

GEM Detector Development for MAGIX

> 6th Apr 2016 LEPP Mainz

> Pepe Gülker

- Spatial Resolution < 50 μm
- Many Channels ~10k
- High Rate Capability ~1MHz (Luminosity: 10³⁵ cm⁻² s⁻¹)
- Minimize Material Budget
 - (Energy: < 105 MeV)
- Track Reconstruction
- Large Area 30 x 120 cm²

GEM Gas Electron Multiplier

Pitch	р	=	70 µm
Diameter	D	=	140 µm
Copper	$d_{_{Cu}}$	=	5 µm
Kapton	d _{Ka}	=	50 µm

- Spatial Resolution < 50 μm
 - \rightarrow achieved by COMPASS
- Many Channels \rightarrow APVs
- High Rate Capability ~1MHz
 → Benlloch et al.
- Minimize Material Budget
 - \rightarrow Simulation
- Track Reconstruction
 - → Try GEM hodoscope first!
- Large Area 30 x 120 cm^2

Stretching

Thermal Stretching

• $\Delta T \sim 80 K$

MAGIXIDAM

- Used for 10x10 GEMs
- Not scalable

Mechanical Stretching

- Tensiometer controlled
- Method for 30x30 GEMs
- Under development
- Works for mashes as well

P<u>rofile Measureme</u>nt

Plot of all available datapoints

MAGIXIDAM

Plot of planar corrected foil and quadratic fit

- Take data of foil
- Take data of table
- Correct foil data
- Apply linear and quadratic Fit
 - \rightarrow Sagging < 100 μ m

GEM Development

- GEMs trained and stretched
- 10x10 Prototype working

- In house production of readout PCBs
- 16 pad-readout to measure gain uniformity is set up

⁵⁵Fe-Spectra taken with QDC

- Single channel readout PCB
- Built PreAmp for GEMs
- Self triggered via LEdiscriminator

Vary \mathbf{U}_{GEM}

- Fit charge of photo and escape peak for different voltages
- Plot and fit with expfunction

8

Method)

Top (2)

electrons on fixed grid. (T2K-

Use a movable UV-Laser to create electrons on the bottom side of

a thin aluminized Mylar cathode.

readout.

Perform conventional calibration with MICROMEGAS-Hodoscope.

Proof of concept for the laser calibration setup.

Beam Times

MAGIXIDAM

2 nd Test 34/37

+ Requirements · Reference Detectors · Multi Chamel Dag optional

·xytable

47/49 3rd test @A1 High Rale Tests A LB Beau Due C GETI Requirements · Temperture Prode ? · Camera · Det in Spectromets as well?

- GEM Tracker for focal plane
- Infrastructure for GEM development set up
- First prototype operational

next steps:

- Going bigger
- Going thinner

Thank you

magix.kph.uni-mainz.de

The particle paths are bended inside the magnet spectrometers in such a way that momenta and scattering angles are mapped to points in the focal plane, which are measured by GEM detectors.

Luminosity: rel. Momentum Res: Angular Res: $10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ < 10^{-4} < 0,9 mrad

Design Readout PCB

- different pitches
- pads and stripes
- angle between coordinates
- hex pads?

Minimize Material Budget

- Use Kapton based readout foil
 - \rightarrow FlexPCB
- Use Electroplating
 - → Peter Bernhard
- Think about Connectors ¹⁸

Multi Channel Readout

- INFN Readout System
 - APV25
 - 128 Channels per FrontEndCard
 - 40 MHz
 - Full Wavaform of each Channel

