Radiative capture and photodisintegration reactions for the synthesis of the *p* nuclei

Philipp Scholz

for the group of Prof. Dr. Andreas Zilges Institute for Nuclear Physics, University of Cologne

Workshop on New Vistas in Low-Energy Precision Physics (LEPP) April 4th-7th, 2016

Supported by the ULDETIS project within the UoC Excellence Initiative institutional strategy and by DFG (ZI 510/8-1, INST 216/544-1). * Partly supported by the Bonn-Cologne Graduate School of Physics and Astronomy.

Outline

Introduction

- Nucleosynthesis of heavy elements and the *p* nuclei
- the γ-process reaction network

Experimental measurements of cross-sections

- photo-induced reaction measurements
- charged-particle induced reaction studies

Experimental results

- testing the E1-strength in 90 Zr via 89 Y(p, γ)
- total and partial cross sections for ⁹²Mo(p,γ)

The synthesis of the p nuclei

p nuclei

- 30-35 neutron deficient isotopes
- cannot be produced by neutroncapture reactions
- relatively low isotopic abundances in comparison to *s*- and *r*-isotopes
- originally thought to be produced via proton-capture
- temperatures would lead to immediate photodisintegration

M. Arnould et al., Phys. Rep. 450 (2007) 97

T. Rauscher et al., Rep. Prog. Phys. 76 (2013) 066201

The synthesis of the *p* nuclei

γ process reaction-network

- huge photodisintegration reaction-network
- at temperatures between 1.5 GK and 3 GK in ccSN or type Ia SN
- starting from stable seed nuclei formed in the *s* or *r*-process
- γ -process path proceeds first via (γ ,n) reactions
- branching for A < 130 mainly via (γ ,p)
- above A > 130 (γ , α) get more important

The synthesis of the p nuclei

reaction-network calculations

- γ-process network calculations cannot reproduce solar system abundance
- other contributions from rp-, α or other processes?
- problems with photoinduced reaction cross sections?

S.E. Woosley and W. M. Howard, ApJSS 36 (1978) 285

Photodisintegration

- measuring cross sections via direct detection of ejectiles or via photoactivation
- using either monochromatic γ-ray beams or Bremsstrahlung

Ground-state contributions

- measured cross sections cannot directly used for astrophysics
- for γ-induced reaction the ground-state contribution is almost zero
- larger contribution from excited states in the stellar plasma (T₉ > 1.5)
- reaction rates are obtained from the inverse reactions via reciprocity theorem

T. Rauscher, ApJSS **201** (2012) 26

Experimental measurements of cross sections

Statistical model

- cross sections in the Gamow window are small (< µb)
- most of the reactions are not accessible in the laboratory
- reaction rates are calculated mostly in the scope of the statistical model
- cross-section measurements to improve nuclear physics inputparameters:
 - γ -strength function (also via (γ , γ'))
 - particle + nucleus optical model potentials

$$\sigma_{jk}^{\mu}(E) = \pi \lambda_j^2 \frac{1}{(2J_I^{\mu} + 1)(2J_j + 1)} \sum_{j^{\mu}} (2J + 1) \frac{T_j^{\mu}(J^{\pi})T_k(J^{\pi})}{T_{tot}(J^{\pi})}$$

Charged-particle induced reaction cross sections

Activation technique

- widely used technique for measureing cross-sections
- temporal and spatial separation of irradiation and spectroscopy
- no access to reactions involving stable reaction products
- feasible half-lives neccessary

Charged-particle induced reaction cross sections

Activation technique

- widely used technique for measureing cross-sections
- temporal and spatial separation of irradiation and spectroscopy
- no access to reactions involving stable reaction products
- feasible half-lives neccessary

4π summing crystal method

- complete deexcitation is summed up in one peak
- access to stable reaction products
- need for very different Q-values for competing reactions
- no access to partial cross-sections

Charged-particle induced reaction cross sections

Activation technique

- widely used technique for measureing cross-sections
- temporal and spatial separation of irradiation and spectroscopy
- no access to reactions involving stable reaction products
- feasible half-lives neccessary

4π summing crystal method

- complete deexcitation is summed up in one peak
- access to stable reaction products
- need for very different Q-values for competing reactions
- no access to partial cross-sections

In-beam method with HPGe detectors

- de-excitation of the entry state
 - determination of partial cross sections
 - very sensitive on the γ-ray strength function

- de-excitation of the entry state
 - determination of partial cross sections
 - very sensitive on the γ-ray strength function
- transitions to the ground state
 - determination of the total cross section

 10 MV FN-Tandem ion accelerator

HORUS γ-ray spectrometer

- 14 HPGe detectors
 - High resolution
 ≈ 2 keV @ 1332 keV
 - High total efficiency
 ≈ 2% @ 1332 keV
- 5 different angles with respect to beam axis
 - determination of angular distributions
- BGO shields

L. Netterdon et al., NIM A 754 (2014) 94-100

Target chamber

- cooling trap
- tantalum coating
- independent current readouts
- δ-electron suppression
- built-in detector for Rutherford Backscattering Spectrometry (RBS)

L. Netterdon et al., NIMA 754 (2014) 94-100

- reaction in a region which is normally underproduced in reaction network calculations
- total cross section was measured twice before
- γ-ray strength function in ⁹⁰Zr was measured before
- natural yttrium target (583µg/cm²)
- beam currents between 1nA and 60nA
- five different proton energies between 3.65 MeV and 4.70 MeV, i.e. γ-ray energies between 7.71 MeV and 12.98 MeV (Q-Value: 8353.4 keV)

L. Netterdon et al., PLB 744 (2015) 358

⁸⁹Y(p,γ) partial cross sections: huge deviations

• using γ -strength function from (γ , γ ') measurement:

R. Schwengner *et al.*, PRC **78** (2008) 064314

adjusting γ-strength to measured data

Impact on ⁹⁰Zr(γ,p)⁸⁹Y

- 15 % larger reaction rate than
 based on E1-strength from (γ,γ')
- twice as large as BRUSLIB reaction rate (QRPA strength)
- three times smaller than
 NONSMOKER rates (Lorentziantype E1-strength)

R. Schwengner *et al.*, PRC **78** (2008) 064314L. Netterdon *et al.*, PLB **744** (2015) 358P. Scholz, AG Zilges, University of CologneRadiative capture and photodisintegration reactions

⁸⁶Sr

- ⁹²Mo is the most abundant *p* nuclei and its origin is highly debated
- total cross-section were measured before with different techniques at energies below 3.5 MeV
- isotopically enriched ⁹²Mo target (94 %)
- beam currents between 50 nA and 350 nA
- proton energies between 3.7 MeV and 5.4 MeV
 - extending measurement towards higher energies
 - sensitive to higher energy γ-ray transitions

In-beam measurement of the ⁹²Mo(p,γ)

Problem: metastable state @ 391 keV

- Significant half-life
- Electron capture branching to ⁹³Mo

Solution:

- Determine σ_{gs}
- Determine $\sigma_{\rm m}$

Total cross sections

- Previously measured cross sections show fluctuating behavior
- TALYS calculations
 - Unsatisfactory reproduction with default settings
 - modified γ-strengths
 - M1 shell model
 - Gogny-HFB + QRPA
 - Skyrme-HFB + QRPA

Total cross sections

- Previously measured cross sections show fluctuating behavior
- TALYS calculations
 - Unsatisfactory reproduction with default settings
 - modified γ-strengths
 - M1 shell model
 - Gogny-HFB + QRPA
 - Skyrme-HFB + QRPA

Total cross sections

- Previously measured cross sections show fluctuating behavior
- TALYS calculations
 - Unsatisfactory reproduction with default settings
 - modified γ-strengths
 - M1 shell model
 - Gogny-HFB + QRPA
 - Skyrme-HFB + QRPA

Total cross sections

- Previously measured cross sections show fluctuating behavior
- TALYS calculations
 - Unsatisfactory reproduction with default settings
 - modified γ-strengths
 - M1 shell model
 - Gogny-HFB + QRPA
 - Skyrme-HFB + QRPA

Partial cross sections

J. Mayer et al., PRC, accepted

Summary

- the origin of the *p* nuclei is still unclear due to astrophysical and nuclear physics uncertainties
- direct measurements of (γ,x) reaction rates can in most cases not directly applied to reaction network calculations
- reaction rates are usually calculated within the statistical model and via reciprocity theorem from the inverse reactions
- charged-particle induced reaction studies can be used for the improvement of models for statistical properties of nuclei
 - γ-ray strength functions
 - > particle+nucleus optical model potentials

Uncertainties for γ process nucleosynthesis

Astrophysical uncertainties

- seed abundances from *s* or *r*-process or chemical evolution
- temperature and density profiles
- contribution from, for instance, α-process in neutrino-driven wind scenarios or *rp* process in Type Ia X-ray bursts?

S.E. Woosley and W. M. Howard, ApJSS **36** (1978) 285 T. Rauscher *et al.*, Rep. Prog. Phys. **76** (2013) 066201

Uncertainties for γ process nucleosynthesis

Nuclear physics uncertainties

- sensitivity study of the γ process in ccSN
- all *p* isotope abundances are sensitive to (γ,n) reaction rates
- only the lighter *p* nuclei are sensitive to (γ,p)
- (γ,a) especially important for the production factors of the heavier *p* isotopes

Fig. 10.—Ratio of *p*-abundances calculated with modified rates and the currently accepted HF rates for all (*a*) *n*-induced, (*b*) *p*-induced, and (*c*) α -induced reactions and their inverse processes. Squares and crosses denote results obtained with rates 3 times smaller and larger, respectively.

W. Rapp et al., ApJ 653 (2006) 474

Experimental measurements of cross sections

Monochromatic γ-ray beams

Example: HIγS @ Duke, TERAS @ Tsukuba

- using Laser Compton-Backscattering to produce (quasi-) monochromatic γ-rays
- measuring (γ,n) cross sections point-by-point until the neutron treshold

T. Kondo et al., Phys. Rev. C 86 (2012) 014316

Experimental measurements of cross sections

Bremstrahlung

- simulating a planck distribution with many Bremsstrahlung spectra using different endpoint energies
- direct measurement of (γ,n) reaction rate at a specific temperature

P. Mohr et al., PLB 488 (2000) 127

4*π*-summing crystal

SuN – NaI 4π summing detector [NSCL]

FIG. 1. (Color online) Experimental spectra from the SuN detector for measurements at $E_{\alpha} = 7.7$ MeV. The spectra correspond to the ⁵⁸Ni target (solid black), thick tantalum backing (dotted blue), and normalized room background (dotted-dashed red). The inset shows a zoom around the sum-peak region of the ⁵⁸Ni(α, γ)⁶²Zn reaction.

S. Quinn et al., Phys. Rev. C 89 (2014) 054611

In-beam method with HPGe detectors

Nuclear astrophysics @ HORUS

L. Netterdon et al., NIM A 754 (2014) 94

Target chamber

- cooling trap
- tantalum coating
- independent current readouts
- δ-electron suppression
- built-in detector for Rutherford Backscattering Spectrometry (RBS)

L. Netterdon et al., NIMA 754 (2014) 94-100

Target chamber

