Measuring a_{μ}^{HLO} in the spacelike region

[based on Phys.Lett. B746 (2015) 325-329]

C.M.C. Calame¹, M. Passera², L. Trentadue³, <u>G. Venanzoni⁴</u>

¹INFN, Sezione di Pavia, Pavia, Italy
 ²INFN, Sezione di Padova, Padova, Italy
 ³Universita' di Parma, Parma, Italy and Sezione INFN Milano Bicocca, Milano, Italy
 ⁴INFN, Laboratori Nazionali di Frascati, Frascati, Italy

α_{em} running and the Vacuum Polarization

- Due to Vacuum Polarization effects $\alpha_{em}(q^2)$ is a running parameter from its value at vanishing momentum transfer to the effective q^2 .
- > The "Vacuum Polarization" function $\Pi(q^2)$ can be "absorbed" in a redefinition of an effective charge:

$$e^2 \rightarrow e^2(q^2) = \frac{e^2}{1 + (\Pi(q^2) - \Pi(0))}$$
 $\alpha(q^2) = \frac{\alpha(0)}{1 - \Delta\alpha}; \quad \Delta\alpha = -\Re e \Big(\Pi(q^2) - \Pi(0) \Big)$

$$\Delta \alpha = \Delta \alpha_{\rm l} + \Delta \alpha^{(5)}_{\rm had} + \Delta \alpha_{\rm top}$$

> $\Delta \alpha$ takes a contribution by non perturbative hadronic effects ($\Delta \alpha^{(5)}_{had}$) which exibits a different behaviour in time-like and spacelike region

Running of α_{em}

Contribution to the error of $\Delta\alpha(-s_0)$ from time-like data (FJ)

No big improvement expected in near future (error already at 1%). Can this error be a limiting factor for high-precision PV experiment? (see alternative approach)

Direct Measurement of α_{em} running

- A direct measurement of $\alpha_{em}(q^2)$ in space/time like region can prove the running of α_{em}
- It can provide a test of "duality" (far way from resonances)
- It has been done in past by few experiments at e⁺e⁻ colliders by comparing a "well-known" QED process with some reference (obtained from data or MC)

$$\left(\frac{\alpha(q^2)}{\alpha(q_0^2)}\right)^2 \sim \frac{N_{signal}(q^2)}{N_{norm}(q_0^2)}$$

G. Venanzoni, LEPP Conference, Mainz, 5 April 2016

 N_{signal} can be Bhabha process, muon pairs, etc... N_{signal} can be Bhabha process, $\gamma\gamma$ pairs, Theory, etc...

Direct measurement of α_{em} running

e+e- collider TRISTAN at \sqrt{s} =57.8 GeV,

e+e- collider LEP at \sqrt{s} =189 GeV, using **Bhabha** events

Measurement of α_{em} running

To be published soon!

A new KLOE measurement (from $\mu\mu\gamma$ with 1.7 fb⁻¹)!

Measurement of the effective α_{QED} coupling constant between 600 and 980 MeV

 $\left|\frac{\alpha_{QED}(s)}{\alpha_{QED}(0)}\right|^{2} = \frac{\frac{d\sigma^{ISK}}{dM_{\mu\mu}}}{\frac{d\sigma^{MC}}{dM_{\mu\mu}}}$ $\frac{d\sigma^{MC}}{dM_{uu}}$ with the VP contribution removed. $\left|\frac{\alpha(s)}{\alpha(0)}\right|^2 = 1/(1 - \Delta \alpha(s))$ $\Delta \alpha(s) = \Delta \alpha_{lep} + \Delta \alpha_{had}$ (we neglect the top contribution)

♦ "Theoretical prediction" (provided by the alphaQED package of F. Jergerlehner) $\Delta \alpha_{lep} \text{ computed in QED with negligible error; } \Delta \alpha_{had} \text{ obtained by a compilation of data in time-like region (with 0.1% accuracy).} \rightarrow \Delta \alpha_{had}(s) = -(\frac{\alpha s}{3\pi}) Re \int_{m_{\pi}^2}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\epsilon)}$ The red points show the KLOE data with statistical error bars.

a, HLO calculation, traditional way: time-like data $a_{\mu} = (g-2)/2$ $a_{\mu}^{HLO} = \frac{1}{\Delta \pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{e^+e^- \to hadr}(s) K(s) ds$ $a_{\mu}^{HLO.} = \frac{\alpha}{\pi^2} \int_{0}^{\infty} \frac{ds}{s} K(s) \operatorname{Im} \Pi_{had}(s) \sigma_{e^+e^- \to hadr}(s) = \frac{4\pi}{s} \operatorname{Im} \Pi_{had}(s) 2 \operatorname{Im} \left(\sum_{s \to hadr} \frac{2}{s} \operatorname{Im} \Pi_{had}(s) \right) = \frac{4\pi}{s} \operatorname{Im} \Pi_{had}(s) 2 \operatorname{Im} \left(\sum_{s \to hadr} \frac{2}{s} \operatorname{Im} \Pi_{had}(s) \right) = \frac{4\pi}{s} \operatorname{Im} \Pi_{had}(s) = \frac{4$ $K(s) = \int_{-\infty}^{1} dx \frac{x^2(1-x)}{x^2 + (1-x)(s/m^2)} \sim \frac{1}{s}$ Traditional way: based on precise experimental (time-like) data: Rhad 3 $a_{\mu}^{had} = (689.7 \pm 4.4) \cdot 10^{-10}$ D BESH CMD2.SND PLUTO Main contribution in the low energy region H MEA Crystal Ball 2 - $\gamma\gamma^2$ $\delta a_{\mu}^{exp} \rightarrow 1.5 \ 10^{-10} = 0.2\%$ on a_{μ}^{HLO} (from 0.7% now) × MD - 1 **NEW G-2 at FNAL and JPARC**

(GeV)

G. Venanzoni, LEPP Conference, Mainz, 5 April 2016

New results on a^{HLO}

– BES

 New; 1/3rd data; ππ results consistent with others (arxiv:1507.08188)

- VEPP-2000

- New results this year at ~0.6% on $\pi\pi$
- Aim at ~0.3% by 2017 (the ultimate goal)

- Lattice

• Results on a_{μ}^{HLO} with ~5% error; 5x worse than the dispersive approach (~1% uncertainty)

$$a_{\mu}^{\text{hvp}} = 6.74(21)(18) \cdot 10^{-8}$$
 ($N_f = 2 + 1 + 1$)
 $a_{\mu}^{\text{hvp}} = 6.91(01)(05) \cdot 10^{-8}$ (dispersive analysis)

However see later...

 $a_{\mu}^{\ \ HLO}\,$ evaluation in spacelike region: alternative approach $a_{\mu}^{=}(g-2)/2$

$$a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Pi_{had} \left(-\frac{x^2}{1-x} m_{\mu}^2\right) dx$$

x =Feynman parameter

$$t = \frac{x^2 m_{\mu}^2}{x - 1} \quad 0 \le -t < +\infty$$

$$x = \frac{t}{2m_{\mu}^2} (1 - \sqrt{1 - \frac{4m_{\mu}^2}{t}}); \quad 0 \le x < 1; \quad t = -s \sin^2(\frac{\vartheta}{2})$$

$$\Delta \alpha_{\scriptscriptstyle had}(t) = -\Pi_{\scriptscriptstyle had}(t) \quad for \ t < 0$$

$$\left| a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Delta \alpha_{had} (-\frac{x^2}{1-x} m_{\mu}^2) dx \right| \quad \text{For t<0}$$

Behaviors

A. Arbuzov et al., Eur. Phys. J. C 34 (2004) 267

Hadronic vacuum polarisation

A brief "intermezzo" on lattice

Slide by M.Marinkovic, Seminar at Pavia Univ, 28/1/2016

• Can be computed in Euclidean space-time [Blum, 2003; Lautrup et al., 1971]

Lattice strategy (which will be also ours)

[RBC and UKQCD Coll., T.Blum et al.,arxiv:1602.01767]

G. Venanzoni, LEPP Conference, Mainz, 5 April 2016

Experimental considerations

Using Bhabha at small angle (to emphasize t-channel contribution) to extract $\Delta \alpha$:

$$\left(\frac{\alpha(t)}{\alpha(0)}\right)^2 \sim \frac{d\sigma_{ee \to ee}(t)}{d\sigma_{MC}^0(t)}$$

Where $d\sigma^0_{MC}$ is the MC prediction for Bhabha process with $\alpha(t)=\alpha(0)$, and there are corrections due to RC...

$$\Delta \alpha_{had}(t) = 1 - \left(\frac{\alpha(t)}{\alpha(0)}\right)^{-1} - \Delta \alpha_{lept}(t) \qquad \Delta \alpha_{lep}(t) \text{ theoretically well known!}$$

Which experimental accuracy we are aiming at? $\delta\Delta\alpha_{had}$ ~1/2 fractional accuracy on d σ (t)/d σ^{0}_{MC} (t).

If we assume to measure $\delta \Delta \alpha_{had}$ at 5% at the peak of the integrand ($\Delta \alpha_{had} \sim 10^{-3}$ at x=0.92) \rightarrow fractional accuracy on d $\sigma(t)/d\sigma_{MC}^{0}(t) \sim 10^{-4}$!

Very challenging measurement (one order of magnitude improvement respect to date) for systematic error

Experimental considerations - II

Most of the region (up to $x\sim0.98$) can be covered with a low energy machine (like Dafne/VEPP-2000 or tau/charm-B-factories)

Example: Covering up to 60° at $\sqrt{s=1}$ GeV can arrive at x= 0.95(!)

A different situation can be obtained at tau/charm/ B-factories (and at future ILC/FCCee machines) where smaller angles (below 20°) are needed $t = -s \sin^2(\frac{\vartheta}{2})$

Statistical consideration

10⁻⁴ accuracy on Bhabha cross section requires at least 10⁸ events which at 20° mean at least:

- O(1) fb⁻¹ @ 1 GeV
- O(10) fb⁻¹ @ 3 GeV
- O(100) fb⁻¹ @ 10 GeV

These luminosities are within reach at flavour factories!

Additional considerations: s-channel

At low energy (<10 GeV) above 10⁰ there is still a sizeable contribution from s-channel.

At LO no difficulty to deconvolute the cross section for the schannel

However this picture changes with Rad. Corr.

G. Venanzoni, LEPP Conference, Mainz, 5 April 2016

Additional considerations: Rad. Corr.

A Monte Carlo procedure has been developed to check if $\Delta \alpha_{had}(t)$ can be obtained by a minimization procedure with a different $\Delta \alpha_{had}(t)$ ' inside

G. Venanzoni, LEPP Conference, Mainz, 5 April 2016

Additional consideration: Normalization

To compare Bhabha absolute cross section from data with MC we need Luminosity of the machine. Two possibilities:

- 1) Use Bhabha at very small angle where the uncertainty on $\Delta \alpha_{had}$ can be neglected (for example at E_{beam}=1 GeV and θ =5°, $\Delta \alpha_{had} \sim 10^{-5}$).
- 2) Use a process with $\Delta \alpha_{had} = 0$, like e+e- $\rightarrow \gamma \gamma$. However very difficult to determine it at 10⁻⁴ accuracy.

Option 1) looks better to us as some of the common systematics cancel in the measurement !

What can be done a KLOE/KLOE-2?

What can be done a KLOE/KLOE-2?

We did the following simulation: 20 points between 20°<0<100° (0.03<-t<0.59 S.C. coil GeV²; 0.78<x<0.98) @ √s=1 GeV Cryost Barrel EMC For each point $\delta \sigma_{e+e}$ ~10⁻⁴ (stat and syst) We fit $\Delta \alpha_{had}(t)$ using our points+ pQCD for -t>10 GeV² with a polynomial function (like lattice) 250000hadr5n12 Pade 200000 Drift chamber DOCD pseudo-data ² ² 150000 ais 50000 6 m -10-6 $t (\text{GeV}^2)$ 20001800 1600 1010 δa_{μ}^{HLO} ~3%_{stat} \oplus 7%_{syst} 1400 $((x)_{2})$ 1900 1000 Ş eis: 800 (preliminary) Ĥ 600 르 ₄₀₀ Pade DOCD 200 nseudo-data 0.8 0.85 0.9 0.95 0.75

Considerations

- Results for KLOE are preliminary and most likely conservative. For example we don't include lattice data which populate the complementary region 1<t<5 GeV² where we could expect a large improvement;
- A (strong) limitation with KLOE data is that we cannot use small angle Bhabha due to the QCAL occupancy, and therefore we should use γγ for the normalization (at 10⁻⁴!)
- This may be overcome at KLOE-2 where small angle detector exist or by a **dedicated** detector with an ultimate goal of ~10⁻⁵ uncertainty (10 ppm).
- How can this accuracy be reachable?

G. Venanzoni, LEPP Conference, Mainz, 5 April 2016

Measuring $\alpha(t)$ at 10ppm with a dedicated detector

- A dedicated detector with a coverage at small angle (< 5°) would allow to use small angle Bhabha for the normalization (N₀).
- The running of α can be obtained as "simple" ratio Ni/N₀ where Ni is the Bhabha events in the $\Delta \theta_{L}$ bin.
- One can achieve an error ~10⁻⁵ (stat +syst) on this ratio

Same simulation as in KLOE with 20 points and 10⁻⁵ (stat and syst) error for each point

Measuring $\alpha(t)$ at 10ppm with a dedicated detector

- A dedicated detector with a coverage at small angle (< 5°) would allow to use small angle Bhabha for the normalization (N₀).
- The running of α can be obtained as "simple" ratio Ni/N₀ where Ni is the Bhabha events in the $\Delta \theta_{L}$ bin.
- One can achieve an error ~10⁻⁵ (stat +syst) on this ratio

Considerations on a dedicated detector

- The detector should be hermetic with a very good momentum resolution and rejection of background ($\gamma\gamma$, $\mu\mu$, hadrons). It should allow to identify the Bhabha with an accuracy < 10⁻⁴.
- The luminosity shouldn't be a problem. The design of the detector should depend on the energy of the machine

Example: measurement at $\sqrt{s}=2$ GeV

- The region 0.2<x<0.98 can be explored at √s=2 GeV with 2°<θ<45° (for x>0.98 pQCD could be used)
- Normalization can be provided by Bhabha at very small angle ($2^{\circ} < \theta < 5^{\circ}$) where $\Delta \alpha^{had} < 10^{-5}$ (1% of the $\Delta \alpha^{had}$ (x=0.92)) and statistics is large
- L=10³² would allow to do a measurement of a_μ^{HLO}<1% within 1 year (statistically)

Measuring $\Delta \alpha_{had}(t)$ at fixed target?

- By using e- beam on e- target low q² (x) can be accessible, which is complementary to a e+e- measurement.
- Can $\Delta \alpha_{had}(-q^2)$ be measured with high precision?

Experimental Accuracy at O(ppm)?

Conclusions

- An alternative method for a_{μ}^{HLO} in spacelike region has been proposed. It gives the **full** contribution to a_{μ}^{HLO} without any theoretical correction (fsr, isospin, etc...)
- It emphasizes low values of t (<1 GeV²), which can be obtained at low energy e+e- machines (VEPP2000/DAFNE, τ/charm, Bfactories).
- It requires to measure the Bhabha cross section at relatively small angles at (better than) 10⁻⁴ accuracy!
- Theoretical work on Bhabha MC generator to reach this accuracy is already planned by Babayaga authors
- With existing KLOE/KLOE-2 data accuracy of ~7% on a_μ^{HLO} could be reachable with a 10⁻⁴ measurement of Bhabha cross section (competitive with Lattice!)
- With a dedicated detector an accuracy of ~1% on a_{μ}^{HLO} can be reachable using Bhabha events at small angle as normalization
- Can this approach be used at e- beam on target machines?

Thanks!

Thanks very much to:

G. Abbiendi, S. Eidelman, G. Fedotovich, F. Jegerlehner, M. Knecht, G. Logashenko, U. Marconi, M. Marinkovic, P. Masujan, C. Matteuzzi, G. Montagna, O. Nicrosini, F. Piccinini

END

Spare

Luminosity at 10⁻⁴ at ~1-2 GeV?

F. Ambrosino et al [KLOE] Eur. Phys. J. C 47, 589–596 (2006)

Table 2. Summary of the corrections and systematic errors in the measurement of the luminosity

(70)

Adding in quadrature: 0.3 %

(can be improved by a factor 10?)

From F. Nguyen 2006 Polar angle systematics

✓ global agreement is very good

but the cut occurs in a steep region of the distributions ⇒ estimate of border mismatches

✓ after normalizing MC to make it coincide with data in the region $65^\circ < \theta < 115^\circ$, we estimate as a systematic error:

$$\frac{N^{dat}_{[55:65]+[115:125]} - N^{MC}_{[55:65]+[115:125]}}{N^{dat}_{TOT}} \sim 0.25\%$$

Can be improved at 10⁻⁴?

A measurement of the Luminosity at 10⁻⁴ at LEP

Giovanni Abbiendi INFN - Bologna Eur. Phys. J. C 45, 1–21 (2006) Digital Object Identifier (DOI) 10.1140/epjc/s2005-02389-3

THE EUROPEAN PHYSICAL JOURNAL C

Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

The OPAL Collaboration

G. Abbiendi², C. Ainsley⁵, P.F. Åkesson^{3,y}, G. Alexander²², G. Anagnostou¹, K.J. Anderson⁹, S. Asai²³, D. Axen²⁷, I. Bailey²⁶, E. Barberio^{8,p}, T. Barillari³², R.J. Barlow¹⁶, R.J. Batley⁵, P. Bechtle²⁵, T. Behnke²⁵, K.W. Bell²⁰, P.J. Bell¹, G. Bella²², A. Bellerive⁶, G. Benelli⁴, S. Bethke³², O. Biebel³¹, O. Boeriu¹⁰, P. Bock¹¹, M. Boutemeur³¹, S. Braibant², R.M. Brown²⁰, H.J. Burckhart⁸, S. Campana⁴, P. Capiluppi², R.K. Carnegie⁶, A.A. Carter¹³, J.R. Carter⁵, C.Y. Chang¹⁷, D.G. Charlton¹, C. Ciocca², A. Csilling²⁹, M. Cuffiani², S. Dado²¹, G.M. Dallavalle², A. De Roeck⁸ E.A. De Wolf^{8,s}, K. Desch²⁵, B. Dienes³⁰, J. Dubbert³¹, E. Duchovni²⁴, G. Duckeck³¹, I.P. Duerdoth¹⁶, E. Etzion²² F. Fabbri², P. Ferrari⁸, F. Fiedler³¹, I. Fleck¹⁰, M. Ford¹⁶, A. Frey⁸, P. Gagnon¹², J.W. Gary⁴, C. Geich-Gimbel³, G. Giacomelli², P. Giacomelli², R. Giacomelli², M. Giunta⁴, J. Goldberg²¹, E. Gross²⁴, J. Grunhaus²², M. Gruwé⁸, P.O. Günther³, A. Gupta⁹, C. Hajdu²⁹, M. Hamann²⁵, G.G. Hanson⁴, A. Harel²¹, M. Hauschild⁸, C.M. Hawkes¹, R. Hawkings⁸, R.J. Hemingway⁶, G. Herten¹⁰, R.D. Heuer²⁵, J.C. Hill⁵, D. Horváth^{29,c}, P. Igo-Kemenes¹¹, K. Ishii²³ H. Jeremie¹⁸, P. Jovanovic¹, T.R. Junk^{6,i}, J. Kanzaki^{23,u}, D. Karlen²⁶, K. Kawagoe²³, T. Kawamoto²³, R.K. Keeler²⁶ R.G. Kellogg¹⁷, B.W. Kennedy²⁰, S. Kluth³², T. Kobayashi²³, M. Kobel³, S. Komamiya²³, T. Krämer²⁵, P. Krieger^{6,1}, J. von Krogh¹¹, T. Kuhl²⁵, M. Kupper²⁴, G.D. Lafferty¹⁶, H. Landsman²¹, D. Lanske¹⁴, D. Lellouch²⁴, J. Letts^o, L. Levinson²⁴, J. Lillich¹⁰, S.L. Lloyd¹³, F.K. Loebinger¹⁶, J. Lu^{27,w}, A. Ludwig³, J. Ludwig¹⁰, W. Mader^{3,b}, S. Marcellini², A.J. Martin¹³, T. Mashimo²³, P. Mättig^m, J. McKenna²⁷, R.A. McPherson²⁶, F. Meijers⁸, W. Menges²⁵, F.S. Merritt⁹, H. Mes^{6,a}, N. Meyer²⁵, A. Michelini², S. Mihara²³, G. Mikenberg²⁴, D.J. Miller¹⁵, W. Mohr¹⁰, T. Mori²³, A. Mutter¹⁰, K. Nagai¹³, I. Nakamura^{23,v}, H. Nanjo²³, H.A. Neal³³, R. Nisius³², S.W. O'Neale^{1,*}, A. Oh⁸, M.J. Oreglia⁹, S. Orito^{23,*}, C. Pahl³², G. Pásztor^{4,g}, J.R. Pater¹⁶, J.E. Pilcher⁹, J. Pinfold²⁸, D.E. Plane⁸, O. Pooth¹⁴, M. Przybycień^{8,n}, A. Quadt³, K. Rabbertz^{8,r}, C. Rembser⁸, P. Renkel²⁴, J.M. Roney²⁶, A.M. Rossi², Y. Rozen²¹, K. Runge¹⁰, K. Sachs⁶, T. Saeki²³, E.K.G. Sarkisyan^{8,j}, A.D. Schaile³¹, O. Schaile³¹, P. Scharff-Hansen⁸, J. Schieck³², T. Schörner-Sadenius^{8,z}, M. Schröder⁸, M. Schumacher³, R. Seuster^{14,f}, T.G. Shears^{8,h}, B.C. Shen⁴, P. Sherwood¹⁵, A. Skuja¹⁷, A.M. Smith⁸, R. Sobie²⁶, S. Söldner-Rembold¹⁶, F. Spano⁹, A. Stahl^{3,x}, D. Strom¹⁹, R. Ströhmer³¹, S. Tarem²¹, M. Tasevsky^{8,s}, R. Teuscher⁹, M.A. Thomson⁵, E. Torrence¹⁹, D. Toya²³, P. Tran⁴, I. Trigger⁸, Z. Trócsányi^{30,e}, E. Tsur²², M.F. Turner-Watson¹, I. Ueda²³, B. Ujvári^{30,e}, C.F. Vollmer³¹, P. Vannerem¹⁰ R. Vértesi^{30,e}, M. Verzocchi¹⁷, H. Voss^{8,q}, J. Vossebeld^{8,h}, C.P. Ward⁵, D.R. Ward⁵, P.M. Watkins¹, A.T. Watson¹, N.K. Watson¹, P.S. Wells⁸, T. Wengler⁸, N. Wermes³, G.W. Wilson^{16,k}, J.A. Wilson¹, G. Wolf²⁴, T.R. Wyatt¹⁶, S. Yamashita²³, D. Zer-Zion⁴, L. Zivkovic²⁴

Small-angle Bhabha scattering in OPAL

19 Silicon layersTotal Depth 22 X0**18 Tungsten layers**(14 cm)

Each detector layer divided into 16 overlapping wedges

Sensitive radius: 6.2 – 14.2 cm, corresponding to scattering angle of 25 – 58 mrad from the beam line

Frascati, 7 June 2006

G.Abbiendi

Final Error on Luminosity

After all the effort on Radial reconstruction the dominant systematic error is related to Energy (mostly tail in the E response and nonlinearity) Quantitatively: (OPAL Collaboration, Eur.Phys.J. C14 (2000) 373)

	Systematic Error (×10 ⁻⁴)
Energy	1.8
Inner Anchor	1.4
Radial Metrology	1.4

Total Experimental Systematic Error : 3.4 × 10⁻⁴

Theoretical Error on Bhabha cross section: 5.4×10^{-4}

Frascati, 7 June 2006

G.Abbiendi

A new KLOE measurement

New measurement of the $\mu^+\mu^-\gamma$ cross section

$$rac{d\sigma}{dM_{\mu\mu}} = rac{N_{obs} - N_{bkg}}{dM_{\mu\mu}} rac{(1 - \delta_{FSR})}{\epsilon(\sqrt{s_{\mu}})L}$$

$$rac{d\sigma^{DATA}_{\mu\mu\gamma}}{d\sigma^{MC}_{\mu\mu\gamma}} = 1.0006 \pm 0.0007$$

Excellent agreement with NLO theory (PHOKHARA MC) VP inside H. Czyż, A. Grzelinska, J.H. Khn, G. Rodrigo, Eur. Phys. J. C 39 (2005) 411.

Total systematic error $\sim 1\%$.

《曰》《卽》《臣》《臣》

September 23, 2014

=

500

22 / 36

 $\Delta \alpha_{em}^{HAD}(s)$ dependence

x vs t behaviour

Impact of DAFNE-2 on exclusive channels in the range [1-2.5] GeV with a scan (Statistics only)

arXiv:1007.521

DAFNE-2 is statistically equivalent to 5÷10 ab⁻¹ (Super)B-factory