at di↵erent g values.
18In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the action, since

this is quadratic in the fields and hence its contribution in g can be evaluated by a simple scaling argument.
19It is interesting to mention that in theories with exact supersymmetry this constant contribution of the

bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant

independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward

identity S
bos

= 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,

see [63]. We thank David Schaich and Andreas Wipf for pointing this out to us.
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, where the coe�cient of the divergent

contribution c has been here fixed to the exact value c = 15 and S
0

= 1

2

M2 (2N2) g. For very

large g, there is agreement with the continuum prediction f 0(g) = 4 in (2.3). For smaller

values (g = 10, 5, orange and light blue data points) strong deviations appear, compatible

with quadratic divergences.

study here. At g = 100, 50, 30, 20 the plots in Fig. 5 show a good agreement with the leading

order prediction in (2.3) for which f 0(g) = 4. For lower values of g – orange and light blue

data points in Figure 5 – we observe deviations that obstruct the continuum limit and signal

the presence of further quadratic (⇠ N2) divergences. They are compatible with an Ansatz

for hS
LAT

i for which the “constant” contribution multiplying 2N2 in (4.9)-(4.10) is actually

g-dependent. It seems natural to relate these power-divergences to those arising in continuum

perturbation theory, where they are usually set to zero using dimensional regularization [8].

From the perspective of a hard cut-o↵ regularization like the lattice one, this is related to

the emergence in the continuum limit of power divergences – quadratic, in the present two-

dimensional case – induced by mixing of the (scalar) Lagrangian with the identity operator

under UV renormalization. Additional contributions to these deviations might be due to the

(possibly wrong) way the continuum limit is taken, i.e. they could be related to a possible

infinite renormalization occurring in those field correlators and corresponding physical masses

which have been not investigated here (fermionic and z excitations). While to shed light on

the issue such points should be investigated in the future – see further comments in Section

5 – we proceed with a non-perturbative subtraction of these divergences. Namely, from the

data of Fig. 5 we subtract the continuum extrapolation of c
2

(multiplied by the number of

lattice points, 2N2), as determined in the right diagram of Fig. 4, for the full range of the

coupling explored. The result is shown in Fig. 6. The divergences appear to be completely
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The phase

After linearization LF =  T OF  , integrating fermions leads to a complex Pfaffian
Pf OF = |(detOF )

1

2 | ei✓ .

The phase is encoded in the linearization: we deal with a fermionic hermitian bilinear
b ⇠ ⌘2 whose corresponding quartic interaction

e�Lferm

4

= e�
b

2

4 a

=

Z
dx e�a x2

+i b x

comes in the exponential as with the “wrong” sign.

The phase can be treated via reweighting: incorporate the non positive part of the
Boltzmann weight into the observable

hOi
reweight

=

hO ei✓i✓=0

hei✓i✓=0

It gives meaningful results as long as the phase does not average to zero.



The phase

In the interesting (g = 1) region the phase has a flat distribution.

Alternative algorithms: active field of study, no general proof of convergence.
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Alternative linearization

We identified a problem in the ”wrong sign” of the quartic fermionic interaction.
Consider a simple SO(4) invariant four-fermion interaction

L4F =

1

2

✏abcd  
a
(x) b

(x) c
(x) d

(x) ⌘ ⌃

ab e
⌃

ab

where ⌃

ab
=  a b , e

⌃

ab
=

1
2 ✏abcd  

c  d.

Introducing the (anti)self-dual fermion bilinears

⌃

ab
± =

1

2

⇣
⌃

ab ± 1

2

✏abcd ⌃

cd
⌘

one can rewrite
L4F = ± 2

⇣
⌃

ab
±
⌘2

just exploiting the Graßmann character of the underlying fermions.

[Catterall 2015]



Alternative linearization

In our case
LF4

= � 1

z2
(⌘2)2+

1

z2
(i ⌘i(⇢

MN
)

i
jn

N⌘j)2

one analogously defines - notice (⇢M )

im
(⇢M )

kn
= 2✏imkn - the bilinears

⌃i
j
= ⌘i⌘

j e
⌃j

i
= (⇢N )

iknN (⇢L)jlnL⌘k⌘
l

and again introduces ⌃±j
i = ⌃

j
i ± e

⌃

j
i to rewrite

LF4

= � 1

z2
(⌘2)2⌥ 2

z2
(⌘2)2⌥ 1

z2
⌃±j

i⌃±i
j

Now choose the good sign (�).

The new set of Yukawa terms (now 1 + 16 real auxiliary fields)

LF4

�! 12

z
⌘2�+ 6�2

+

2

z
⌃±i

j�
j
i + �i

j�
j
i

ensures the full Lagrangian to be hermitian, and a full (including auxiliary fields) non
negative detOF .



Alternative linearization

The Pfaffian is now real (Pf OF )

2
= detOF � 0

but not definite positive: Pf OF = ±(detOF )

1

2 .

For g  5 equal number of + and �. Phase problem traded for a purely sign problem?

Gain in computational costs: for large values of N (finer lattices) the algorithm
for evaluating complex determinants is very inefficient. Now just a sign flip.

hOireweight =
hO ei✓i✓=0

hei✓i✓=0
�! hOireweight =

hOwi
hwi

where w = ±1, and
p
detOF = (detO†

F OF )

1

4 .

Allows removing a systematic error (omission of reweighting factor for large N ).

NOTICE: there’s a region of the coupling which is free from sign problem
and that clearly sees nonperturbative physics.
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Spectrum of OF

In simpler models with four-fermion interactions, similar manipulations
ensure a definite positive Pfaffian. There real, antisymmetric operator
with doubly degenerate eigenvalues: quartets (ia, ia,�ia,�ia) , a 2 R.

[Catterall 2016, Catterall and Schaich 2016]
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Spectrum of OF
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detOF =

Y

i

|�i|2 |�i|2 �! Pf(OF ) = ±
Y

i

|�i|2

Choosing a starting configuration with positive Pfaffian, no sign change possible.
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For � = ±�⇤, no four-fold property: due to zero crossings, Pfaffian may change sign.



Alternative linearization: measures

Check of exact predictions based on integrability and localization
and check of quantum consistency (UV finiteness) of certain string actions.

Eigenvalue distribution of fermionic operators well separated from zero,
no sign problem for g � 10, where nonperturbative physics is captured.
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On the CFT side

The control is in the perturbative region (matching with NNLO).

Strong sign problem at strong coupling (� � 1).
David Schaich at Lattice 2016



Concluding remarks

Solving a non-trivial 4d QFT is hard reduce the problem via AdS/CFT:

solve (finding a good regulator for) a non-trivial 2d QFT.

For Green-Schwarz string worldsheet in AdS backgrounds, it is possible
to improve perturbative techniques e.g. via cross-fertilization of QFT methods.

The model is amenable to study using lattice QFT techniques (Wilson-like
discretizations, standard simulation algorithms). Interesting beyond string community.

Non-perturbative definition of string theory? Not quite yet.
Still, suitable framework for first principle statements (proofs of AdS/CFT),
and potentially efficient tool in numerical holography.
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I Simulations with phase-free linearization
I Further observables, different backgrounds (e.g. AdS
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I Correlators of string vertex operators (gauge theory 3-point functions)
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Thanks for your attention.



A remark on numerics

The most difficult part of the algorithm is the inversion of the fermionic matrix

|Pf OF | ⌘ (detO†
FOF )

1

4 ⌘
Z

d⇣d¯⇣ e�
R
d2⇠ ⇣̄ (O†

F

O
F

)
� 1

4 ⇣ .

The RHMC (Rational Hybrid Montecarlo) uses a rational approximation

¯⇣ (O†
FOF )

� 1

4 ⇣ = ↵0
¯⇣ ⇣ +

PX

i=1

¯⇣
↵i

O†
FOF + �i

⇣

with ↵i and �i tuned by the range of eigenvalues of OF .

Defining si ⌘ 1

O
†
F

O
F

+�
i

⇣, one solves

(O†
FOF + �i) si = ⇣ , i = 1, . . . , P.

with a (multi-shift conjugate) solver for which

number of iterations ⇠ ��1
min

In our case the spectrum of OF has very small eigenvalues.
And:



g T/a⇥ L/a Lm am ⌧S
int

⌧mx

int

statistics [MDU]

5 16⇥ 8 4 0.50000 0.8 2.2 900
20⇥ 10 4 0.40000 0.9 2.6 900
24⇥ 12 4 0.33333 0.7 4.6 900,1000
32⇥ 16 4 0.25000 0.7 4.4 850,1000
48⇥ 24 4 0.16667 1.1 3.0 92,265

10 16⇥ 8 4 0.50000 0.9 2.1 1000
20⇥ 10 4 0.40000 0.9 2.1 1000
24⇥ 12 4 0.33333 1.0 2.5 1000,1000
32⇥ 16 4 0.25000 1.0 2.7 900,1000
48⇥ 24 4 0.16667 1.1 3.9 594,564

20 16⇥ 8 4 0.50000 5.4 1.9 1000
20⇥ 10 4 0.40000 9.9 1.8 1000
24⇥ 12 4 0.33333 4.4 2.0 850
32⇥ 16 4 0.25000 7.4 2.3 850,1000
48⇥ 24 4 0.16667 8.4 3.6 264,580

30 20⇥ 10 6 0.60000 1.3 2.9 950
24⇥ 12 6 0.50000 1.3 2.4 950
32⇥ 16 6 0.37500 1.7 2.3 975
48⇥ 24 6 0.25000 1.5 2.3 533,652
16⇥ 8 4 0.50000 1.4 1.9 1000
20⇥ 10 4 0.40000 1.2 2.7 950
24⇥ 12 4 0.33333 1.2 2.1 900
32⇥ 16 4 0.25000 1.3 1.8 900,1000
48⇥ 24 4 0.16667 1.3 4.3 150

50 16⇥ 8 4 0.50000 1.1 1.8 1000
20⇥ 10 4 0.40000 1.2 1.8 1000
24⇥ 12 4 0.33333 0.8 2.0 1000
32⇥ 16 4 0.25000 1.3 2.0 900,1000
48⇥ 24 4 0.16667 1.2 2.3 412

100 16⇥ 8 4 0.50000 1.4 2.7 1000
20⇥ 10 4 0.40000 1.4 4.2 1000
24⇥ 12 4 0.33333 1.3 1.8 1000
32⇥ 16 4 0.25000 1.3 2.0 950,1000
48⇥ 24 4 0.16667 1.4 2.4 541

Table 1: Parameters of the simulations: the coupling g, the temporal (T ) and spatial (L)

extent of the lattice in units of the lattice spacing a, the line of constant physics fixed by Lm

and the mass parameter M = am. The size of the statistics after thermalization is given in the

last column in terms of Molecular Dynamic Units (MDU), which equals an HMC trajectory

of length one. In the case of multiple replica the statistics for each replica is given separately.

The auto-correlation times ⌧ of our main observables mx and S are also given in the same

units.
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Boundary conditions

We use periodic BC for all the fields (antiperiodic temporal BC for fermions).

In the infinite volume limit BC should not play a substantial role

(unless what is studied is topological).

Finite volume effects ⇠ e�mL ⌘ e�M N .

Most run are done at M N = 4 (e�4 ' 0.02),

some at M N = 6 (e�6 ' 0.002).

Appear to play a role only in evaluating

the coefficient of divergences.

Simulations with Dirichlet BC (which we are going to do) are not expected to change
the outcome significantly.
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Figure 4: Left panel: Plots of hS
LAT

i
2N2

, where fits (dashed lines) to data points are linear in

1/N2. To ensure better visibility of the fits at di↵erent g values, ln g has been added. The

extrapolation to the continuum limit (symbol at infinite N) determines the coe�cient c/2 of

the divergent (⇠ N2) contribution in (4.9)-(4.10) and is represented in the diagram of the

right of this figure. Right panel: Data points estimate the continuum value of c/2 as from

the extrapolations of the linear fits above. The simulations at g = 30, mL = 6 (orange point)

are used for a check of the finite volume e↵ects, which appear here to be visible. Dashed and

dotted lines are the results of, respectively, a linear fit in 1/g and a fit to a polynomial of

degree two.

fits in Fig. 4, left, respectively 17 – consistently with the number 15 = 8 + 7 of bosonic fields

appearing in the path integral. Namely, such a contribution to the vev hSi = �@ lnZ/@ ln g in

(4.9), field-independent and proportional to the lattice volume, is simply counting the number

of degrees of freedom which appear quadratically, and multiplying g, in the action. Indeed,

for very large g the theory is quadratic in the bosons 18 and equipartition holds, namely

integration over the bosonic variables yields a factor proportional to g�
(2N

2

)

2 for each bosonic

field species 19.

Having determined with good precision the coe�cient of the divergence, we can proceed

first fixing it to be exactly c = 15 and subtracting from hS
LAT

i the corresponding contribution.
Having in mind an analysis at finite g, we perform simulations in order to determine the ratio

hSLAT i � c
2

(2N2)

S
0

⌘ f 0(g)
LAT

4
. (4.10)

On the right hand side we restored the general definition (1.3), which is the main aim of our

17Recall that in Fig. 4 ln g has been added to ensure better visibility of the fits at di↵erent g values.
18In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the action, since

this is quadratic in the fields and hence its contribution in g can be evaluated by a simple scaling argument.
19It is interesting to mention that in theories with exact supersymmetry this constant contribution of the

bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant

independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward

identity S
bos

= 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,

see [63]. We thank David Schaich and Andreas Wipf for pointing this out to us.

17
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Measurement II: (derivative of the) cusp anomaly

We proceed subtracting the continuum extrapolation of c
2

multiplied by N2:
divergences appear to be completely subtracted, confirming their quadratic nature.
Errors are small, and do not diverge for N ! 1.
Flatness of data points indicates very small lattice artifacts.

We can thus extrapolate at infinite N to show the continuum limit.
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Figure 6: Plots for the ratio
hS

LAT

i� c

2

(2N2

)

S
0

+ ln g as a function of 1/N , where the divergent

contribution cN2/2 is now the continuum extrapolation determined in Fig. 4. To ensure

better visibility of the fits at di↵erent g values, ln g has been added. Dashed lines represent

a linear fit to all the data points for one value of g, while for dotted lines the fit is to a

constant and only includes the two smallest lattice spacings. Symbols at zero (infinite N) are

extrapolations from the fit constant in 1/N .

subtracted, confirming their purely quadratic nature. The flatness of data points - which can

be fitted by a constant – indicates very small lattice artifacts. At least in the region of lattice

spacings explored from our simulations errors are small, and do not diverge as one approaches

the N ! 1 limit. We can thus use the extrapolations at infinite N of Fig. 6 to show the

continuum limit for the left hand side of (4.10), Fig. 7. This is our measure for f 0(g)/4, and

it allows in principle a direct comparison with the perturbative series (dashed line) and with

prediction obtained via the integrability of the model (continuous line, representing the first

derivative of the cusp as obtained from a numerical solution of the BES equation [41] 19). To

compare our extrapolations with the continuum expectation, we match the lattice point for

the observable f 0(g) at g = 10 – as determined from the N ! 1 limit of f 0(g)
LAT

(4.10)

– with the continuum value for the observable f 0(gc)c as determined from the integrability

prediction, i.e. as obtained from a numerical solution of the BES equation [41]. This is where

in Fig. 7 the lattice point lies exactly on the (integrability) continuum curve. The value

g = 10 has been chosen as a reference point since it is far enough from both the region where

the observable is substantially flat and proportional to one (which ensure a better matching

procedure) and the region of higher errors (also, where the sign problem plays no role yet,

see Section 4.3). Assuming that a simple finite rescaling relates the lattice bare coupling g

19We thank D. Volin for providing us with a numerical solution to the BES equation.
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