

Maurik Holtrop For the HPS Collaboration LEPP, Mainz, April 5, 2016

Heavy Photons?

Old idea: Nature may have an additional U(1) symmetry. If so there will be kinetic mixing between the photon and the new gauge boson. Holdom, Phys. Lett B166, 1986

Mixing

Photon mixing with A' is equivalent to ordinary charged matter acquiring a milli-charge under the A'

Putting this in perspective

Putting this in perspective

Maurik Holtrop

"Natural*" Coupling and Mass

Mass inherited from "electro-weak" scale

$$m_{A'}^2 \sim \epsilon M_W^2$$

$$m_{A'}^2 \sim \frac{eg_D}{16\pi^2} M_W^2$$

or

or Stückelberg mechanism: m_{A'} ~ meV

Neil Weiner, Intensity Frontier WS '11

Natural ε could be ~ I (tree level) Or I < ε < 10⁻⁸ (loops) or "anything" ...

Leading to: $M_{A'} \sim {
m MeV} - {
m GeV}$

See: R. Essig et al, Intensity Frontier WS '11 summary paper.

Search area of choice

A lot of interest!

Since 2010, a lot of interest in this field.

Exclusion areas in 2010

At the time of the HPS proposal, exclusion areas were mostly due to beam dump searches.

A lot of interest!

Since 2010, a lot of interest in this field.

Fixed Target Searches

Very high luminosities: **Intensity Frontier Physics.**

P. Schuster, R. Essig et al, Intensity Frontier WS 'II summary paper.

Bump Hunt:

Look for signal over background.

Bump Hunt + Vertexing:

Look for signal over background, reduce background with vertexing.

BEST: Bjorken, Essig, Schuster, Toro, Phys.Rev. D80 (2009) 075018

Maurik Holtrop

A' lifetime

 $\gamma c\tau \approx 1 \, \mathrm{mm}\left(\frac{\gamma}{10}\right) \left(10^{-8} \frac{\alpha}{\alpha'}\right) \left(\frac{10^{-8} \alpha}{\alpha'}\right) \left(\frac{10^{-8} \alpha}{\alpha'}\right)$

 $\left(\frac{\alpha}{\alpha'}\right) \left(\frac{100 \text{ MeV}}{m_{A'}}\right)$

Lower α′, lower mass →longer lifetime

Background is all prompt Lower coupling can be reached using vertexing.

Maurik Holtrop

University of

New Hampshire

Detecting A' decays

Need:

- Small angle detection of e+ e-
- Very high luminosity
- Good invariant mass resolution

The HPS Experiment

NH

DAI

HPS Setup in Hall B Alcove

PbWO₄ Ecal Installed September, 2014

Si Vertex Tracker Installed Feb 23, 2015

A magnet chicane directs the CEBAF 12 electron beam onto a W foil, producing heavy photons. They decay to e⁺e⁻ pairs, which are measured by the Si vertex tracker inside an analyzing magnet. A PbWO₄ ECal provides a fast trigger. https://confluence.slac.stanford.edu/display/hpsg/Heavy+Photon+Search+Experiment

Beam's Eye View of SVT

Beam goes

here

Detecting scattering angles down to 15 mrad means the edge of the layer 1 tracker is only 0.5 mm from the beam.

The Engineering Runs '15 & '16

HPS is making use of "opportunistic" running in 2015 & 2016, while the CLASI2 detector is being build in Hall-B.

Spring 2015: Beam time during nights and weekends. Beam: 1.05 GeV @ 50 nA on 4 µm W target Data rate: 20 kHz, 150 MB/sec

Spring 2016: Beam time during weekends only

Beam: 2.3 GeV @ 200 nA on 4 µm W target Data rate: 25 kHz (up to 50 kHz), 200 MB/sec

- These are challenging running conditions, with a lot of time spend on beam tuning each startup.
- Excellent support from accelerator division made physics quality data possible.
- Both runs had interruptions due to issues with accelerator (CHL)
- Both runs received extensions from lab management.

The Engineering Runs '15 & '16

Timeline:

- February 2015: HPS fully installed.
- March-April: Commissioned Hall B beam line 1 GeV
- mid-April: CEBAF down (CHL crash)
- Iate April: Commissioned Trigger and SVT DAQ
- Iate April: Explore SVT backgrounds
 Move SVT closer to beam
- May 1-12: Production running, 1GeV at 1.5 mm
- May 12-18: Production running, 1 GeV at 0.5 mm
- February 2016: Commissioned Hall B beam line 2.3 GeV
- March 2016: CEBAF down (CHL problem)
- April 2016: Production running ...

Layer 1 silicon sensors are just 0.5 mm above and below beam. Min opening angle is $\theta_y = 15$ mrad.

Run 5623 Event 62 N. Graf

Beam Quality

Maurik Holtrop

University of

New Hampshire

HPS requires a very high quality beam, with very low halo. $\sigma_X \sim 300$ to 500 µm - To spread heat load. $\sigma_Y \sim 15 - 50$ µm - To help vertexting &

The beam also needs to be very stable over time. A Fast Shut-Down stops the beam in <10 ms, if halo counters register above threshold counts.

LEPP, April 5, 2016

2015: 1.05 GeV Run, Charge on target.

Proposal: 1 full week of 50 nA beam on target, 30mC Achieved: ~10 mC with SVT at 1.5mm, 10 mC at 0.5 mm

University of New Hampshire

Maurik Holtrop

2016: 2.3 GeV Run, Charge on target.

Running 200 nA, 2.3 GeV on target

Still opportunistic running, weekends only.

CHL work stopped run from March 8 until April 1.

Run is still happening! Extended until end of April 2016.

Online data quality

ECal Calibrations

- Ecal provides fast trigger for experiment
- At 1 GeV beam, Ecal and SVT energy 0 resolution comparable

Cosmic ray muon passing vertically through 10 crystals in the Ecal

(GeV) Cluster Energy 0.9 10² 0.8 0.7 0.6 10 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 1.1 0.6 Cluster Energy (GeV) Entries 13685 Ecal timing can Mean -0.05588RMS 0.7368 χ^2/ndf 30.43/31 reduce Prob 0.4949Constant 400 accidentals! Sigma 0.4766 ± 0.0046 $\sigma = 476 \text{ ps}$ 200 100 2 Cluster Time Difference (ns)

Plots from Holly Vance

LEPP, April 5, 2016

600

300

ECal Resolution

Further calibration reduces Timing resolution ~ 340 ps

Full energy electrons used for calibration: Energy resolution ~ 4%

Plots from Holly Vance

University of New Hampshire

Maurik Holtrop

Tracker Performance

24

Vertexing Performance

Good vertex resolution is critical for the experiment. Excellent agreement between Monte-Carlo & Data. Normalized to 7 PAC days luminosity (5420 nb⁻¹) \Rightarrow results (reach) agree with original HPS proposal.

Pairs Mass Distribution

Data blinding policy: only 10% of data made available. This plot is a small fraction of unblinded data, tiny fraction of all data. *Very* preliminary look!

To do: better calibrations, study cuts, more data, ...

Reach vs Runtime

Full HPS Reach

Near term Running (Yellow)

1 week with 50nA @ 1.1 GeV 1 week with 200nA @ 2.2 GeV 2 weeks with 300nA @ 4.4 GeV

Additional Running (Blue):

2 weeks with 200nA @ 2.2 GeV 2 weeks with 300nA @ 4.4 GeV 3 weeks with 450nA @ 6.6 GeV

Times are "PAC" times = Calendar time/2

Conclusions

- The HPS experiment has successfully completed its first physics data with 1.05 GeV beam, during the 2015 "Engineering Run".
 - Roughly 1/3 "PAC week" of data was gathered for 1.05 GeV with the SVT at 0.5 mm from the beam. Enough data for several PhD theses.
- Current "Engineering Run 2" (2016) taking data at 2.3 GeV
- Initial look at the data looks very promising.
- Opportunistic running, with CLASI2 installation during the day, is a challenge, but possible.
- We hope to take a lot more data in the next few years.

Some Extras

University of New Hampshire Maurik Holtrop JLab User Group Meeting June 2, 2015

Mass resolution vs. Mass

Hints from astrophysics?

PAMELA, FERMI, AMS Energetic e+/e- cosmic rays from DM annihilation through A' ?

Energy in GeV

10-100 MeV A' could explain muon g-2 anomaly

More recent hints?

Excess of γ-rays from the galactic center is compatible with 50 GeV DM annihilating through a dark photon ("light mediator")

FIG. 3 (color online). The e^+e^- spectrum (top) and positron fraction (bottom) for the SIDM model, compared to observations from PAMELA and AMS-02, respectively. Note that excellent fits with no dark matter can be found by varying the diffusion and solar modulation parameters away from what has been assumed here.

FIG. 1 (color online). γ -ray spectrum from Inverse Compton emission and final-state radiation produced by annihilation of a 50-GeV dark matter particle through a light mediator into $e^+e^$ final state. The spectrum is compared to the Galactic center excess [10].

Caveat: Astro-physics is complicated! (and theorists are creative)

10.1103/PhysRevLett.114.211303 (May 2015)