#### Searching for a Dark Photon with DarkLight

#### Ross Corliss on behalf of the **DARKLIGHT** Collaboration



New Vistas in Low-Energy Precision Physics April 5, 2016

Massachusetts Institute of Technology

# DarkLight Collaboration

R. Alarcon D. Blyth, R. Dipert, L. Ice, G. Randall, B. Thorpe Arizona State University, Phoenix, AZ 85004

P. Gueye, N. Kalantarians, M. Kohl, A. Liyanage, J. Nazeer **Hampton University, Hampton, VA 23668** 

S. Benson, J. Boyce, D. Douglas, C. Hernandez-Garcia, C. Keith, C. Tennant, S. Zhang **Thomas Jefferson National Accelerator Facility, Newport News, VA 23606** 

J. Balewski, J. Bernauer, J. Bessuille, R. Corliss, R. Cowan, C. Epstein, P. Fisher, I. Friščić, D. Hasell, E. Ihloff, J. Kelsey, R. Milner, S. Steadman, C. Tschalär, C. Vidal, Y. Wang **MIT, Cambridge, MA 02139 and Bates Lab** 

M. Garçon CEA Saclay, Gif-sur-Yvette, France

R. Cervantes, K. Dehmelt, A. Deshpande, N. Feege Stony Brook University, Stony Brook, NY 11790

B. Surrow **Temple University, Philadelphia, PA 19122** 

### Dark Matter



### Dark Photons into Standard Model

- - Mechanism for DM decay



• DM-Agnostic argument: No reason not to have new term in Lagrangian:

 $\frac{c}{2}F_{\mu\nu}F'^{\mu\nu}$ 

### A' Parameter Space





April 5, 2016

**Ross Corliss** 

# DarkLight Concept

"Detecting <u>A Resonance Kinematically with eLectrons</u> Incident on a <u>Gaseous Hydrogen Target</u>

- High intensity electron beam on dense gas target to overcome small coupling (~ab<sup>-1</sup>/mo)
- At 100 MeV to rule out pion production
- With solenoid and tracking for complete reconstruction of final state

# Detecting A'

- Search for resonance in e<sup>+</sup>e<sup>-</sup> pairs
- High statistics help overcome irreducible background





April 5, 2016

**Ross Corliss** 

### Standard Model Environment



- Luminosity=  $2x10^{36}$  cm<sup>-2</sup>s<sup>-1</sup>
- Total Møller rate 2°-5°
   ~ 30 GHz (E<100 MeV)</li>
- Total Elastic rate 2°-5°
   ~ 30 GHz (E~100 MeV)
- Want full reconstruction of final state to suppress these



# Target and Beam

- Need high luminosity and low-density target
  - Linac+Fixed Target?
     Target thickness unlimited
     Beam intensity too low



Storage Ring + Internal Target?
 Target must be thin
 Beam intensity high

3. **ERL** + Internal Target? Target somewhat limited Beam intensity high

...but unproven

April 5, 2016

### LERF at Jefferson Lab

 JLab's Low Energy Recirculating Facility (LERF) e<sup>-</sup> beam 5mA. ~10<sup>16</sup>e/s at 100MeV



### LERF at Jefferson Lab

2012 beam test showed precision steering possible

Phys. Rev. Lett. 111, 165801 (2013) Nucl. Instr. Meth A729, 233 (2013) Nucl. Instr. Meth. A729, 69 (2013)

#### 6, 4, and 2 mm aperture with few ppm losses.

### LERF



Ross Corliss



• Cylindrically symmetric detector



#### • Windowless, thin-walled target cell with ~few Torr



#### • Silicon detector inside target cell for recoiling proton



Cylindrical tracking layers for e+ / e-



#### Solenoid and yoke for momentum reconstruction

# Moller Envelope



#### • Field also controls Møllers

# Phased Approach

#### Funded:

- 1A: Learn to operate LERF with Solenoid + Target
- 1B: Measure radiative Møller rates (spectrometer design)
- 1C: Proof-of-principle with partial coverage detector in solenoid
- 2: High-statistics measurement with full DarkLight detector

### Phase 1A

#### • ~Torr target with baffles, 0.5 T solenoid



### Phase 1A Beam Interaction



### Phase 1A Detector

Measure rates and evaluate detector performance



**Ross Corliss** 

### Phase 1A Trigger Paddles



### Phase 1A GEM Telescope



10 cm x10 cm OLYMPUS Triple-GEM detectors

April 5, 2016

Ross Corliss

### Phase 1B

 Measure radiative Møller rate using dedicated spectrometers



**Ross Corliss** 

### Phase 1C

- Proof-of-principle for A' search
- Partial coverage (detectors similar to 1A)
- Triggered readout



# Outlook

 Summer 2016 / Near term:

 First internal target / solenoid in an ERL
 First measurements of radiative Møllers at this



#### • Later:

energy

- Simulations and design work underway for phase 1C as well as future phase 2.



### LERF Tour



April 5, 2016

**Ross Corliss** 

### LERF Tour



April 5, 2016

Ross Corliss

# LERF Tour



April 5, 2016

Ross Corliss