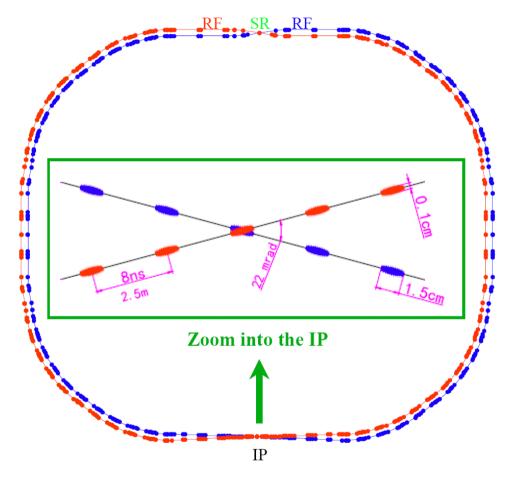
The possible experiments with internal thin targets at the BEPCII storage rings

Hai-Bo Li
Institute of High Energy Physics
New Vistas in Low-Energy Precision Physics
4-7 April 2016, Kupferbergterrasse Mainz

Outline


Main purpose: possible experiments using a thin gas (Hydrogen or Deuteron or Helium) targets internal to the BEPCII electron/positron storage ring.

- Introduction: BEPCII
- Possible experiments
- ✓ Elastic electron—deuteron scattering
- ✓ Two-body deuteron photodisintegration
- \checkmark Coherent photoproduction of π^0 on the deuteron
- ✓ ABC effect in photoproduction of $\gamma d \rightarrow d\pi \pi$
- ✓ Two-photon exchange and the proton electromagnetic form factors
- ✓ Charge radius of proton
- \checkmark Charged Lepton Flavor violation (cLFV): electron to $\mu(\tau)$ conversion:

$$e N \rightarrow \mu(\tau) N$$

- ✓ Dark photon in $e^+e^ \rightarrow$ γ A' at low mass 10-50 MeV
- Summary

The BEPCII electron-positron double storage rings

Only running experiment: BESIII

Start data taking: 2009

Estimated end of BESIII life time: 2022

Can we do more experiments using BEPCII?

Beam energy: 1.0-2.3 GeV

Design Luminosity: 1×10³³ cm⁻²s⁻¹

Optimum energy: 1.89 GeV

Energy spread: 5.16×10^{-4}

No. of bunches: 93

No. e^+ or e^- /bunch 4.5×10¹²

Bunch length: 1.5 cm

Bunch distance 2 m

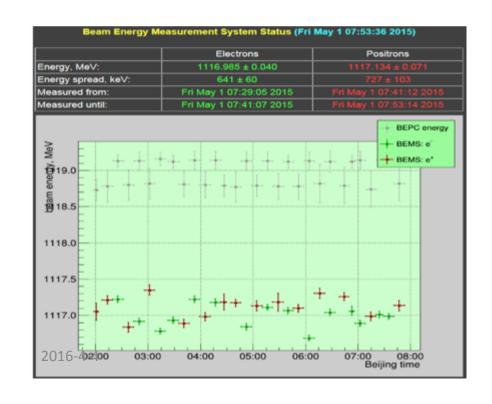
Beam size σ_x/σ_y 380/5.7 µm

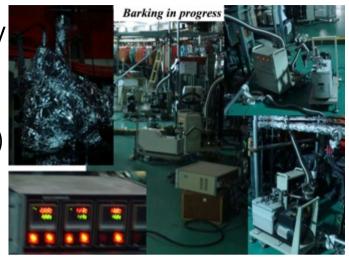
Current/bunch 9.8 mA

Total current: 0.91 A

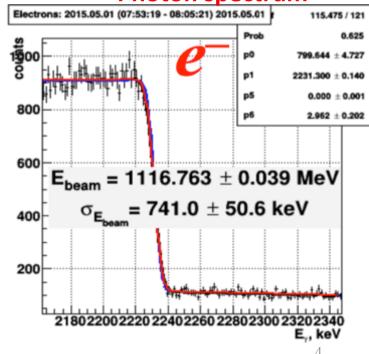
Circumference: 237m

Injection rate for e+ 50 mA/s


Injection rate for e- 200 mA/s

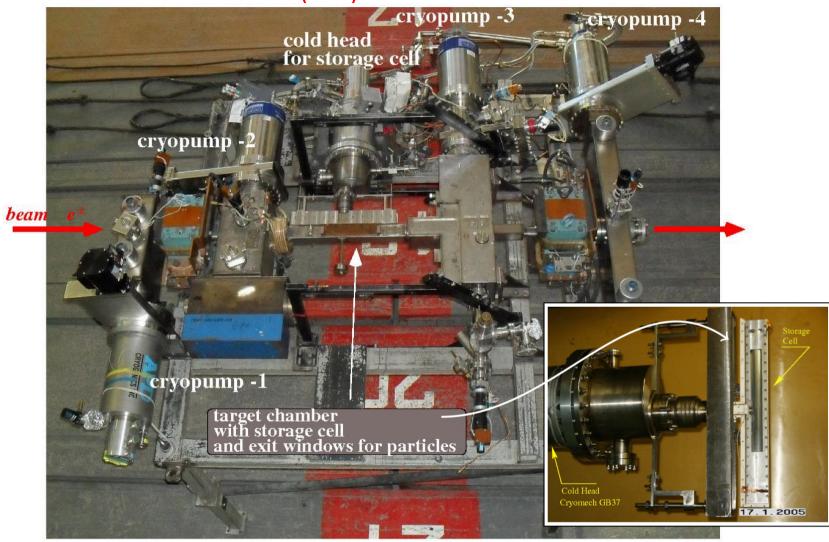

Beam energy measurement

Reconstruction of the beam energy from an energy spectrum of laser photons backscattered on beam particles:


$$E_{beam} = \frac{\omega_{max}}{2} \times (1 + \sqrt{1 + m_e^2/\omega_0 \omega_{max}})$$

- ◆ Achieved accuracy is $\Delta E/E \approx 4 \times 10^{-5}$
- This allows us to monitor the beam energy, and to apply corrections during data analysis.

Photon spectrum


Method of a superthin internal target

- ♦ Consider the case of a target installed inside a storage ring, the beam crosses the target repeatedly
- ♦ In the case of a "superthin" internal target, additional energy losses of the beam are compensated by a RF cavity
- → The method was proposed, first tested (at VEPP-1), and further developed
 (at VEPP-2 and VEPP-3) in Novosibirsk, starting from the late 1960s
- ♦ The method allows one to substantially increase the efficiency of utilization of the target material and beam particles
- ♦ Therefore, the method makes it feasible to perform measurements
 - with exotic targets: polarized ones; of rare isotopes, etc.
 - with exotic beams: positrons; antiprotons; rare-isotope ions, etc.
 - detecting slow, heavy, or strong-ionizing reaction products in coincidence

Slides from Alexander V. Gramolin

Internal target session at VEPP3

Polarized atomic beam sources (ABS)

target thickness $\approx 10^{15}~\text{at/cm}^2\text{, luminosity} \approx 10^{32}\text{cm}^{-2}\text{s}^{-1}$

Highlights of the internal-target program at VEPP-3

- S. I. Mishnev *et al.*, Phys. Lett. B **302**, 23 (1993)
- Oevelopment of a new internal polarized deuterium target based on a cryogenic atomic beam source with superconducting sextupole magnets.

L. G. Isaeva et al., Nucl. Instrum. Methods A 411, 201 (1998)
M. V. Dyug et al., Nucl. Instrum. Methods A 495, 8 (2002)

- Measurement of T_{20} and T_{21} in elastic $e\vec{d}$ scattering at $Q^2 = 8-22$ fm⁻². D. M. Nikolenko *et al.*, Phys. Rev. Lett. **90**, 072501 (2003)
- Measurement of the tensor analyzing powers T_{20} , T_{21} , and T_{22} in deuteron photodisintegration at $E_{\gamma}=25-600$ MeV and $\theta_p^{\rm cm}=24^{\circ}-48^{\circ}$, $70^{\circ}-102^{\circ}$.

 I. A. Rachek *et al.*, Phys. Rev. Lett. **98**, 182303 (2007)
- The first measurement of T_{20} , T_{21} , and T_{22} in the process $\gamma \vec{d} \rightarrow \pi^0 d'$.

 D. M. Nikolenko *et al.*, JETP Letters **89**, 432 (2009)
- Precise measurement of the two-photon exchange contribution to elastic $e^{\pm}p$ scattering. I. A. Rachek *et al.*, Phys. Rev. Lett. **114**, 062005 (2015)

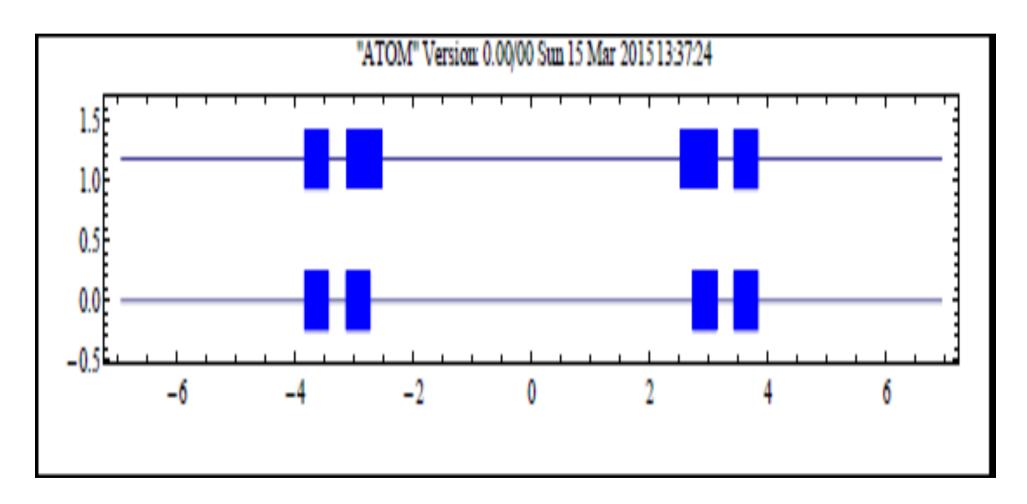
Possible position for the target in the ring

North collision point (not used, BESIII in south point)

But a lot of work to rearrange the components of the rings

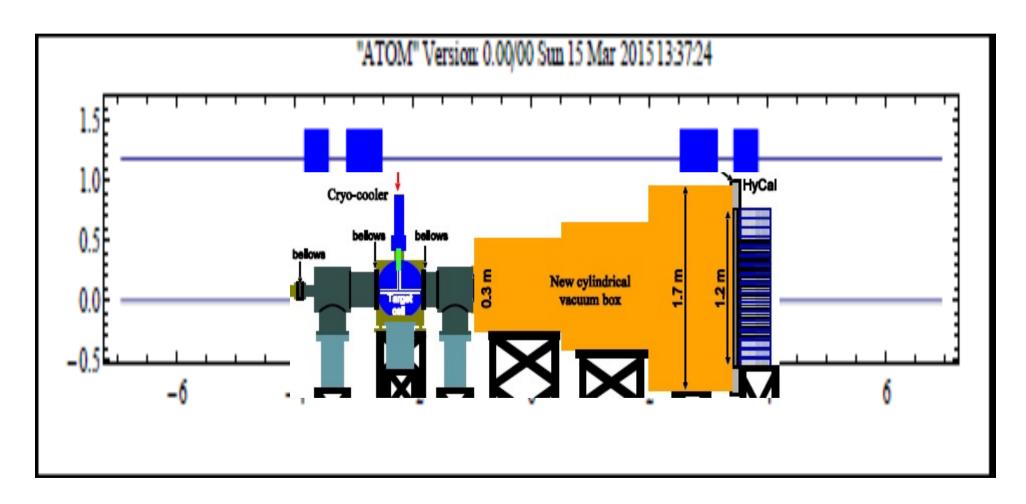
Possible position for the target in the ring

West injection region


Enough space, and less work to rearrange the magnets

Possible position for the target in the ring

- Electron beam only:
 Injection region of inner ring (west injection)
 need re-arrange several magnets in that region;
- ➤ Both electron and positron beam: only detector region (south IP) only after the BESIII experiments


West injection region

Example for:

West injection region

Example for:

Beam with internal targets

Switch between electron and positron beams:

The electron and positron can not be switched in a short time because BEPCII power supply is not bipolar. It may take a couple of weeks to change the polarity.

```
✓ Life time decreasing:

Electron gas (H_2) Inelastic scattering:

with nucleus \sigma_A 10<sup>-29</sup>;

with outer electrons \sigma_B 10<sup>-29</sup>

Electron gas (H_2) elastic scattering

with nucleus \sigma_C 10<sup>-24</sup>

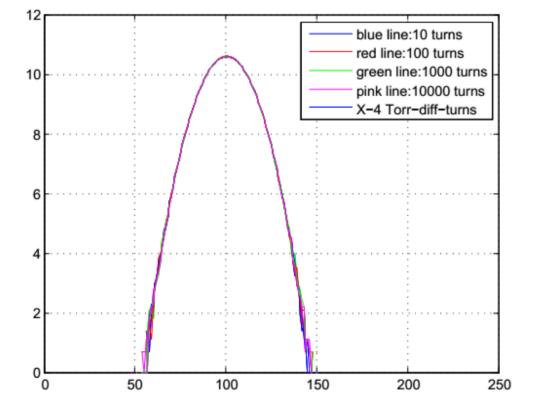
with outer electrons \sigma_D (\sigma_C >> \sigma_D)
```

✓ Beam halo increasing

Target material for example: 2×10^{13} at/cm²

Beam life time

For the BEPCII and BESIII experiment, the dynamic pressure is about 10^{-9} Torr. The lifetime is about 10 hours, and the gas scattering is dominated by the N_2 or CO(10% of all) in the ring.

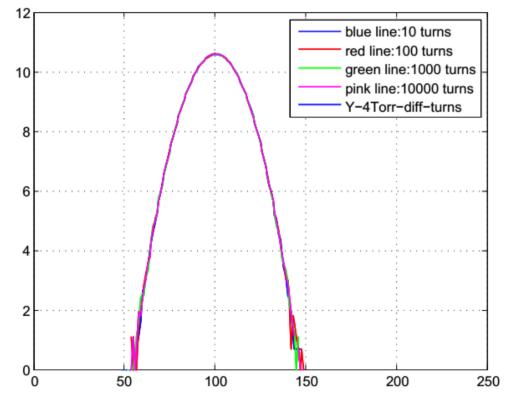

For the H_2 gas target (10 cm long, and 10^{-4} Torr in the target region), it is equivalent to 10^{-7} Torr in the whole ring, and results in a lifetime of 1 hour.

So the beam lifetime is good enough for experiments with internal gas targets.

Beam halo issue

Due to the beam dumping, the core of the beam should be Gaussian -like. According to Monte Carlo simulation, we consider the elastic scattering effect in the internal gas target ($\rm H_2$ pressure $\rm 10^{-4}$ Torr). Negligible beam halo is seen:

Horizontal-halo

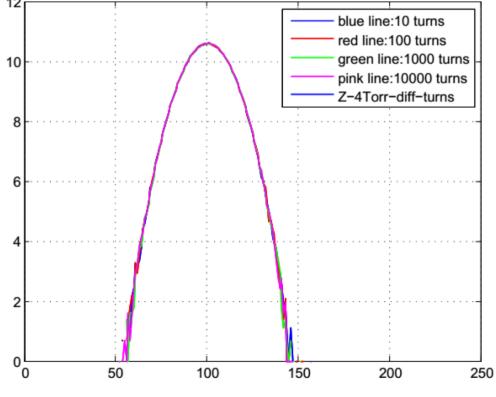


H2 pressure 10⁻⁴Torr, different turns

Beam halo issue

Due to the beam dumping, the core of the beam should be Gaussian -like. According to Monte Carlo simulation, we consider the elastic scattering effect in the internal gas target (H_2 pressure 10^{-4} Torr). Negligible beam halo is seen:

Vertical halo


H2 pressure 10⁻⁴Torr, different turns

Beam halo issue

Due to the beam dumping, the core of the beam should be Gaussian -like. According to Monte Carlo simulation, we consider the elastic scattering effect in the internal gas target (H_2 pressure 10^{-4} Torr).

Negligible beam halo is seen:

Longitudinal halo

H2 pressure 10⁻⁴Torr, different turns

Luminosity with internal targets

- Since all quadrupoles are independently powered, the beta functions at the target are tunable. Many other parameters are also tunable. Some parameters need input from experimental side.
- The luminosity for internal target also depends on the beam current and thickness of target.
- With 900 mA, 10^{15} at/cm², luminosity could be 5×10^{35} /cm²/s.

Outline

Main purpose: possible experiments using a thin gas (Hydrogen or Deuteron or Helium) targets internal to the BEPCII electron/positron storage ring.

- Introduction: BEPCII
- Possible experiments
- ✓ Elastic electron—deuteron scattering
- ✓ Two-body deuteron photodisintegration
- \checkmark Coherent photoproduction of π^0 on the deuteron
- ✓ ABC effect in photoproduction of $\gamma d \rightarrow d\pi \pi$
- ✓ Two-photon exchange and the proton electromagnetic form factors
- ✓ Charge radius of proton
- \checkmark Charged Lepton Flavor violation (cLFV): electron to $\mu(\tau)$ conversion:

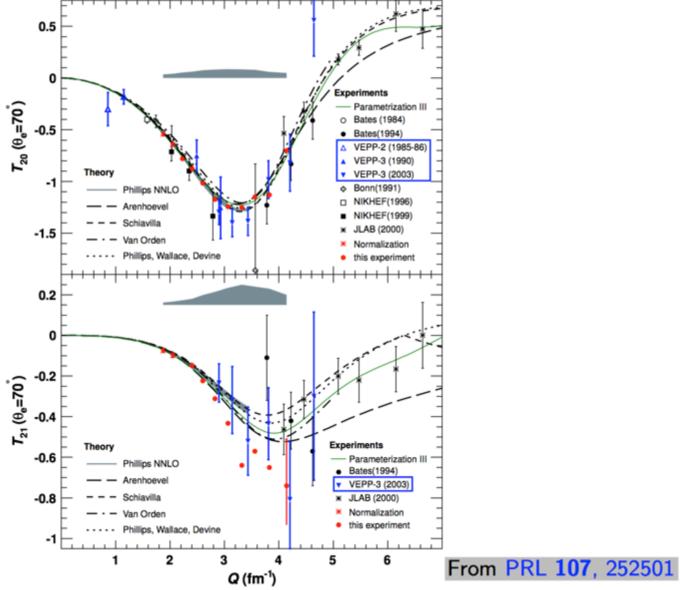
$$e N \rightarrow \mu(\tau) N$$

- ✓ Dark photon in $e^+e^ \rightarrow$ γ A' at low mass 10-50 MeV
- Summary

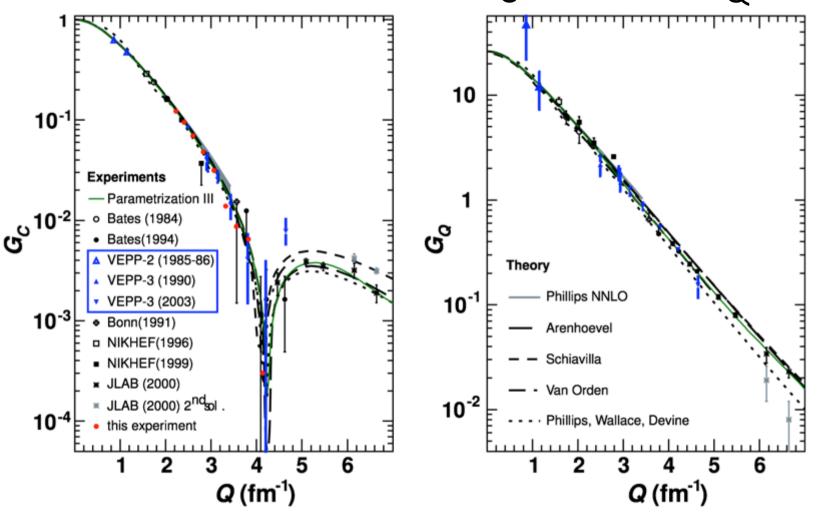
Elastic electron-deuteron scattering

- The deuteron is the simplest nucleus, the only two-nucleon bound state
- Elastic ed scattering is a powerful tool to study the deuteron
- In the case of unpolarized (spin-averaged) ed scattering:

$$\begin{split} \frac{d\sigma_0}{d\Omega} &= \frac{d\sigma_{\text{Mott}}}{d\Omega} \Big[A(Q^2) + B(Q^2) \tan^2 \frac{\theta_e}{2} \Big], \\ A &= G_C^2 + \frac{8}{9} \tau^2 G_Q^2 + \frac{2}{3} \tau G_M^2, \quad B &= \frac{4}{3} \tau (1+\tau) G_M^2, \quad \tau = \frac{Q^2}{4 M_d^2} \end{split}$$


- Three form factors of the deuteron, G_C (charge monopole), G_Q (quadrupole), and G_M (magnetic), completely describe its electromagnetic structure
- In the case of scattering on a tensor-polarized deuterium target:

$$\begin{split} \frac{d\sigma}{d\Omega} &= \frac{d\sigma_0}{d\Omega} \left\{ 1 + \frac{P_{zz}}{\sqrt{2}} \left[\frac{3\cos^2(\theta_H) - 1}{2} \mathcal{T}_{20} \right. \right. \\ &\left. - \sqrt{\frac{3}{2}} \sin\left(2\theta_H\right) \cos(\phi_H) \mathcal{T}_{21} + \sqrt{\frac{3}{2}} \sin^2(\theta_H) \cos(2\phi_H) \mathcal{T}_{22} \left. \right] \right\}, \end{split}$$


where T_{20} , T_{21} , and T_{22} are the deuteron tensor analyzing powers

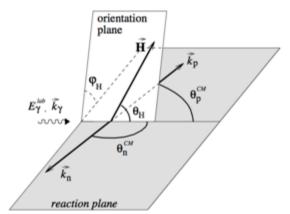
• The form factors G_C and G_Q can be separated only using polarized scattering

The world data for $T_{20}(Q)$ and $T_{21}(Q)$

The world data for $G_C(Q)$ and $G_O(Q)$

The figures are from C. Zhang et al., Phys. Rev. Lett. 107, 252501 (2011) The form factors can be measured between Q=3-5 fm⁻¹ at BEPCII with 2.5 GeV electron beam.

22


Two-body deuteron photodisintegration

Deuteron photodisintegration: $\gamma d \rightarrow pn$

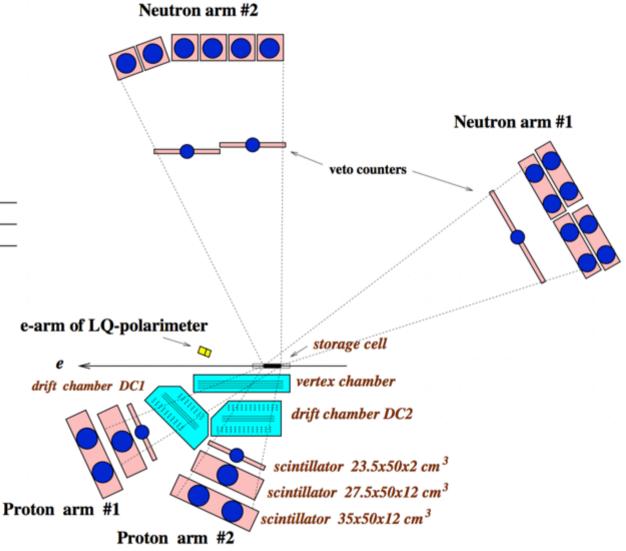
In the case of polarized spin-1 target and unpolarized photon beam:

$$\begin{split} \frac{d\sigma}{d\Omega} &= \frac{d\sigma_0}{d\Omega} \left\{ 1 - \sqrt{\frac{3}{4}} \; P_{\mathbf{z}} \sin(\theta_H) \sin(\phi_H) \; T_{11}(E\gamma, \theta_p^{CM}) \right. \\ &+ \sqrt{\frac{1}{2}} \; P_{\mathbf{z}\mathbf{z}} \left[\frac{3\cos^2(\theta_H) - 1}{2} \; T_{20}(E\gamma, \theta_p^{CM}) \right. \\ &- \sqrt{\frac{3}{8}} \sin(2\theta_H) \cos(\phi_H) \; T_{21}(E\gamma, \theta_p^{CM}) \\ &+ \sqrt{\frac{3}{8}} \sin^2(\theta_H) \cos(2\phi_H) \; T_{22}(E\gamma, \theta_p^{CM}) \right] \bigg\} \end{split}$$

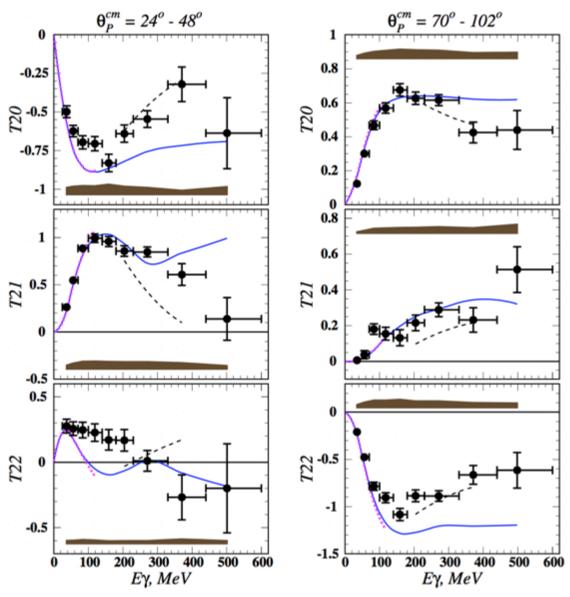
 $P_z = n_+ - n_-$ - degree of vector polarization: $-1 \dots + 1$ $P_{zz} = 1 - 3 \cdot n_0$ - degree of tensor polarization: $-2 \dots + 1$ n_+, n_-, n_0 - population numbers for the spin projections +1, -1 and 0, respectively

Detector layout for deuteron photodisintegration

• 2 pairs of arms in vertical plane:


arm		l II
θ_p	20°-40°	55°-95°
θ_n	127°-145°	68°-92°
Δ_{ϕ}	25°	19°

proton arm:


drift chambers + 3 scintillator layers

neutron arm:

thin veto-counter + thick scintillator

Results: T_{20} , T_{21} , and T_{22} as functions of E_{γ}

vertical bars – statistical errors horizontal bars – bin sizes shaded bands – systematic errors

Theoretical curves:

solid – K.-M.Schmitt & H.Arenhövel (1990), full calculation

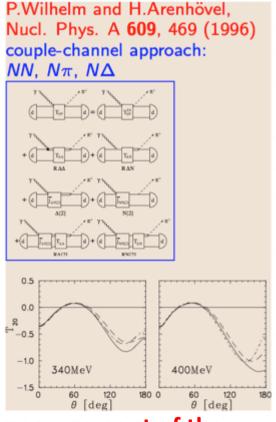
dotted – M.Levchuk (1995), full calculation

dashed - M.Schwamb (2006)

Experiments at BEPCII will improve the precision with 2.5 GeV electron beam.

I. A. Rachek et al., Phys. Rev. Lett 98, 182303 (2007)

Coherent neutral pion photoproduction on the deuteron


$$\gamma + \vec{d} \rightarrow \pi^0 + d$$

One of the simplest photonuclear reactions, the only pion photoproduction process off the deuteron having two final-state particles

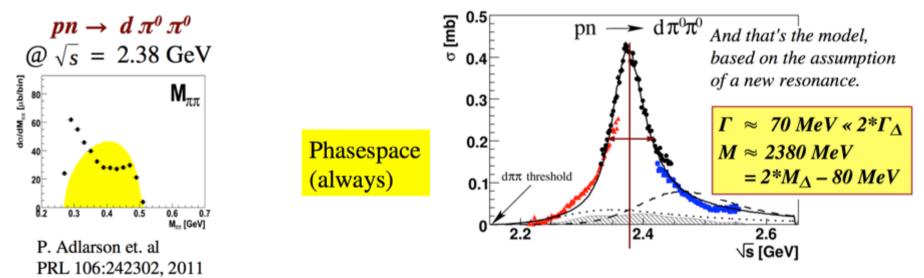
Issues addressed:

- deuteron structure
- π^0 deuteron elastic scattering
- pion photoproduction off neutron
- at threshold chiral dynamics on neutron


• . . .

S.S.Kamalov, L.Tiator and C.Bennhold. Phys. Rev. C 55, 98 (1997) with FSI treated in the KMT multiple scattering approach 200 MeV 0.0 -0.5260 MeV 0.5 F -0.5-0.50.5 0.0 -0.50 90 120 θ_{c.m.}(deg) 150 60

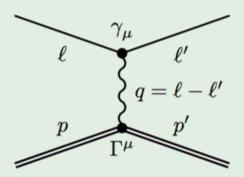
With E_b =2.5 GeV, BEPCII allows measurement of the Form factors between E_v =200-600 MeV


ABC effects in $\gamma d \rightarrow d\pi\pi$?

Many theoretical prediction:

F. Wang et al

Z. Y. Zhang et al.



$$\gamma d \to d\pi\pi$$

 $ightarrow d\pi\pi$ The real photon energy will be at least 0.6 GeV Can we do it at BEPCII with internal gas deuteron targets with 2.5 GeV electron beam?

Proton electromagnetic form factors (spacelike region)

Elastic ep scattering in the one-photon exchange (Born) approximation

Vertex operator $\Gamma^{\mu}(q)$

$$\Gamma^{\mu}(q) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(q^2)$$

 $F_1(q^2)$ – non-spin-flip Dirac form factor

 $F_2(q^2)$ – spin-flip Pauli form factor

Sachs form factors

Electric form factor:

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$$

Magnetic form factor:

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Dipole formula:

$$G_E pprox rac{G_M}{\mu} pprox \left(1 + rac{Q^2}{0.71}
ight)^{-2}$$

In the Breit frame, G_E and G_M describe charge and magnetization distributions in proton

Two methods of measuring the proton form factors

• The Rosenbluth separation method at constant Q^2

Rosenbluth Formula

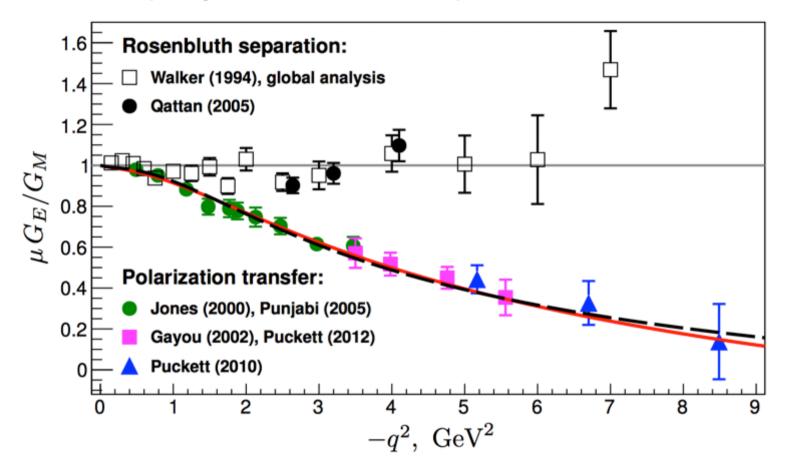
Rosenbluth, 1950

$$rac{d\sigma}{d\Omega} = rac{1}{arepsilon(1+ au)} \left[arepsilon \mathit{G}_{\mathit{E}}^2 + au \mathit{G}_{\mathit{M}}^2
ight] rac{d\sigma_{\mathsf{Mott}}}{d\Omega},$$

where
$$\boxed{ au=Q^2/4M^2}$$
 and $\boxed{arepsilon=\left[1+2(1+ au) an^2(heta/2)
ight]^{-1}}$

Polarized beams and targets or recoil polarimeters

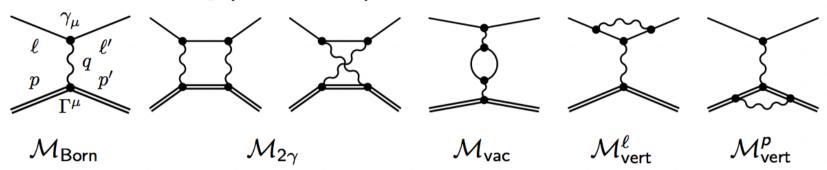
Form factor ratio from polarization transfer

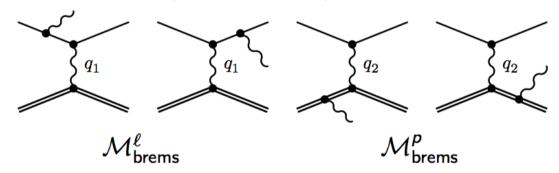

Akhiezer & Rekalo, 1968

$$\frac{G_E}{G_M} = \frac{P_T}{P_I} \times K,$$

where P_T and P_L are transverse and longitudinal polarization components of the proton, $K = -\sqrt{\tau(1+\varepsilon)/2\varepsilon}$ is a kinematic factor

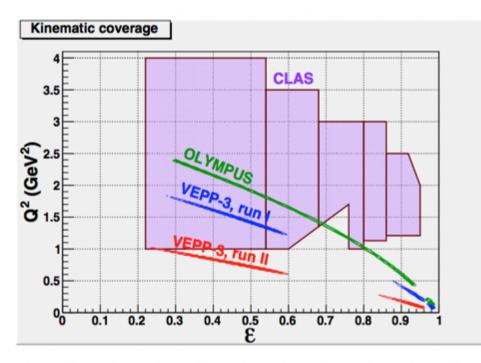
Inconsistency?


A clear discrepancy between the two experimental data sets was observed:


Radiative corrections, in particular a Two-Photon Exchange (TPE) effect, is a likely origin of the discrepancy

First-order radiative corrections to elastic ep scattering

"Elastic" scattering $(e^{\pm}p \rightarrow e^{\pm}p)$:


First-order bremsstrahlung $(e^{\pm}p \rightarrow e^{\pm}p \gamma)$:

$$\begin{split} &\sigma(e^{\pm}p) \propto |\mathcal{M}_{\mathsf{Born}}|^2 \pm 2 \, \mathsf{Re} \left(\mathcal{M}_{\mathsf{Born}}^{\dagger} \mathcal{M}_{\mathsf{2}\gamma}\right) \\ &+ 2 \, \mathsf{Re} \left(\mathcal{M}_{\mathsf{Born}}^{\dagger} \mathcal{M}_{\mathsf{vac}}\right) + 2 \, \mathsf{Re} \left(\mathcal{M}_{\mathsf{Born}}^{\dagger} \mathcal{M}_{\mathsf{vert}}^{\ell}\right) + 2 \, \mathsf{Re} \left(\mathcal{M}_{\mathsf{Born}}^{\dagger} \mathcal{M}_{\mathsf{vert}}^{p}\right) \\ &+ |\mathcal{M}_{\mathsf{brems}}^{\ell}|^2 + |\mathcal{M}_{\mathsf{brems}}^{p}|^2 \pm 2 \, \mathsf{Re} \left(\mathcal{M}_{\mathsf{brems}}^{\ell\dagger} \mathcal{M}_{\mathsf{brems}}^{p}\right) + \mathcal{O}(\alpha^4) \end{split}$$

✓ Cancellation of infrared divergences (corresponding terms are marked in color) ✓ Some of the terms are of different signs (" \pm ") for e^+p and e^-p scattering

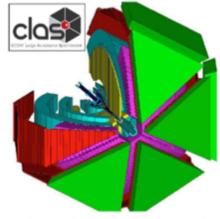
Three new experiments to measure $R = \sigma(e^+p)/\sigma(e^-p)$

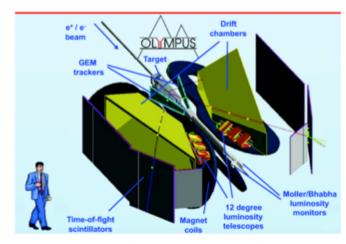
Novosibirsk: VEPP-3

Two runs: $E_{\text{beam}} = 1.6$ and 1.0 GeV

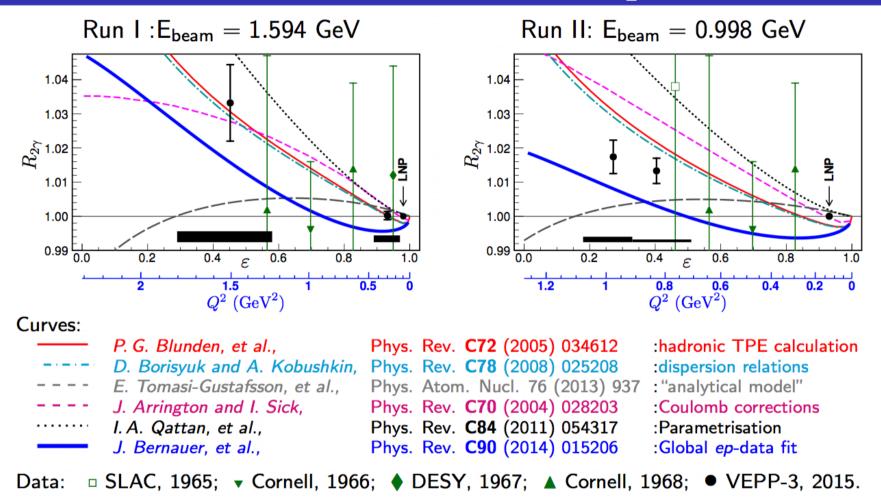
JLab: CLAS at Hall B

$$E_{\text{beam}} = 0.5 - 4 \text{ GeV}$$

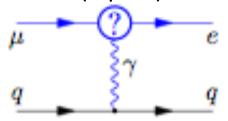

O DESY: OLYMPUS at DORIS


$$E_{\text{beam}} = 2 \text{ GeV}$$

$$\delta_{2\gamma} = rac{2\mathsf{Re}\left(\mathcal{M}_{1\gamma}^\dagger \mathcal{M}_{2\gamma}^\mathsf{hard}
ight)}{|\mathcal{M}_{1\gamma}|^2}$$

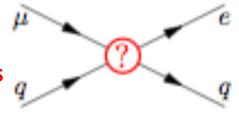

$$R_{2\gamma} = rac{1-\delta_{2\gamma}}{1+\delta_{2\gamma}}$$

Results of the Novosibirsk TPE experiment



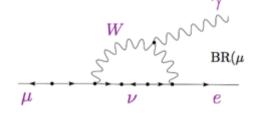
- LNP Luminosity Normalization Point set to $R_{2\gamma}=1$
- Error bars are statistical errors, shaded bands show ε -bin width and systematic uncertainties
- The radiative corrections are applied according to J. Phys. G 41, 115001 (2014)

Search for cLFV $e^+ + N \rightarrow \mu^+(\tau^+) + N$


$$\left(L_{\rm CLFV} = \frac{1}{1+\kappa} \frac{m_{\mu}}{\Lambda^2} \bar{\mu}_{\rm R} \sigma^{\mu\nu} e_{\rm L} F_{\mu\nu} + \frac{\kappa}{1+\kappa} \frac{1}{\Lambda^2} (\bar{\mu}_{\rm L} \gamma^{\mu} e_{\rm L}) (\bar{q}_{\rm L} \gamma_{\mu} q_{\rm L})\right)$$

Photonic (dipole) interaction

cLFV is a SM-free process

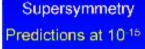


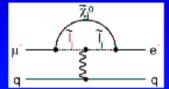
process	present limit	future	
$\mu \rightarrow e \gamma$	<5.7 x 10 ⁻¹³	<10 ⁻¹⁴	MEG at PSI
μ→eee	<1.0 x 10 ⁻¹²	<10 ⁻¹⁶	Mu3e at PSI
$\mu N \rightarrow e N $ (in Al)	none	<10 ⁻¹⁷	Mu2e / COMET
$\mu N \rightarrow eN$ (in Ti)	<4.3 x 10 ⁻¹²	<10 ⁻¹⁸	PRISM
$\tau \rightarrow e \gamma$	<1.1 x 10 ⁻⁷	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB
τ→eee	<3.6 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB
$\tau \rightarrow \mu \gamma$	<4.5 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB
$ au ightarrow \mu \mu \mu$	<3.2 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB/LHCb

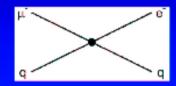
SM and New physics contributions

$$B(\mu \to e \gamma) = rac{3\alpha}{32\pi} \Big| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} rac{m^2_{\nu_l}}{M^2_W} \Big|^2$$

Sensitivity to Different Muon Conversion Mechanisms

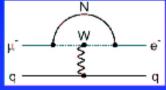

SM: BR~O(10⁻⁵⁴)

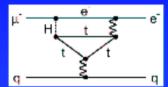

Many new physics


sizable and measurable

model can make

contributions.




Compositeness

A_c = 3000 TeV

Heavy Neutrinos

$$|U^*_{\mu N}|U_{eN}|^2 = 8 \times 10^{-13}$$

Second Higgs doublet

 $g_{Hue} = 10^{4} \times g_{Huu}$

Leptoquarks

Heavy Z', Anomalous Z coupling

 $M_{Z'} = 3000 \text{ TeV/c}^2$

 $B(Z \to ue) < 10^{-17}$

2016-4-4

35

e to $\mu(\tau)$ conversion: $e^+ + N \rightarrow \mu^+(\tau^+) + N$ at BEPCII

Typical cLFV processes with different targets

$$e^{+} + p \rightarrow \mu^{+}(\tau^{+}) + p$$

 $e^{+} + d \rightarrow \mu^{+}(\tau^{+}) + d$
 $e^{+} + He \rightarrow \mu^{+}(\tau^{+}) + He$

Mini. E_{beam} for tau production

$$E_{beam} > 3.5 \text{ GeV for } \tau$$

$$E_{beam} > 2.6 \text{ GeV for } \tau$$

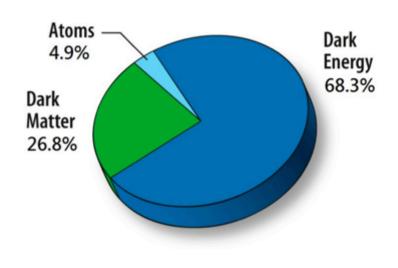
$$E_{beam} > 2.2 \text{ GeV for } \tau$$

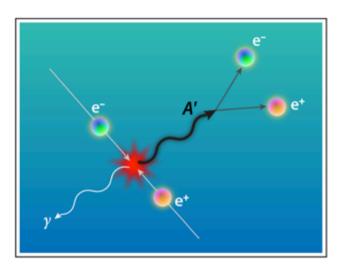
36

- **♦ 2.5 GeV positron/electron beam incident on the targets**
- ♦ Estimated luminosity reaches 10^{35} cm⁻²s⁻¹ → 1 ab⁻¹ /year (Beam current of 900 mA, and target thickness of 5×10^{15} atom/cm²

Rough estimations of the expected sensitivities for E_{beam} =2.5 GeV:

$$\sigma(e^{\pm} + p \to \mu^{\pm} + p) < \sim 30ab$$


$$\sigma(e^{\pm} + d \to \mu^{\pm} + d) < \sim 20ab$$


$$\sigma(e^{\pm} + He^4 \to \mu^{\pm}(\tau^{\pm}) + He^4) < \sim 10ab(0.1 - 1.0)fb$$

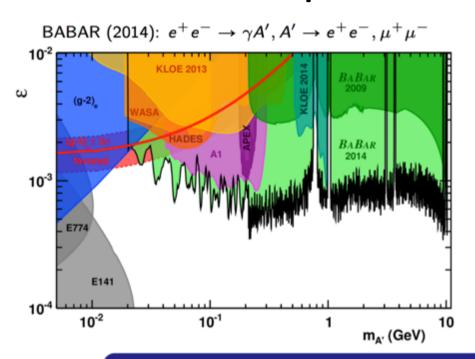
Argon or Nitrogen target should be better!

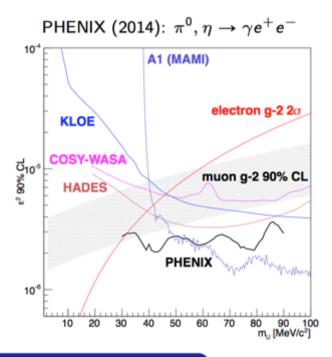
The QED and beam-related backgrounds should be studied, and theoretical estimations from different New Physics models are important!

Search for dark photon at BEPCII

APS/Alan Stonebraker

One needs to extend the Standard Model to explain Dark Matter

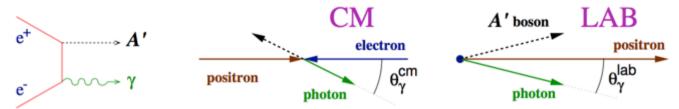

Wikipedia


• Additional U'(1) symmetry is one of the simplest extensions:

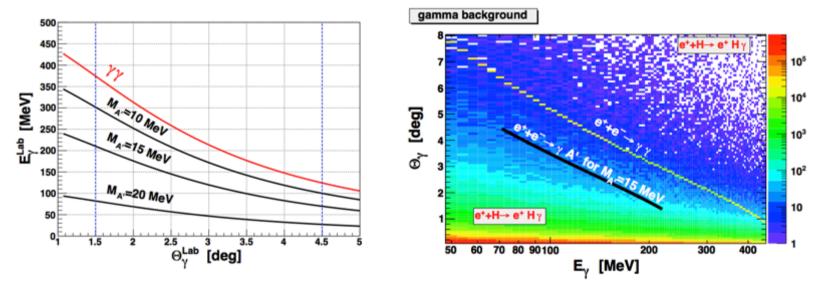
$$U(1)_Y \times SU(2)_W \times SU(3)_s \times U'(1)_D$$

- It requires a new gauge boson, A' ("dark photon"), with the mass $m_{A'} > 0$
- A' may couple to SM particles via kinetic mixing with the photon
- Expected: $m_{A'} = 1...10^4$ MeV, $\varepsilon = 10^{-6}...10^{-2}$ (kinetic mixing parameter)
- Both collider and fixed-target experiments can search for A'

Recent experimental constraints



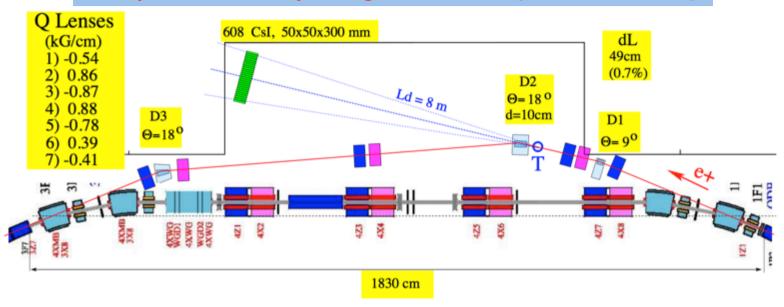
Recent experimental results (2013-2015):


WASA 2013	$\pi^0 \rightarrow \gamma(e^+e^-)$	PLB 726 (2013) 187
KLOE 2013	$\phi \to \eta(e^+e^-)$	PLB 720 (2013) 111
KLOE 2014	$e^+e^- \rightarrow \gamma(\mu^+\mu^-)$	arXiv:1404.7772
MAMI-A1 2014	$e^- N \rightarrow e^- N (e^+ e^-)$	PRL 112 (2014) 221802
PHENIX 2014	$\pi^0, \eta o \gamma({\color{olive}e^+e^-})$	arXiv:1409.0851
HADES 2014	$pN \rightarrow X(e^+e^-)$	PLB 731 (2014) 265
KLOE 2015	$e^+e^- \rightarrow \gamma(e^+e^-)$	arXiv:1501.05173

A' from the process $e^+e^- \rightarrow \gamma A'$

The process $e^+e^- \to \gamma A'$ is similar to the two-photon annihilation $e^+e^- \to \gamma \gamma$:

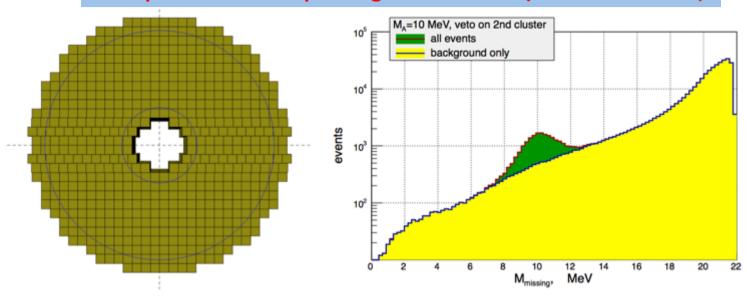
The photon energy, E_{γ}^{lab} , depends on its polar angle, θ_{γ}^{lab} , the mass of the second particles $(\gamma \ or \ A')$. In the case of $E_{beam}=1.0-2.5 \ GeV \ (\sqrt{s}=31.5\sim 50 \ MeV)$.



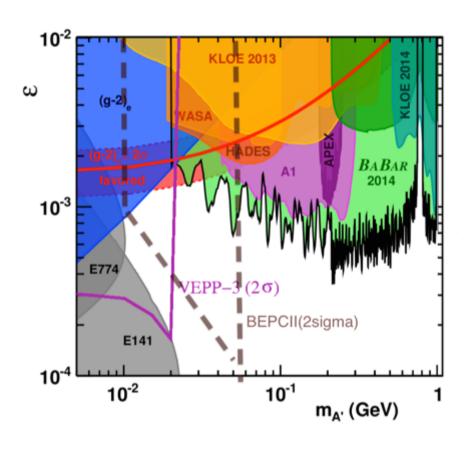
Therefore, one can search for dark photons measuring E_{γ} and θ_{γ} of the photon. However, there are large QED backgrounds:

2016-4-4
$$e^+p \to e^+p(\gamma), \ e^+e^- \to e^+e^-(\gamma), \ e^+e^- \to \gamma\gamma(\gamma).$$
 39

Concept of the experimental technique


Example of the concept design from VEPP3 (arXiv:1207.5089)

- **♦ 2.0 GeV positron beam incident on an internal hydrogen target**
- ♦ Estimated luminosity reaches 10³⁵ cm⁻²s⁻¹ (Beam current of 900 mA, and target thickness of 5×10¹⁵ atom/cm²
- **♦ New bypass bending the beam and directing photons to the calorimeter**
- **♦** Segmented EM calorimeter placed at a distance of 8-10 m from the target


Concept of the experimental technique

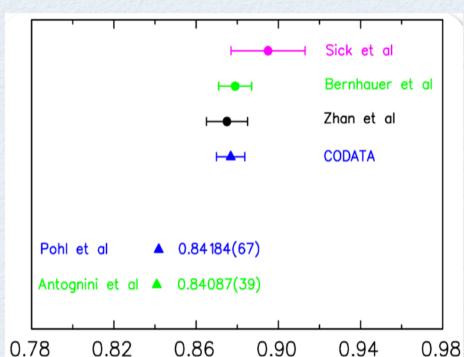
Example of the concept design from VEPP3 (arXiv:1207.5089)

- \blacktriangleright Energy resolution required: $\sigma_E/E < 0.5\%$ for $E_{\gamma} = 100 600 MeV$.
- ightharpoonup Angular acceptance: $heta_{\gamma}=1.5^0-5.0^0$ (corresponding to $heta_{\gamma}^{CM}=90^0\pm30^0$)
- > 800 crystals from BESIII?
- > The peak width is determined by the calorimeter resolutions
- ➤ An accurate Monte Carlo simulation of the QED background is required
- > Some of the background processes can be substantially suppressed
- \blacktriangleright The experiment will cover a mass range $\,m_{A'}=10-40\,MeV.\,$

Sensitivity of the BEPCII experiments

If there is a light dark matter particle, χ , with the mass $m_{\chi} < 0.5 m_{A'}$, then the invisible decay $A' \rightarrow \chi \bar{\chi}$ can be dominant!

Existing constraints:


- (g-2) of the muon
- (g-2) of the electron
- BaBar: $\Upsilon(1S) \to \gamma A'$
- BNL: K→ πA'

Proposed new measurements:

		¹ Duration, s
VEPP-3	10 ³³ ,	10 ⁷
CESR	10 ³⁴ ,	10 ⁷
DAΦNE	10 ²⁸ ,	$2\cdot 10^7$
${\sf DarkLight}$	$6 \cdot 10^{35}$	$2\cdot 10^6$

BEPCII 1 10³⁵ 10⁷

Proton radius puzzle

Proton Charge radius (fm)

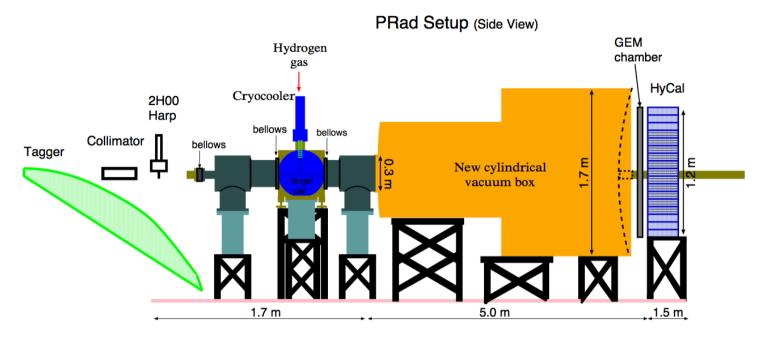
μH data:

Pohl et al. (2010)

Antognini et al. (2013)

 $R_E = 0.8409 \pm 0.0004 \text{ fm}$

7 σ difference !?


 $R_E = 0.8775 \pm 0.0051 \text{ fm}$

ep data:

CODATA (2012) 2016-4-4

PRad Experimental Setup in Hall B at JLab

- High resolution, large acceptance calorimeter
- Windowless H₂ gas flow target
- Simultaneous detection of elastic and Moller electrons
- GEM detectors
- Q^2 range of $2x10^{-4} 0.14$ GeV²

Future sub 1% measurements:

- (1) ep elastic scattering at Jlab (PRad)
- (2) μp elastic scattering at PSI 16 U.S. institutions! (MUSE)
- (3) ISR experiments at Mainz

Ongoing H spectroscopy experiments

Summary

- Possibilities of physics programs are discussed at BEPCII with internal thin gas targets after BESIII shutdown
- Among them, cLFV, dark photon, and charge radius of proton are competitive and strong motivated.
- We need detailed MC simulations to dig out important physics which should be done as soon as possible
- BEPCII was there, cost of these projects will be relative cheap, and the BEPCII life time will be extended, and we may achieve more important physics.
- A proposal should be considered before BESIII shutdown, and some of them may run simultaneously with BESIII.

Preliminary discussions

- Refine/optimize physics
- Detectors: many arms (forward, SA, MA, LA)
- Internal gas targets (polarization):
 atomic beam sources, polarimeter, scattering chamber
- The luminosity monitor
- Upgrade of BEPCII?
- Prepare framework for MC simulations
- Collaboration between theorists and experimenters
- A focused workshop at IHEP in Beijing?

Thanks!

Thanks for many useful discussions with Jianping Chen, Haiyan Gao, Jianping Ma, and Feng Yuan