Evgeny Epelbaum, RUB

New Vistas in Low Energy Precision Physics (LEPP), Mainz, April 4-7, 2016

Theoretical overview of nuclear chiral EFT

The landscape of computational nuclear physics

Ultimate goal: predictive & systematically improvable QCD-based theory for nuclei/ nuclear reactions/nuclear matter with quantified uncertainties

The method: chiral EFT for nuclear forces/currents + ab-initio "few"-body approaches [Faddeev-Yakubovski, No Core Shell Model, Quantum Monte Carlo, Lorentz Integral Transform, Coupled Cluster, Lattice, self-consistent Gorkov-Green's functions,...]

Open questions:

- quantitative understanding of Nd scattering and light nuclei (3NF problem)
- systematic underbinding of heavier nuclei (A \sim 40): too soft interactions?
- is it possible to describe heavy nuclei without additional fine tuning?
- nuclei on the edge of stability, exotics (e.g. tetra-neutron?)
- interface with lattice QCD

Some strategies:

- high orders, no fine tuning in LECs, no tuning to heavy nuclei, error analysis EE, Krebs, Meißner; Low Energy Nuclear Physics International Collaboration (LENPIC)
- allow for some fine tuning in LECs and fit to heavy nuclei, error analysis The Oak Ridge group: Ekström, Carlsson, Wendt, Papenbrock, Hagen, ...
- interactions optimized for specific few-body methods, e.g. local forces & QMC Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, Piarulli, Girlanda, Schiavilla, Navarro Perez, ...

Chiral Effective Field Theory

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Q,

Weinberg, Gasser, Leutwyler, Meißner, ...

 $Q = \frac{\text{momenta of external particles or } M_{\pi} \sim 140 \text{ MeV}}{\text{breakdown scale } \Lambda_{b}}$

Write down L_{eff} [π , N, ...], identify relevant diagrams at a given order, do Feynman calculus, fit LECs to exp data, make predictions...

Chiral EFT for nuclear systems: expansion for nuclear forces + resummation (Schrödinger eq.) Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right]|\Psi\rangle = E|\Psi\rangle \qquad \boxed{\mathbf{T}} = \underbrace{\mathbf{V}_{\text{eff}}}_{\text{H}} + \underbrace{\mathbf{V}_{\text{H}}}_{\text{H}} + \underbrace{\mathbf{V}_{\text{H}}} + \underbrace{\mathbf{$$

- systematically improvable
- unified approach for $\pi\pi$, πN , NN
- consistent many-body forces and currents [talk by Jacek Golak]
- error estimations

Notice: nonperturbative treatment of chiral nuclear forces in the Schrödinger eq. requires the introduction of a finite cutoff [Alternatively, use semi-relativistic approach, EE, Gegelia, et al. '12...'15]

Chiral expansion of the nuclear forces [NDA]

Chiral expansion of the nuclear forces [NDA]

EE, Krebs, Meißner, PRL 115 (2015) 122301

Chiral expansion of the nuclear forces [NDA]

Why go to fifth order (N⁴LO) in the chiral expansion?

- no additional parameters in the NN force (except for 1 IB term) → testing the theory
- there is evidence that χ -expansion for the 3NF is not yet converged at Q⁴

The long-range part of the nuclear forces

Long-range nuclear forces are completely determined by the chiral symmetry of QCD + experimental information on πN scattering

predicted in a parameter-free way

The long-range part of the nuclear forces

Long-range nuclear forces are completely determined by the chiral symmetry of QCD + experimental information on πN scattering

The TPE potential can be derived by taking the phase-space integral of the π N amplitudes computed in ChPT (Lorentz-transformed to the proper kinematics...) Kaiser '00

^{1.0} Determination of $\pi N L$

- determination of πN LECs from πN PWA Fettes, Meißner, Alarcon, Camaton, Casparyan, EE, Krebs, Deliang, ... - LECs from Roy-Steiner-eq. analysis of πN -scattering representer, Ruiz de Elvira, Kubis, Meißner, Yao, Gegelia, ... - determination of LECs from πN data wendt, Ekström, Siemens, Sernard, EE, Gasparyan, Krebs, Meißner, ...

NN phase shifts order by order

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; PRL 115 (2015) 122301

Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

NN phase shifts order by order

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; PRL 115 (2015) 122301

Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

Quality of the reproduction of the Nijmegen PWA ($,\chi^2_{datum}$) [using R = 0.9 fm]

$\overline{E_{\text{lab}}}$ bin	LO [Q ⁰]	NLO [Q ²]	$N^{2}LO$ [Q ³]	N ³ LO [Q ⁴]	N ⁴ LO [Q ⁵]	
neutron-proton p	phase shifts					
0-100	360	31	4.5	0.7	0.3	
0 - 200	480 63		21	0.7	0.3	
proton-proton pl	hase shifts					
0–100	5750	102	15	0.8	0.3	
0 - 200	9150	560	130	0.7	0.6	
				•••		

+ 7 LECs + 2 IB LECs

2 LECs

+ 15 LECs

+ 1 IB LEC

NN phase shifts order by order

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; PRL 115 (2015) 122301

Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

Quality of the reproduction of the Nijmegen PWA (", χ^2 datum") [using R = 0.9 fm]

0.3
0.5
0.3
0.3
N ⁴ LO [Q ⁵]
4]

Quantification of **Theoretical Uncertainties**

PHYSICAL REVIEW A atomic, molecular, and optical physics

Highlights Recent Accepted Authors Referees Search About ล

Editorial: Uncertainty Estimates

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities. [...]

Phys. Rev. A 83, 040001 (2011)

Sources of uncertainty:

- Uncertainty in NN PWA used as input to fix contact interactions (probably small)
- Uncertainty in the values of πN LECs (might be significant, Carlsson et al.'15)
- Statistical uncertainty for NN LECs (small, Ekström et al.'14)
- Uncertainty due to truncation of the chiral expansion at a given order

Sources of uncertainty:

- Uncertainty in NN PWA used as input to fix contact interactions (probably small)
- Uncertainty in the values of πN LECs (might be significant, Carlsson et al.'15)
- Statistical uncertainty for NN LECs (small, Ekström et al.'14)
- Uncertainty due to truncation of the chiral expansion at a given order

A simple algorithm [EE, Krebs, Meißner, EPJA 51 (2015) 53]

Let $X^{(i)}(p)$ be an observable of interest calculated in chiral EFT up to the order Qⁱ:

 $X^{(i)}(p) = X^{(0)} + \underbrace{\Delta X^{(2)}}_{\sim Q^2 X^{(0)}} + \dots + \underbrace{\Delta X^{(i)}}_{\sim Q^i X^{(0)}} \text{ with } Q = \max(p/\Lambda_b, M_\pi/\Lambda_b)$

Use the explicitly calculated $\Delta X^{(i)}$ to estimate the uncertainty $\delta X^{(i)}$ at order Qⁱ:

$$\delta X^{(0)} = Q^2 |X^{(0)}|, \quad \delta X^{(i)} = \max_{2 \leq j \leq i} \left(Q^{i+1} |X^{(0)}|, \ Q^{i+1-j} |\Delta X^{(j)}|
ight)$$

subject to the additional constraint $\delta X^{(i)} \geq \max_{j,k} (|X^{(j\geq i)} - X^{(k\geq i)}|).$

- no reliance on cutoff variation (not reliable)
- easily applicable to any observable of interest (scattering, bound states, 3N, ...)
- error bars consistent with 68% degree-of-belief intervals Furnstahl et al., PRC 92 (2015) 024005

Total cross section in np scattering [R = 0.9 fm]

Proton-neutron scattering at E_{lab} = 50 MeV [R = 0.9 fm]

Proton-neutron scattering at E_{lab} = 200 MeV [R = 0.9 fm]

Work in progress: **Testing the chiral 3NF**

Having developed these tools, namely

- accurate and precise NN potentials up to N⁴LO
- reliable approach for quantifying theoretical uncertainties,

we are well equipped to address the three-nucleon force problem.

Notice: none of the existing 3NF models is able to reproduce 3N scattering Observables [Kalantar-Naestanaki, EE, Messchendorp, Nogga, Rept. Prog. Phys. 75 (12) 016301]

JÜLICH Kyutech

3N force: first insights

LENPIC, arXiv:1505.07218[nucl-th], to appear in PRC

Is there evidence for missing 3N forces effects? Yes!

• Discrepancies between theory and data well outside the range of quantified uncertainties

→ clear evidence for missing 3NF effects

DARMSTADT

RUB

universitätbonr

• Magnitude of the required 3NF contributions matches well the estimated size of N²LO terms

National Laboratory

- → consistent with the chiral power counting
- LENPIC: Low Energy Nuclear Physics International Collaboration

3N force: first insights

LENPIC, arXiv:1505.07218[nucl-th], to appear in PRC

Similar pattern is observed for the properties of the light nuclei:

Nd elastic scattering at 10 MeV [r = 0.9 fm]

Nd elastic scattering at 70 MeV [r = 0.9 fm]

Nd elastic scattering at 135 MeV [r = 0.9 fm]

Nd elastic scattering at 200 MeV [r = 0.9 fm]

Nuclear lattice simulations: A new ab initio approach to nuclei and nuclear reactions

D. Lee, EE, H. Krebs, T. Lähde, T. Luu, U.-G. Meißner, G. Rupak, ...

Some recent highlights:

Ab initio calculation of the Hoyle state EE, H. Krebs, D. Lee, U.-G. Meißner, PRL 106 (11) 192501; EE, H. Krebs, T.A.Lähde, D. Lee, U.-G. Meißner, PRL 109 (12) 252501

Ab initio calculation of the spectrum and structure of ¹⁶O EE, H. Krebs, T. A. Lähde, D. Lee, U.-G. Meißner, G. Rupak, PRL 112 (14) 102501

Lattice EFT for medium-mass nuclei

T. A. Lähde, EE, H. Krebs, D. Lee, U.-G. Meißner, G. Rupak, PLB 732 (14) 110

Symmetry-sign extrapolations

T.A. Lähde, T. Luu, D. Lee, U.-G. Meißner, EE, H. Krebs, G. Rupak, EPJ A51 (15) 92

Ab initio alpha-alpha scattering

Elhatisari, Lee, Rupak, EE, Krebs, Lähde, Luu, Meißner, Nature 528 (2015) 111

Lab

nature

Ab initio alpha-alpha scattering

 $Serdar Elhatisari^1, Dean Lee^2, Gautam Rupak^3, Evgeny Epelbaum^4, Hermann Krebs^4, Timo A. Lähde^5, Thomas Luu^{1.5} \& Ulf-G. Meißner^{1.5,6}$

Nature 528, 111-114 (03 December 2015) | doi:10.1038/nature16067

Received 12 June 2015 | Accepted 30 September 2015 | Published online 02 December 2015

First ab initio calculation of alpha-alpha scattering!

Used lattice EFT to extract the effective Hamiltonian for two interacting α-clusters (adiabatic projection method [A. Rokash et al., PRC 92 (15) 054612])

Phase shifts obtained $[m_{T}] = [N_{\tau}^{-1/2}H_{\tau}N_{\tau}^{-1/2}]_{R,R}^{\ell,\ell_{z}}$ loying a hard spherical wall boundary at asymptotically large distances

Promising scaling with respect to the number of particles as $\sim (A_1 + A_2)^2$

6 E_{Lab} (MeV) 8

10

12

40

0

2

Dependence of the 3α reaction on m_q

EE, Krebs, Lähde, Lee, Meißner, PRL 110 (2013) 112502; EPJA 49 (2013)

4.439 MeV

stable ¹²C

α-decay (99.96%)

Carbon production (0.04%) Production of ¹²C in stars depends 0⁺ Hoyle state 7.654 MeV sensitively on $\varepsilon \equiv E_{12}^{\star} - 3E_4 = 379.47(18) \text{ keV}$ $r_{3\alpha} \simeq 3^{\frac{3}{2}} N_{\alpha}^{3} \left(\frac{2\pi\hbar^{2}}{M_{\alpha}k_{\rm B}T}\right)^{3} \frac{\Gamma_{\gamma}}{\hbar} \exp\left(-\frac{\varepsilon}{k_{\rm B}T}\right)$

Changing ε by ~100 keV destroys production of either ¹²C or ¹⁶O [Livio et al.'89]: A good candidate for the anthropic principle?

Dependence of the 3α reaction on m_q

EE, Krebs, Lähde, Lee, Meißner, PRL 110 (2013) 112502; EPJA 49 (2013)

Changing ε by ~100 keV destroys production of either ¹²C or ¹⁶O [Livio et al.'89]: A good candidate for the anthropic principle?

Dependence of the 3α reaction on m_q

EE, Krebs, Lähde, Lee, Meißner, PRL 110 (2013) 112502; EPJA 49 (2013)

Changing ε by ~100 keV destroys production of either ¹²C or ¹⁶O [Livio et al.'89]: A good candidate for the anthropic principle?

Input: the slopes of the inverse S-wave scattering lengths:

$$\left(\partial a_s^{-1}/\partial M_{\pi}
ight)_{M^{
m phys}_{\pi}} ~~ \left(\partial a_t^{-1}/\partial M_{\pi}
ight)_{M^{
m phys}_{\pi}}$$

Output: "Survivability bands"

For more decisive conclusions, need lattice-QCD calculations of the quark mass dependence of the scattering lengths!

Lattice QCD for the NN system

Further, the HAL QCD Collaboration finds no bound states for $M_{\pi} > 411$ MeV

- Pionless EFT: extrapolate in the number of nucleons [large M_{π}] Barnea, Kirscher, van Kolck, ...
- Chiral EFT: extrapolate in M_{π} (and the number of nucleons) [small M_{π}] Beane, Savage, EE, Glöckle, Meißner, Gegelia, Soto, Chen, ...
- Low-Energy Theorems (LETs) for the NN system: extrapolate in energy at fixed M_{π} Baru, EE, Filin, Gegelia, PRC 92 (2015) 014001

The long-range interaction (1π) governs the low-energy behavior of the amplitude and implies correlations between coefficients in the ERE which may be regarded as Low Energy Theorems

— very good / fair predictive power in the ${}^{3}S_{1}$ / ${}^{1}S_{0}$ channel at physical M_{π}

- Pionless EFT: extrapolate in the number of nucleons [large M_{π}] Barnea, Kirscher, van Kolck, ...
- Chiral EFT: extrapolate in M_{π} (and the number of nucleons) [small M_{π}] Beane, Savage, EE, Glöckle, Meißner, Gegelia, Soto, Chen, ...
- Low-Energy Theorems (LETs) for the NN system: extrapolate in energy at fixed M_{π} Baru, EE, Filin, Gegelia, PRC 92 (2015) 014001

The long-range interaction (1π) governs the low-energy behavior of the amplitude and implies correlations between coefficients in the ERE which may be regarded as Low Energy Theorems

- very good / fair predictive power in the ${}^{3}S_{1}$ / ${}^{1}S_{0}$ channel at physical M_{π}
- when going to unphysical pion masses, the main change in the left-hand singularities is due to threshold shifts (explicit M_{π} -dependence)

- Pionless EFT: extrapolate in the number of nucleons [large M_{π}] Barnea, Kirscher, van Kolck, ...
- Chiral EFT: extrapolate in M_{π} (and the number of nucleons) [small M_{π}] Beane, Savage, EE, Glöckle, Meißner, Gegelia, Soto, Chen, ...
- Low-Energy Theorems (LETs) for the NN system: extrapolate in energy at fixed M_{π} Baru, EE, Filin, Gegelia, PRC 92 (2015) 014001

The long-range interaction (1π) governs the low-energy behavior of the amplitude and implies correlations between coefficients in the ERE which may be regarded as Low Energy Theorems

- very good / fair predictive power in the ${}^{3}S_{1}$ / ${}^{1}S_{0}$ channel at physical M_{π}
- when going to unphysical pion masses, the main change in the left-hand singularities is due to threshold shifts (explicit M_{π} -dependence)
- changes in discontinuity across the left-hand cuts (M_{π} -dependence of g_A , F_{π} , m_N) are known from lattice QCD

- Pionless EFT: extrapolate in the number of nucleons [large M_{π}] Barnea, Kirscher, van Kolck, ...
- Chiral EFT: extrapolate in M_{π} (and the number of nucleons) [small M_{π}] Beane, Savage, EE, Glöckle, Meißner, Gegelia, Soto, Chen, ...
- Low-Energy Theorems (LETs) for the NN system: extrapolate in energy at fixed M_{π} Baru, EE, Filin, Gegelia, PRC 92 (2015) 014001

The long-range interaction (1π) governs the low-energy behavior of the amplitude and implies correlations between coefficients in the ERE which may be regarded as Low Energy Theorems

- very good / fair predictive power in the ${}^{3}S_{1}$ / ${}^{1}S_{0}$ channel at physical M_{π}
- when going to unphysical pion masses, the main change in the left-hand singularities is due to threshold shifts (explicit M_{π} -dependence)
- changes in discontinuity across the left-hand cuts (M_{π} -dependence of g_A , F_{π} , m_N) are known from lattice QCD
- need a single lattice data (e.g. BE) as input at a given M_{π} to reconstruct the amplitude...

Notice: No reliance on the chiral expansion, $M_{\pi} \rightarrow \infty$ limit well defined!

Low-energy theorems for NN scattering

• Is the conjectured linear M_{π} -behavior of M_{π} r^(3S1) consistent with the trend in BEs? Baru, EE, Filin, Gegelia '15

Low-energy theorems for NN scattering

• Is the conjectured linear M_{π} -behavior of M_{π} r^(3S1) consistent with the trend in BEs? Baru, EE, Filin, Gegelia '15

Low-energy theorems for NN scattering

• Is the conjectured linear M_{π} -behavior of M_{π} r^(3S1) consistent with the trend in BEs? Baru, EE, Filin, Gegelia '15

• Are the NPLQCD results for BE & phase shifts @ M_{π} =450 MeV consistent? Baru, EE, Filin, to appear

Use $B_d = 14.4 \begin{pmatrix} +3.2 \\ -2.6 \end{pmatrix}$ MeV [Beane et al.'16] as input to predict phase shifts via LETs

NPLQCD results for phase shifts at the two lowest energies are incompatible with their results for B_d: Underestimated systematics??

Summary

A new generation of chiral NN potentials up to N⁴LO

- excellent description of NN data
- good convergence of the chiral expansion

A simple approach to estimate theoretical uncertainty at a given order

- applicable to any observable and for a particular choice of the regulator
- results in the NN system at all orders and for all cutoffs are consistent with each other and with experimental data (within uncertainties)

Application to few-N systems

- clear evidence for missing 3NF effects within our scheme
- Nd scattering at 50...150 MeV: a golden window to test the 3NF (in progress)

Nuclear lattice simulations

- promising novel approach to nuclei & reactions (first ab initio αα scattering!)

Lattice QCD & nuclear physics

- EFT, LETs: useful tools to extend/test lattice-QCD results

Good progress towards reliable ab initio description of nuclear systems based on chiral EFT with quantified theoretical uncertainties!

spares...

$$T(\vec{p}', \vec{p}) = V_{2N}(\vec{p}', \vec{p}) + m \int \frac{d^3k}{(2\pi)^3} \frac{V_{2N}(\vec{p}', \vec{k}) T(\vec{k}, \vec{p})}{p^2 - k^2 + i\epsilon} \quad \text{with} \quad V_{2N} = \alpha \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \, + \, \dots$$

→ Lippmann-Schwinger eq. is linearly divergent, need infinitely many CTs to absorb UV divergences from iterations!

$$T(\vec{p}', \vec{p}) = V_{2N}(\vec{p}', \vec{p}) + m \int \frac{d^3k}{(2\pi)^3} \frac{V_{2N}(\vec{p}', \vec{k}) T(\vec{k}, \vec{p})}{p^2 - k^2 + i\epsilon} \quad \text{with} \quad V_{2N} = \alpha \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \, + \, \dots$$

→ Lippmann-Schwinger eq. is linearly divergent, need infinitely many CTs to absorb UV divergences from iterations!

Possible approaches:

- Use a manifestly Lorentz-invariant approach (3D-eqs. fulfilling relativistic unitarity) EE, Gegelia'12,'13; EE, Gasparyan, Gegelia, Krebs, Schindler '14,'15
 - integral eq. is renormalizable at LO (only log-divergences), Λ can be removed!
 - Caveat: calculations are complicated, hard to go beyond the NN system...

$$T(\vec{p}', \vec{p}) = V_{2N}(\vec{p}', \vec{p}) + m \int \frac{d^3k}{(2\pi)^3} \frac{V_{2N}(\vec{p}', \vec{k}) T(\vec{k}, \vec{p})}{p^2 - k^2 + i\epsilon} \quad \text{with} \quad V_{2N} = \alpha \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \, + \, \dots$$

→ Lippmann-Schwinger eq. is linearly divergent, need infinitely many CTs to absorb UV divergences from iterations!

Possible approaches:

- Use a manifestly Lorentz-invariant approach (3D-eqs. fulfilling relativistic unitarity) EE, Gegelia'12,'13; EE, Gasparyan, Gegelia, Krebs, Schindler '14,'15
 - integral eq. is renormalizable at LO (only log-divergences), Λ can be removed!
 - Caveat: calculations are complicated, hard to go beyond the NN system...
- Use a finite UV cutoff (most frequently used) Lepage '97
 - simple, well suited for few- and many-body calculations
 - it is not legitimate to take Λ well above Λ_b (unless all UV div. can be subtracted) Lepage '97; EE, Gegelia '09
 - Caveat: finite-cutoff artifacts...

$$T(\vec{p}', \vec{p}) = V_{2N}(\vec{p}', \vec{p}) + m \int \frac{d^3k}{(2\pi)^3} \frac{V_{2N}(\vec{p}', \vec{k}) T(\vec{k}, \vec{p})}{p^2 - k^2 + i\epsilon} \quad \text{with} \quad V_{2N} = \alpha \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \, + \, \dots$$

→ Lippmann-Schwinger eq. is linearly divergent, need infinitely many CTs to absorb UV divergences from iterations!

Possible approaches:

- Use a manifestly Lorentz-invariant approach (3D-eqs. fulfilling relativistic unitarity) EE, Gegelia'12,'13; EE, Gasparyan, Gegelia, Krebs, Schindler '14,'15
 - integral eq. is renormalizable at LO (only log-divergences), Λ can be removed!
 - Caveat: calculations are complicated, hard to go beyond the NN system...
- Use a finite UV cutoff (most frequently used) Lepage '97
 - simple, well suited for few- and many-body calculations
 - it is not legitimate to take Λ well above Λ_b (unless all UV div. can be subtracted) Lepage '97; EE, Gegelia '09
 - Caveat: finite-cutoff artifacts...

(Implicit) renormalization: express bare LECs in terms of observables (phase shifts) Notice: LECs have to be refitted at each chiral order

Neutron-proton phase shifts

Neutron-proton total cross section

Regulator (in)dependence

How do our results depend on the specific form of the regulator $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^n$

and/or additional spectral function regularization $V_C(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\Lambda_{\text{SFR}}} d\mu \, \mu \, \frac{\rho_C(\mu)}{\mu^2 + q^2}$

Selected phase shifts (in deg.) for different values of Λ_{SFR} and n at $N^3LO_{[R = 0.9 \text{ fm}]}$

Lab. energy	NPWA	our result	DR, $n = 5$	DR, $n = 7$	SFR, 1.0 GeV	SFR, 1.5 GeV	SFR, 2.0 GeV	
proton-proto	on ¹ S ₀ pha	ase shift						
$10 {\rm MeV}$	55.23	55.22 ± 0.08	55.22	55.22	55.22	55.22	55.22	
$100 {\rm ~MeV}$	24.99	24.98 ± 0.60	24.98	24.98	24.98	24.98	24.98	
$200~{\rm MeV}$	6.55	6.56 ± 2.2	6.55	6.56	6.56	6.56	6.57	
neutron-proton ${}^{3}S_{1}$ phase shift								
$10 {\rm MeV}$	102.61	102.61 ± 0.07	102.61	102.61	102.61	102.61	102.61	
$100 {\rm ~MeV}$	43.23	43.22 ± 0.30	43.28	43.20	43.17	43.21	43.22	
$200~{\rm MeV}$	21.22	21.2 ± 1.4	21.2	21.2	21.2	21.2	21.2	
proton-proton ${}^{3}P_{0}$ phase shift								
$10 {\rm ~MeV}$	3.73	3.75 ± 0.04	3.75	3.75	3.75	3.75	3.75	
$100 {\rm ~MeV}$	9.45	9.17 ± 0.30	9.15	9.18	9.18	9.17	9.17	
$200~{\rm MeV}$	-0.37	-0.1 ± 2.3	-0.1	-0.1	-0.1	-0.1	-0.1	
proton-prote	on ³ P ₁ pha	ase shift						
$10 {\rm MeV}$	-2.06	-2.04 ± 0.01	-2.04	-2.04	-2.04	-2.04	-2.04	
$100 {\rm ~MeV}$	-13.26	-13.42 ± 0.17	-13.43	-13.41	-13.41	-13.42	-13.42	
$200~{\rm MeV}$	-21.25	-21.2 ± 1.6	-21.2	-21.2	-21.2	-21.2	-21.2	
proton-prote	on ³ P ₂ pha	ase shift						
$10 {\rm ~MeV}$	0.65	0.65 ± 0.01	0.66	0.65	0.65	0.65	0.65	
$100 {\rm ~MeV}$	11.01	11.03 ± 0.50	10.97	11.06	11.07	11.05	11.04	
$200~{\rm MeV}$	15.63	15.6 ± 1.9	15.6	15.5	15.5	15.5	15.6	

-> negligible regulator dependence (compared to the estimated theor. accuracy)

Deuteron properties R=0.9 fm

EE, Krebs, Meißner, arXiv:1412.0142 [nucl-th], arXiv:1412.4623 [nucl-th]

	LO	NLO	N	Ν	N	empirical	
В	2.0235	2.1987	2.2311	2.2246*	2.2246*	2.224575(9)	
Α	0.8333	0.8772	0.8865	0.8845	0.8844	0.8846(9)	
η	0.0212	0.0256	0.0256	0.0255	0.0255	0.0256(4)	
ľd	1.990	1.968	1.966	1.972	1.972	1.97535(85)	
Q [fm	0.230	0.273	0.270	0.271	0.271	0.2859(3)	
PD	2.54	4.73	4.50	4.19	4.29		

- fast convergence of the chiral expansion (P_D is not observable)

- error estimation (assuming Q= M_{π}/Λ_b)
 - As: LO: 0.83(5) → NLO: 0.878(13) → N²LO: 0.887(3) → N³LO: 0.8845(8) → N⁴LO: 0.8844(2)
 - **η**: LO: 0.021(5) → NLO: 0.026(1) → N²LO: 0.0256(3) → N³LO: 0.0255(1) → N⁴LO: 0.0255

 \rightarrow theoretical results for A_S, η at N⁴LO are more accurate than empirical numbers

- results for r_d and Q do not take into account MECs and relativistic corrections:
 - rd: $|\Delta r_d| \simeq 0.004~{
 m fm}$ [Kohno '83] ightarrow predictions in agreement with the data
 - Q: rel. corrections + 1 π -exchange MEC: $\Delta Q \simeq +0.008 \text{ fm}^2$ [Phillips '07] $\rightarrow Q \simeq 0.279 \text{ fm}^2$ the remaining deviation of 0.007 fm² agrees with the expected size of \checkmark [Phillips '07]

No justification for making combined πN and NN fits!

NNLOsep	NNLOsim
-0.15387(10)	-0.1474(20)
-0.152935(72)	-0.1465(20)
-0.15354(43)	-0.1471(20)
+2.7442(19)	+2.548(47)
-0.1671(10)	-0.1687(21)
+0.8738(64)	+0.705(47)
+0.6899(67)	+0.597(11)
+1.2782(66)	+1.161(31)
+0.521(12)	+0.520(33)
-0.9378(69)	-0.955(31)
-0.68645(76)	-0.658(30)
-0.581(28)	-0.325(51)
-0.6666(99)	-0.521(17)
-0.69(50)	+0.22(30)
+3.0(14)	+5.1(10)
-4.12(32)	-3.56(13)
+5.35(81)	+3.933(85)
+6.22(44)	+5.320(94)
-5.31(30)	-4.83(22)
-0.46(18)	-0.24(14)
-11.00(42)	-10.23(27)
-0.63(95)	-0.26(89)
-7.7(26)	-9.3(24)
+5.9(49)	-0.0(41)
+2.1(18)	+1.5(18)
-8.1(42)	-1.2(16)
	$\begin{array}{r} {\rm NNLOsep} \\ \hline -0.15387(10) \\ -0.152935(72) \\ -0.15354(43) \\ +2.7442(19) \\ -0.1671(10) \\ +0.8738(64) \\ +0.6899(67) \\ +1.2782(66) \\ +0.521(12) \\ -0.9378(69) \\ -0.68645(76) \\ -0.581(28) \\ -0.6666(99) \\ \hline -0.69(50) \\ +3.0(14) \\ -4.12(32) \\ +5.35(81) \\ \hline +6.22(44) \\ -5.31(30) \\ -0.46(18) \\ -11.00(42) \\ -0.63(95) \\ -7.7(26) \\ +5.9(49) \\ +2.1(18) \\ -8.1(42) \\ \hline \end{array}$

Table VIII. NNLOsep and NNLOsim ($\Lambda = 500, T_{\text{max}} = 290$)

TABLE I: Numerical values of the πN LECs that result from the optimization with respect to explrimental observables. The resulting values are grouped from left to right in the order they appear in the Lagrangian.

$\mathcal{O}(Q^1)$ LECs	$\mathcal{O}(Q^2)$ LECs	$\mathcal{O}(Q^3)$ LECs			
$[{\rm GeV}^{-1}]$	$[{ m GeV}^{-2}]$	$[\text{GeV}^{-3}]$			
$c_1 -1.40 \pm 0.12$	$d_1 + d_2 + 5.80 \pm 0.14$	$\bar{e}_{14} + 1.53 \pm 0.31$			
$c_2 + 1.71 \pm 0.33$	d_{3} -5.66 ± 0.08	$\bar{e}_{15} - 11.91 \pm 0.87$			
$c_3 - 4.56 \pm 0.11$	$d_5 + 0.03 \pm 0.06$	$ \bar{e}_{16} + 11.43 \pm 1.23$			
$c_4 + 3.72 \pm 0.27$	$d_{14} - d_{15} - 11.50 \pm 0.12$	$\bar{e}_{17} + 0.73 \pm 0.51$			
		$ \bar{e}_{18} + 0.57 \pm 1.36$			

Also, does it make sense to make combined πN and NN fits with πN amplitude taken at different chiral orders?

LECs (in GeV⁻ⁿ) extracted from πN scattering

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	$ar{d}_3$	$ar{d}_5$	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{17}
$[Q^4]_{\rm HB, NN}, {\rm GW PWA}$	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58
$[Q^4]_{\rm HB,NN},{\rm KH}$ PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37
$[Q^4]_{\text{covariant}}, \text{ data}$	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90