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Outline (Summary): F-theory Compactification

Emphasize geometric perspective 
Apologies: Upenn-centric

IV.  Non-Abelian Discrete gauge symmetries 
hard in F-theory à weak coupling limit Type IIB

Time permitting

II.  Abelian gauge symmetries  
rational sections and Mordell-Weil group 
Highlight insights into Heterotic duality 

I. Key ingredients:                                             
brief overview; non-Abelian gauge symmetries

III. (Abelian) Discrete gauge symmetries  
multi-sections and Tate-Shafarevich group
Highlight Heterotic duality and Mirror symmetry 



Abelian and discrete symmetries in Heterotic/F-theory

M.C., A.Grassi, D.Klevers, M.Poretschkin and P.Song, ``Origin 
of Abelian Gauge Symmetries in Heterotic/F-theory 
Duality,’’ arXiv:1511.08208 [hep-th]

M.C., A.Grassi and M.Poretschkin,
``Discrete Symmetries in Heterotic/F-theory Duality and 
Mirror Symmetry,’’ arXiv:1607.03176 [hep-th]

Non-Abelian discrete symmetries in Type IIB string

V. Braun, M.C., R. Donagi and  M.Poretschkin, 
``Type II String Theory on Calabi-Yau Manifolds with Torsion 
and Non-Abelian Discrete Gauge Symmetries,’’  
arXiv:1702.08071 [hep-th]



F<THEORY!!BASIC!INGREDIENTS!
Type!IIB!perspec+ve!



F-theory?

• back-reacted (10dim)
(p,q) 7-branes  

• regions with large
gs on non-CY space

• coupling gs part of
geometry (12dim)

• elliptically fibered 
Calabi-Yau manifold

F-theory                  =           Type IIB String

gs –string coupling



F-theory?

F-theory                  =           Type IIB

M-theory (11dim SG)

on S1

• back-reacted 
(p,q) 7-branes 

• regions with large
gs on non-CY space

gs –string coupling

• coupling gs part of
geometry (12dim)



F-theory?

On T2

Limit vol(T2)      0

S-duality

F-theory                  =           Type IIB

M-theory Type II A

SO(32) Het. Type I

on S1

Certain
setups

Certain
setups

• back-reacted
(p,q) 7-branes 

• regions with large
gs on non-CY space

• coupling gs part of
geometry (12dim)

E8xE8 Het. 



F-theory geometrizes the (Type IIB) string coupling (axio-dilaton)  
as a modular parameter of two-torus T2(τ)  w/SL(2,Z)

Compactifcation is a two-torus T2(τ)-fibration over a compact base space B:
Weierstrass normal form:

[z:x:y] homog.  coords on P2(1,2,3)

Fibration: f, g, x, y - sections of anti-canonical bundle of B
(holomorphic functions of B)

1

[Vafa]
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F-theory	Compactification:	Basic	Ingredients
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F-theory geometrizes the (Type IIB) string coupling (axio-dilaton): 

as a modular parameter of two-torus T2(τ) w/SL(2,Z)

Compactifcation is a two-torus T2(τ)-fibration over a compact base 
space B:

Weierstrass normal form:
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⌧

(p,q)7B
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3 + fxz

4 + gz

6

singular T2(τ)-fibr. à gsè∞
location of (p,q) 7-branes



Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus 
(elliptic curve) 

B
⌧ ⌘ C0 + ig�1

s

Weierstrass normal form for elliptic fibration of X

[z:x:y] - homogeneous coordinates on P2(1,2,3)

f, g - sections on (holomorphic functions of)  B

y

2 = x

3 + fxz

4 + gz

6

[Vafa’96], [Morrison,Vafa’96],…
F-theory compactification



F-theory compactification
Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus
(elliptic curve)

B
⌧ ⌘ C0 + ig�1

s

Weierstrass normal form for elliptic fibration of X

singular elliptic-fibration, gsà∞
location of (p,q) 7-branes

Yukawa couplings 
(co-dim 3)

non-Abelian gauge symmetry
(co-dim 1)

Matter
(co-dim 2; chirality- G4-flux) 

y

2 = x

3 + fxz

4 + gz

6

[Vafa’96], [Morrison,Vafa’96],…



Non-Abelian Gauge Symmetry

• Weierstrass normal form for elliptic fibration of X

• Severity of singularity along divisor S in B

• Resolution: structure of a tree of     ‘s over S

y

2 = x

3 + fxz

4 + gz

6

[Kodaira],[Tate], [Vafa], [Morrison,Vafa],...[Esole,Yau], 
[Hayashi,Lawrie,Schäfer-Nameki],[Morrison], …

P1

Resolved In-singularity ßà SU(n) Dynkin diagram

specified by  [ordS(f),ordS(g),ordS(Δ)] 

B

P1
1 P1

2 P1
3 P1

4

Cartan gauge bosons: supported by (1,1) form                 on resolved X  

(via M-theory  Kaluza-Klein reduction of C3 potential                   )C3 � Ai!i

!i $ P1
i

Deformation: [Grassi, Halverson, Shaneson’14-’15] 

n=5



II. U(1)-Symmetries in F-Theory



!m

Abelian Gauge	Symmetries	

Different:   (1,1) forms        , supporting U(1) gauge bosons, isolated
& associated with I1-fibers, only

(1,1) - form                        rational section of elliptic fibration

[Morrison,Vafa’96]

!m

!m



1. Rational point Q on elliptic curve E with zero point P
• is solution                         in field K of Weierstrass form

• Rational points form group (addition) on E
y

2 = x

3 + fxz

4 + gz

6

(xQ, yQ, zQ)

EMordell-Weil group of rational points

Abelian Gauge	Symmetry	&	Mordell-Weil	Group

Q

P

rational sections of elliptic fibr.       rational points of elliptic curve



1. Rational point Q on elliptic curve E with zero point P
• is solution                         in field K of Weierstrass form

• Rational points form group (addition) on E
y

2 = x

3 + fxz

4 + gz

6

(xQ, yQ, zQ)

EMordell-Weil group of rational points

Abelian Gauge	Symmetry	&	Mordell-Weil	Group

Q

P

rational sections of elliptic fibr.       rational points of elliptic curve



1. Rational point Q on elliptic curve E with zero point P
• is solution                         in field K of Weierstrass form

• Rational points form group (addition) on E
y

2 = x

3 + fxz

4 + gz

6

(xQ, yQ, zQ)

EMordell-Weil group of rational points

Abelian Gauge	Symmetry	&	Mordell-Weil	Group

Q

P

rational sections of elliptic fibr.       rational points of elliptic curve



2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X 

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

ŝQ
ŝQ

QPoint



2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X   

        (1,1)-form             constructed from divisor BQ (Shioda map) 

            indeed  (1,1) - form                    rational section  

!m

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

!m

QPoint



n=0:    with P - generic CY in                   (Tate form)

n=1:   with P, Q - generic CY in                          

n=2:   with P, Q, R - specific example: generic CY in dP2

generalization to nongeneric cubic in 

n=3:   with P, Q, R, S - CICY in 

n=4 determinantal variety in 

higher n, not clear…

Explicit Examples: (n+1)-rational sections – U(1)n 

[Borchmann,Mayerhofer,Palti,Weigand
1303.54054,1307.2902;
M.C.,Klevers,Piragua 1303.6970,1307.6425;
M.C.,Grassi,Klevers,Piragua 1306.0236] 

[M.C.,Klevers,Piragua,Taylor1507.05954]

[M.C.,Klevers,Piragua,Song 1310.0463]

[Morrison,Park 1208.2695]...

P2(1, 2, 3)

Bl3P3

Bl1P2(1, 1, 2)

P4
…

P2[u : v : w]

[via line bundle constr. on elliptic curve E- CY in (blow-up) of          ]WPm

Earlier work: [Grimm,Weigand 1006.0226]...[Grassi,Perduca 1201.0930]
[M.C.,Grimm,Klevers 1210.6034]...

[Deligne]
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U(1)xU(1): Further Developments

General U(1)xU(1) construction:

Study of non-Abelian enhancement (unHiggsing)  by merging 
rational points  P, Q, R  [first symmetric representation of SU(3)]

non-local horizontal divisors (Abelian) turn into local vertical ones 
(non-Abelian) à
both in geometry(w/ global resolutions) & field theory (Higgsing matter)

uf2(u, v, w) +
3Y

i=1

(aiv + biw) = 0

degree two polynomial in f2(u, v, w) P2[u : v : w]

non-generic cubic curve in                     : P2[u : v : w]

higher index representations [Klevers, Taylor 1604.01030]
[Morrison, Park 1606.0744] 

[M.C., Klevers, Piragua, Taylor 1507.05954]



U(1)’s in Heterotic/F-theory Duality 

Basic Duality (8D):

Heterotic E8 x E8 String on T2

dual to

F-Theory on elliptically fibered
K3 surface X

Dictionary:
• X+ and X- à background bundles V1 and V2
• Heterotic gauge group G = G1 x G2 Gi = [E8,Vi]
• The Heterotic geometry T2: at intersection of  X+ and X-

Manifest in stable degeneration limit:

K3 surface X  splits into
two half-K3 surfaces X+ and X-

X−

X+
X

K3-fibration over
(moduli)

P1

x

[Morrison,Vafa ’96], [Friedman,Morgan,Witten ’97]

[M.C., Grassi, Klevers, Poretschkin, Song 1511.08208]                           



Employ toric geometry techniques in 8D/6D to study 
stable degeneration limit of F-theory models with one U(1)
[elliptic curve: CY hypersurface in                   ]

Toric polytope:                                    Dual polytope:                                    

specifies the ambient 
space P1xBl1 P(1,1,2)

specifies the elements of O( )
monomials in the ambient space

−K
P1×Bl1P

(1,1,2 )

6D: fiber this construction over another P1     

U(1)’s in Heterotic/F-theory Duality 

Bl1P2(1, 1, 2)

Newton 
polytope



Decomposing the F-Theory Geometry

X−

X+

p0  specifies elliptic curve E

p+ specifies spectral cover C+

χ : p+(sij, xk )U
2 + p0 (sij, xk )U

2 + p−(sij, xk )V
2

• Spectral cover defines a SU(N) vector bundle on E

p- specifies spectral cover C-

• Specialize to large gauge groups to keep spectral 
cover under control

[Morrison, Vafa ’96], [Berglund, Mayr ‘98]

Developed for toric geometry with U(1)



Weierstrass form and stable degeneration with MW

K3 surface with fiber 
specified by Bl1 P1,1,2

Weierstrass normal 
form of K3 surface

Two half K3 surfaces with 
fiber specified by Bl1 P1,1,2

Two half K3 surfaces in 
Weierstrass normal form

Stable degeneration

Map to 

do not commute!

Correct  route!
Took this route

Stable degeneration



Tracing U(1)s through duality
K3 surface - X

X+X−

Zero section  P

Rational section Q 
(MW Generator)

Heterotic elliptic curve  
K3 surface -X

Case I Case II

U(1) symmetries from 
the merging conditionX− X+

Split vector bundle-symmetric:                               
S(U(N-1) x U(1)) 2

Example N=2: (E7 x U(1))2 gauge symmetry
6D: U(1)2-massive (U(1)-background bundle) 

[Witten]
à only symmetric comb. U(1)-massless  

Vector bundle with torsion: 
S(U(N-1) x Z2)
E8xE6xU(1) 
6D: U(1)-massless

Related work: 
geom. trans.[Anderson, Gray, Raghuram, Taylor 1512.0791]

Case III  
SU(N)xSU(M) bundle 
6D: U(1)-massless

c.f., [Aspinwall’05]



III. Discrete Symmetries in F-Theory



Abelian Discrete Symmetries in F-theory
Calabi-Yau geometries with genus-one fibrations

These geometries do not admit a section, but a multi-section 

Earlier work: [Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;…] 
Recent extensive  efforts’14-’16: [Braun, Morrison; Morrison, Taylor; 
Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson,Garcia-Etxebarria, 
Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand;  M.C., Donagi, Klevers, 
Piragua, Poretschkin; Grimm, Pugh, Regalado; M.C., Grassi, Poretschkin;…]

Higgsing models w/U(1), charge-n <F>≠ 	0	 −	conifold transition
Geometries with n-section Tate-Shafarevich Group Zn

Z3   [M.C.,Donagi,Klevers,Piragua,Poretschkin 1502.06953]

Z2  [Anderson,Garcia-Etxebarria, Grimm; 
Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand’14]

Key features:



!!!!!!!!!!!!!F<theory!compac+fica+on!with!n!!sec+ons!(Abelian!U(1)(n<1))!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!
!!!!!!
!!!!!!!!!
!!!!!!!F<theory!compac+fica+on!with!an!n<sec+on!!(discrete!Zn!symmetry)!!

blow-down 
(P1 in the geometry with  
 multiple sections collapses) 

Deformation 
(S3  glues several sections  
to a multi-section) 

Conifold transition - Geometry 

Abelian!&!Discrete!Gauge!Symmetry!in!F<theory!

Independent  SectionsIndependent Sections
n=2 example

deformation [Candelas, de la Ossa]

[Morrison,Taylor]
[Anderson,García-Etxebarria,
Grimm,Keitel]

[Mayrhofer,Palti,Till,Weigand] 

Singular codim-2 locus
I2 -fiber



!!!!!!!!!!!!!F<theory!compac+fica+on!with!n!!sec+ons!(Abelian!U(1)(n<1))!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!appearance!of!massless!field!!

!!!!!!!!!
!!!!!!!F<theory!compac+fica+on!with!an!n<sec+on!!(discrete!Zn!symmetry)!!

blow-down 
(P1 in the geometry with  
 multiple sections collapses) 

Deformation 
(S3  glues several sections  
to a multi-section) 

Conifold transition - Effective theory     
massless field acquires VEV 

I2-fiber 

Abelian!&!Discrete!Gauge!Symmetry!in!F<theory!

I!Independent Sections
n=2 example

ϕ with charge 2

<ϕ>≠0
U(1)   à Z2

Explicit construction of U(1) geometries with matter charge n à Zn
n=3: [Klevers, Peña, Piragua, Oehlmann, Reuter1408.4808]

[M.C., Donagi, Klevers, Piragua, Poretschkin 1502.06953]…

Singular codim-2 locus
I2 -fiber



Tate-Shafarevich group and Z3

X1 with tri-section
(cubic in P2)Jacobian

Jacobian
J(X)

Only two geometries: X1 w/ trisection and Jacobian J(X1) 

x
P

[M.C., Donagi, Klevers, Piragua, Poretschkin 1502.06953]

X1 with tri-section
(cubic in P2)There are three different elements of theTS group!

Shown to be in one-to-one correspondence with three M-theory vacua.



Discrete Symmetry in Heterotic/F-theory Duality 
[M.C., Grassi, Poretschkin 1607.03176]                 

Goal: Trace the origin of discrete symmetry D

• Conjecture [Berglund, Mayr ’98]

X2 elliptically fibered, toric K3 with singularities (gauge groups)
of type G1  in X+ and G2 in X-

its mirror dual Y2 with singularities  (gauge groups) of type
H1 in X+ and H2 in X- with Hi=[E8, Gi] 

• Explore ``symmetric’’ stable degeneration with G1=G2
à symmetric appearance of discrete symmetry D

for P2(1,2,3) fibration

• Employ the conjecture to construct background bundles with 
structure group G where  D=[E8, G] beyond P2(1,2,3)



Figure 1: The polytope on the left shows the ambient space whose associated hypersur-
face leads to the Z2-geometry. The polytope on the right provides the ambient space of
the geometry with gauge symmetry ((E7 × SU(2))�Z2)2. The zero plane along which the
symplectic cut is performed is marked by the black points. The yellow and blue points
give the affine Dynkin diagram of E7. The latter are inherited by the half K3 surfaces X±2 ,
respectively. The purple point corresponds to an SU(2) gauge group which appears in both
half K3 surfaces X±2 after the stable degeneration limit. Orange points mark inner points of
the facets. Finally, beige-coloured points are on the invisible facets of the polytope.

Using equation (2.4), we find the following defining equation

��○ ∶ a1y41 + a2y21y22 + a3y42 + a4y23 + a5y1y2y3 = 0 . (4.4)

Here, the coefficients read in terms of Ũ , Ṽ as follows

a1 = a11 ,

a2 = a21Ũ
2Ṽ 2 ,

a3 = a31Ũ
5Ṽ 3 + a32Ũ4Ṽ 4 + a33Ũ3Ṽ 5 ,

a4 = a41 ,

a5 = a51Ũ Ṽ . (4.5)

One observes that there are two sections located at y2 = 0 and are given by

a11y
4
1 + a41y23 = 0 . (4.6)

Thus, ��○ is an elliptically fibered K3.
In fact, a similar K3 surface has already been investigated in [21]. To make contact with

that description, we transform the constraint (4.4) into a hypersurface within the ambient
space P1 ×Bl1P(1,1,2). To be concrete, the coordinate transformation

y1 � �x31x2UV � 14 , y2 � �x1x32U−3V −3� 14 , y3 � x3(UV ) 12 , (Ũ , Ṽ )� (U,V ) . (4.7)

maps (4.4) onto
s1x

3
1x2 + s2x21x22 + s3x1x32 + s4x1x2x3 + s5x23 = 0 . (4.8)

Here, one has

s1 = a11UV, s2 = a21UV, s3 = a31U2+a32UV +a33V 2, s4 = a51UV, s5 = a41UV . (4.9)

12

Example with Z2 symmetry 

8D:( )2 - gauge symmetry 
2 - vector bundle
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1 Introduction and Summary of Results

Recent years have witnessed important advances in F-theory compactification[? ? ? ].
While the study of non-Abelian gauge symmetries has been extensively studied in the past,
the study of Abelian and discrete gauge symmetries has been advanced only in recent years.
...associated with Mordell-Weil and Tate-Shafarevich group of the fibered Calabi-Yau man-
ifolds...

Heterotic/F-theory duality also plays in important role in shedding light on the origin of
gauge symmetries in heterotic gauge theory from the geometric perspective of F-theory. In
the past aspects of non-Abelian gauge symmetries have been studied extensively. However,
only very recently a detail study of the orgin of Abelian gauge symmetry has been performed.

The purpose of this paper is to present aspects of a study of discrete gauge symmetries
in heterotic/F-theory duality. We build our studies on conjecture heterotic/F-theory mirror
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Field theory: Higgsing symmetric U(1) model: 
only one (symm. comb.) U(1)-massless      
à only one Z2 -``massless’’



- gauge symmetry - gauge symmetry 

Dual polytope: 

Figure 2: The polytope on the left shows the ambient space whose associated hypersurface
leads to the Z3-geometry. The polytope on the right provides the ambient space with gauge
symmetry ((E6 × SU(3))�Z3)2. The zero plane along which the symplectic cut is performed
is marked by the black points. The yellow and blue points give the affine Dynkin diagram of
E6. The latter are inherited by the half K3 surfaces �±, respectively. Beige-coloured points
are on the invisible facets of the polytope. In particular, the two points on the invisible edge
correspond to the Dynkin diagram of SU(3) which is inherited by both half K3 surfaces.
Finally, orange points mark inner points of the facets and the purple point marks the inner
point of the polytope.

4.3 The model with Z3 gauge symmetry

The construction of the example with discrete Z3 gauge symmetry parallels the example
with Z2 gauge symmetry and we therefore keep the discussion brief. This time we start with
a geometry that has gauge symmetry ((E6 × SU(3))�Z3)2.
4.3.1 The geometry with ((E6 × SU(3))�Z3)2 gauge symmetry

We start again with a pair of dual polytopes (�○,�). �○ gives rise to a K3 surface with
singularity content ((E6 × SU(3))�Z3)2, while � gives rise to a K3 surface with fiber ambient
space given by P2. �○ is given by the convex hull of

(2,−1,0), (−1,2,0), (−1,−1,3), (−1,−1,−3) . (4.26)

while � is given as the convex hull of

(−1,−1,0), (1,0,0), (1,1,0), (0,1,0), (−1,−1,1), (−1,−1,−1) . (4.27)

The two polytopes are displayed in figure 2. Assigning coordinates as

(−2,1,0)� y1, (2,−3,0)� y2 (0,1,0)� y3,(2,−3,1)� Ũ , (2,−3,−1)� Ṽ , (4.28)

an application of formula (2.4) reveals that the hypersurface equation for ��○ is given as

��○ ∶ a1y41 + a2y21y22 + a3y42 + a4y23 = 0 . (4.29)
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The coefficients read as follows

a1 = a11 ,

a2 = a21Ũ
2Ṽ 2 ,

a3 = a31Ũ
5Ṽ 3 + a32Ũ4Ṽ 4 + a33Ũ3Ṽ 5 ,

a4 = a41 . (4.30)

The rank of the Picard lattice is found to be h(1,1)(X�○) = 18 which accounts for two E6

singularities (to be more precise, its resolutional divisors), two SU(3) singularities, the class
of the fiber as well as the base. In addition, the Mordell Weil group equals Z3. Thus, the
full gauge group is given by ((E6 × SU(3))�Z3)2.

Again, after the compactification to six dimensions, the two SU(3) singularities merge
into a curve of SU(3) singularities. From the field theory perspective, it is again the sym-
metric combination of the two SU(3) factors which survives in this limit.

4.3.2 The dual geometry with fiber ambient space P2

We analyse the dual geometry by assigning the following coordinates to the points (4.2)

(−1,−1,0)� x1, (1,0,0)� x2 (0,1,0)� x3,(−1,−1,1)� U, (−1,−1,−1)� V . (4.31)

In this way, one obtains the following hypersurface constraint:

� ∶= s1x31 + s2x21x2 + s3x1x22 + s4x32 + s5x21x3 + s6x1x2x3 + s7x22x3 + s8x1x23 + s9x2x23 + s10x33 = 0 .
(4.32)

Here, the si take explicitly the form

s1 = s11U
6 + s12U5V + ... + s17V 6 ,

s2 = s21U
4 + s22U3V + ... + s25V 4 ,

s3 = s31U
2 + s32UV + s33V 2 ,

s4 = s41 ,

s5 = s51U
4 + s52U3V + ... + s55V 4 ,

s6 = s61U
2 + s62UV + s63V 2 ,

s7 = s71 ,

s8 = s81U
2 + s82UV + s83V 2 ,

s9 = s91 ,

s10 = s10 . (4.33)

A closer inspection of this geometry reveals that there are apart from the zero section two
further linear independent sections, which is confirmed by the computation of h(1,1)(X2).
In fact, these three sections will glue into a tri-section, once one compactifies further down
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6D:

1 Geodesics of the Optical metric

(E
7

⇥ E
7

⇥ SU(2))/Z
2

(1)

(E
6

⇥ E
6

⇥ SU(3))/Z
3

(2)

1.1 Projective symmetry

Any spherically symmetric 3-metric may be cast in the form

du2

k2(u)
+

1

k(u)
d⌦2

2

. (3)

this typo has been corrected

In [1] it was shown in [1] that the Weyl projective tensor depends only on
k0 and k00. For metrics of the form (3) In fact, we may assume that coordinates
may be chosen so that any geodesic lies in the equatorial plane ✓ = ⇡

2

The
geodesics then satisfy

�du
d�

�
2

+ k =
1

h2

(4)

where h is Clairaut’s constant which may be thought of as angular momentum
or impact parameter. Di↵erentiating (4) we obtain the second order equation

d2u

d�2

+
1

2
k0 = 0 . (5)

Obviously k and h0 give the same unparameterised geodesics. Thus we re-obtain
an explicit demonstraion of the the projective symmetry of the metrics of the
form (3).

1.2 Reissner-Nordstrom-de-Sitter

In the special case of Reissner-Nordstrom-de-Sitter spacetime the spacetime
metric is of the form

ds2 = ��(R)dt2 +
dR2

�
+R2d⌦2

2

(6)

and hence

ds2
opt

=
dR2

R4g(R)2
+

1

g(R)
d⌦2

2

. (7)

This is of the form (3) with

k(u) = u2 + 2Mu+Q2u4 � ⇤

3
. (8)

It follows that the unparameterised geodesics are independent of ⇤. Moreover,
since k0 is cubic in u the geodesics are given by Weierstrass elliptic functions
[3] .

1

Example with Z3 symmetry 

These examples demonstrate: 
toric CY’s with MW torsion of order-n, 

via Heterotic duality related to
mirror dual toric CY’s with n-section.  

Related:  [Klevers, Peña, Piragua, Oehlmann, Reuter ‘14]

Polytope:



IV. Non-Abelian Discrete Symmetries 
Type IIB analysis       

no-time
[V. Braun, M.C., R. Donagi, M.Poretschkin, arXiv:1702.08071]



Summary	and	Outlook		
• Key ingredients of F-theory compactification

Geometric perspective - discrete data                                              
gauge symmetry, matter, Yukawa couplings

• Recent developments  
Abelian & Discrete symmetries (related to MW & TS group)
Highlight insights into Heterotic duality. 
à non-Abelian discrete symmetries

• Particle physics models 
SU(5) GUT’s & three family Standard Model & with R-parity

(tip of the iceberg)

à Future: non-Abelian discrete symmetries in F-theory…
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