Women ad the Intersection of Mathematics and High Energy Physics, Mainz, March 6-10, 2017

Continuous and Discrete Gauge Symmetries in F-theory Mirjam Cvetič

Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Outline (Summary): F-theory Compactification

- I. Key ingredients: brief overview; non-Abelian gauge symmetries
- II. Abelian gauge symmetries

 rational sections and Mordell-Weil group
 Highlight insights into Heterotic duality

 III. (Abelian) Discrete gauge symmetries

 multi-sections and Tate-Shafarevich group
 Highlight Heterotic duality and Mirror symmetry
- IV. Non-Abelian Discrete gauge symmetries hard in F-theory → weak coupling limit Type IIB Time permitting Emphasize geometric perspective

Apologies: Upenn-centric

Abelian and discrete symmetries in Heterotic/F-theory

M.C., A.Grassi, D.Klevers, M.Poretschkin and P.Song, ``Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality," arXiv:1511.08208 [hep-th]

M.C., A.Grassi and M.Poretschkin, ``Discrete Symmetries in Heterotic/F-theory Duality and Mirror Symmetry,'' arXiv:1607.03176 [hep-th]

Non-Abelian discrete symmetries in Type IIB string

V. Braun, M.C., R. Donagi and M.Poretschkin, ``Type II String Theory on Calabi-Yau Manifolds with Torsion and Non-Abelian Discrete Gauge Symmetries,'' arXiv:1702.08071 [hep-th]

Type IIB perspective

F-THEORY BASIC INGREDIENTS

F-theory?

F-theory

- coupling g_s part of geometry (12dim)
- elliptically fibered Calabi-Yau manifold

=

Type IIB String

- back-reacted (10dim) (p,q) 7-branes
- regions with large g_s on non-CY space

g_s-string coupling

F-theory?

=

Type IIB

- back-reacted
 (p,q) 7-branes
- regions with large g_s on non-CY space

g_s-string coupling

F-theory Compactification: Basic Ingredients

F-theory geometrizes the (Type IIB) string coupling (axio-dilaton)

 $\tau \equiv C_0 + ig_s^{-\text{as a modular parameter of two-torus T^2(T) w/SL(2,Z)}$

Compactifcation is a two-torus T²(T)-fibration over a compact base space B: Weierstrass normal form:

$$y^2 = x^3 + fxz^4 + gz^6$$

[z:x:y] homog. coords on P²(1,2,3)

undle of B B (p,q)7

Fibration: f, g, x, y - sections of anti-canonical bundle of B B (holomorphic functions of B)

F-theory Compactification: Basic Ingredients

F-theory geometrizes the (Type IIB) string coupling (axio-dilaton):

 $\tau \equiv C_0 + ig_s^{-1} \text{ as a modular parameter of two-torus T}^2(\tau) \text{ w/SL(2,Z)}$ (Vafa]

Compactification is a two-torus $T^2(\tau)$ -fibration over a compact base space B:

Weierstrass normal form:

$$y^2 = x^3 + fxz^4 + gz^6$$

singular $T^2(\tau)$ -fibr. $\rightarrow g_s \rightarrow \infty$ location of (p,q) 7-branes

F-theory compactification [Vafa'96], [Morrison, Vafa'96],...

Singular elliptically fibered Calabi-Yau manifold X

- Modular parameter of two-torus (elliptic curve)
- $\tau \equiv C_0 + ig_s^{-1}$

Weierstrass normal form for elliptic fibration of X

$$y^2 = x^3 + fxz^4 + gz^6$$

[z:x:y] - homogeneous coordinates on $P^2(1,2,3)$

f, g - sections on (holomorphic functions of) B

F-theory compactification [Vafa'96], [Morrison, Vafa'96],...

Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus (elliptic curve)

 $\tau \equiv C_0 + i g_s^{-1}$

Weierstrass normal form for elliptic fibration of X

$$y^2 = x^3 + fxz^4 + gz^6$$

Matter (co-dim 2; chirality- G_4 -flux)

Yukawa couplings (co-dim 3)

singular elliptic-fibration, $g_s \rightarrow \infty$ location of (p,q) 7-branes

non-Abelian gauge symmetry (co-dim 1)

Non-Abelian Gauge Symmetry

[Kodaira],[Tate],[Vafa],[Morrison,Vafa],...[Esole,Yau], [Hayashi,Lawrie,Schäfer-Nameki],[Morrison],...

• Weierstrass normal form for elliptic fibration of X

 $y^2 = x^3 + fxz^4 + gz^6$

- Severity of singularity along divisor S in B specified by [ord_S(f),ord_S(g),ord_S(Δ)]
- Resolution: structure of a tree of \mathbb{P}^{1} 's over *S* Resolved I_n -singularity $\leftarrow \rightarrow$ SU(n) Dynkin diagram

S

B

Cartan gauge bosons: supported by (1,1) form $\omega_i \leftrightarrow \mathbb{P}^1_i$ on resolved X

(via M-theory Kaluza-Klein reduction of C₃ potential $C_3 \supset A^i \omega_i$)

Deformation: [Grassi, Halverson, Shaneson'14-'15]

II. U(1)-Symmetries in F-Theory

Abelian Gauge Symmetries

Different: (1,1) forms ω_m , supporting U(1) gauge bosons, isolated & associated with I_1 -fibers, only

[Morrison, Vafa'96]

Abelian Gauge Symmetry & Mordell-Weil Group

rational sections of elliptic fibr. (

Abelian Gauge Symmetry & Mordell-Weil Group

rational sections of elliptic fibr. \iff rational points of elliptic curve

Rational point Q on elliptic curve E with zero point P

• is solution (x_Q, y_Q, z_Q) in field K of Weierstrass form

$$y^2 = x^3 + fxz^4 + gz^6$$

• Rational points form group (addition) on E

Abelian Gauge Symmetry & Mordell-Weil Group

rational sections of elliptic fibr. 🔶 rational points of elliptic curve

Rational point Q on elliptic curve E with zero point P

• is solution (x_Q, y_Q, z_Q) in field K of Weierstrass form

$$y^2 = x^3 + fxz^4 + gz^6$$

• Rational points form group (addition) on E

Mordell-Weil group of rational points

U(1)'s-Abelian Symmetry & Mordell-Weil Group

Point **Q** induces a rational section $\hat{s}_Q : B \to X$ of elliptic fibration

 \hat{S}_Q gives rise to a second copy of *B* in *X*:

new divisor B_Q in X

U(1)'s-Abelian Symmetry & Mordell-Weil Group

Point **Q** induces a rational section $\hat{s}_Q : B \to X$ of elliptic fibration

Earlier work: [Grimm,Weigand 1006.0226]...[Grassi,Perduca 1201.0930] [M.C.,Grimm,Klevers 1210.6034]... Explicit Examples: (n+1)-rational sections – $U(1)^n$ [Deligne] [via line bundle constr. on elliptic curve E- CY in (blow-up) of $W\mathbb{P}^m$]

- *n=0*: with P generic CY in $\mathbb{P}^2(1,2,3)$ (Tate form)
- *n*=1: with *P*, *Q* generic CY in $Bl_1 \mathbb{P}^2(1,1,2)$ [Morrison, Park 1208.2695]...

Explicit Examples: (n+1)-rational sections – U(1)ⁿ

- *n=0*: with P generic CY in $\mathbb{P}^2(1,2,3)$ (Tate form)
- *n*=1: with *P*, *Q* generic CY in $Bl_1 P^2(1, 1, 2)$ [Morrison, Park 1208.2695]...
- n=2: with P, Q, R specific example: generic CY in dP₂ [Borchmann,Mayerhofer,Palti,Weigand 1303.54054,1307.2902] [M.C.,Klevers,Piragua 1303.6970,1307.6425] [M.C.,Grassi,Klevers,Piragua 1306.0236]
- generalization to nongeneric cubic in $\mathbb{P}^2[u:v:w]$

[M.C.,Klevers,Piragua,Taylor 1507.05954]

Explicit Examples: (n+1)-rational sections – U(1)ⁿ

- *n=0*: with P generic CY in $\mathbb{P}^2(1,2,3)$ (Tate form)
- *n*=1: with *P*, *Q* generic CY in $Bl_1 P^2(1, 1, 2)$ [Morrison, Park 1208.2695]...
- n=2: with P, Q, R specific example: generic CY in dP₂ [Borchmann,Mayerhofer,Palti,Weigand 1303.54054,1307.2902] [M.C.,Klevers,Piragua 1303.6970,1307.6425] [M.C.,Grassi,Klevers,Piragua 1306.0236]

generalization to nongeneric cubic in $\mathbb{P}^2[u:v:w]$

[M.C.,Klevers,Piragua,Taylor 1507.05954]

- *n*=3: with *P*, *Q*, *R*, *S* CICY in $Bl_3 \mathbb{P}^3$
- *n=4:* determinantal variety in \mathbb{P}^4 higher *n*, not clear...

[M.C.,Klevers,Piragua,Song 1310.0463]

U(1)xU(1): Further Developments

[M.C., Klevers, Piragua, Taylor 1507.05954] General U(1)xU(1) construction:

non-generic cubic curve in $\mathbb{P}^2[u:v:w]$: $uf_2(u,v,w) + \prod_{i=1}^3 (a_iv + b_iw) = 0$ $f_2(u,v,w)$ degree two polynomial in $\mathbb{P}^2[u:v:w]$

Study of non-Abelian enhancement (unHiggsing) by merging rational points P, Q, R [first symmetric representation of SU(3)] higher index representations [Klevers, Taylor 1604.01030] [Morrison, Park 1606.0744]

non-local horizontal divisors (Abelian) turn into local vertical ones (non-Abelian) \rightarrow

both in geometry(w/ global resolutions) & field theory (Higgsing matter)

U(1)'s in Heterotic/F-theory Duality

[M.C., Grassi, Klevers, Poretschkin, Song 1511.08208]

[Morrison, Vafa '96], [Friedman, Morgan, Witten '97]

Basic Duality (8D):

Heterotic $E_8 x E_8$ String on T^2

t dual to

F-Theory on elliptically fibered K3 surface X Manifest in stable degeneration limit:

K3 surface X splits into two half-K3 surfaces X⁺ and X⁻

Dictionary:

- X^+ and $X^- \rightarrow$ background bundles V_1 and V_2
- Heterotic gauge group $G = G_1 \times G_2$ $G_i = [E_8, V_i]$
- The Heterotic geometry T²: at intersection of X⁺ and X⁻

K3-fibration over P^1 (moduli)

U(1)'s in Heterotic/F-theory Duality

Employ toric geometry techniques in 8D/6D to study stable degeneration limit of F-theory models with one U(1) [elliptic curve: CY hypersurface in $Bl_1\mathbb{P}^2(1,1,2)$]

6D: fiber this construction over another P¹

Decomposing the F-Theory Geometry

[Morrison, Vafa'96], [Berglund, Mayr '98]

- Spectral cover defines a SU(N) vector bundle on E
- Specialize to large gauge groups to keep spectral cover under control

Developed for toric geometry with U(1)

Weierstrass form and stable degeneration with MW

do not commute!

Tracing U(1)s through duality

6D: U(1)-massless

III. Discrete Symmetries in F-Theory

Abelian Discrete Symmetries in F-theory

Calabi-Yau geometries with genus-one fibrations

These geometries do not admit a section, but a multi-section

Earlier work: [Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;...] Recent extensive efforts'14-'16: [Braun, Morrison; Morrison, Taylor; Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson, Garcia-Etxebarria, Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand; M.C., Donagi, Klevers, Piragua, Poretschkin; Grimm, Pugh, Regalado; M.C., Grassi, Poretschkin;...]

Key features: Higgsing models w/U(1), charge-n $\langle \Phi \rangle \neq 0$ – conifold transition Geometries with n-section $\langle \bullet \bullet \rangle$ Tate-Shafarevich Group Z_n

> Z₂ [Anderson,Garcia-Etxebarria, Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand'14]

> Z₃ [M.C.,Donagi,Klevers,Piragua,Poretschkin 1502.06953]

Abelian & Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)

Abelian & Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)

Discrete Symmetry in Heterotic/F-theory Duality [M.C., Grassi, Poretschkin 1607.03176]

- Goal: Trace the origin of discrete symmetry D
- Conjecture for $P^2(1,2,3)$ fibration [Berglund, Mayr '98] X₂ elliptically fibered, toric K3 with singularities (gauge groups) of type G₁ in X⁺ and G₂ in X⁻

its mirror dual Y_2 with singularities (gauge groups) of type H_1 in X⁺ and H_2 in X⁻ with $H_i=[E_8, G_i]$

- Employ the conjecture to construct background bundles with structure group G where $D=[E_8, G]$ beyond $P^2(1,2,3)$
- Explore ``symmetric'' stable degeneration with G₁=G₂
 → symmetric appearance of discrete symmetry D

 \mathbb{Z}_2^2 - gauge symmetry ((E₇ × SU(2))/ \mathbb{Z}_2)² - vector bundle

6D: $(E_7 \times SU(2))/\mathbb{Z}_2$ - gauge symmetry

 \mathbb{Z}_2^2 - vector bundle

 \mathbb{Z}_2 - gauge symmetry

Field theory: Higgsing symmetric U(1) model: only one (symm. comb.) U(1)-massless \rightarrow only one Z₂ -``massless''

Example with Z₃ symmetry

Polytope:

Dual polytope:

via Heterotic duality related to

6D: $(E_6 \times E_6 \times SU(3))/\mathbb{Z}_3$ – gauge symmetry

These examples demonstrate: toric CY's with MW torsion of order-n,

mirror dual toric CY's with n-section.

Related: [Klevers, Peña, Piragua, Oehlmann, Reuter '14]

IV. Non-Abelian Discrete Symmetries

Type IIB analysis

[V. Braun, M.C., R. Donagi, M.Poretschkin, arXiv:1702.08071] no-time

Summary and Outlook

- Key ingredients of F-theory compactification
 Geometric perspective discrete data
 gauge symmetry, matter, Yukawa couplings
- Recent developments
 Abelian & Discrete symmetries (related to MW & TS group)
 Highlight insights into Heterotic duality.
 → non-Abelian discrete symmetries
- Particle physics models
 SU(5) GUT's & three family Standard Model & with R-parity (tip of the iceberg)

→ Future: non-Abelian discrete symmetries in F-theory...

Thank you

Thank you

to: Gabríele Honecker, Sylvíe Paycha, Kasía Rejzner, Katrín Wendland

For the initiative and efforts organizing this Excellent workshop!