

Overview of Tau decays

Emilie Passemar Indiana University/Jefferson Laboratory

« New Vistas in Low-Energy Precision Physics » Mainz, April 6, 2016

- 1. Introduction and Motivation
- 2. Hadronic τ-decays
- 3. LFV tau decays
- 4. Conclusion and outlook
- NB: several topics not covered: Lepton Universality, CP violation in tau decays, g-2 EDM, etc...

see Alberto Lusiani's talk

1. Introduction and Motivation

The τ lepton

- τ lepton discovered in 1976 by M. Perl et al. (SLAC-LBL group)
 - Mass:

- Lifetime:

 $m_{\tau} = 1.77682(16) \text{ GeV}$

$$\tau_{\tau} = 2.096(10) \cdot 10^{-13} s$$

- Enormous progress in tau physics since then (CLEO, LEP, Babar, Belle, BES, VEPP-2M, neutrino experiments,...)
 - Early years: consolidate τ as a standard lepton no invisible decays and standard couplings
 - Better data: determination of fundamental SM parameters and QCD studies

Experiment	Number of τ pairs		
LEP	~3x10⁵		
CLEO	~1x10 ⁷		
BaBar	~5x10 ⁸		
Belle	~9x10 ⁸		

The τ lepton

- τ lepton discovered in 1976 by M. Perl et al. (SLAC-LBL group)
 - Mass:

- Lifetime:

 $m_{\tau} = 1.77682(16) \text{ GeV}$

- $\tau_{\tau} = 2.096(10) \cdot 10^{-13} s$
- Enormous progress in tau physics since then (CLEO, LEP, Babar, Belle, BES, VEPP-2M, neutrino experiments,...)
 - More recently: huge number of tau at the B factories: BaBar, Belle:
 - Tool to search for NP: rare decays, final states in hadron colliders
 - Precision physics: $\Rightarrow \alpha_{S}$, $|V_{us}|$ etc

Experiment	Number of τ pairs		
LEP	~3x10⁵		
CLEO	~1x10 ⁷		
BaBar	~5x10 ⁸		
Belle	~9x10 ⁸		

PDG'14

2. Hadronic τ-decays

$d_{\theta} = V_{ud}d + V_{us}s$ Hadrons 2.1 Introduction Tau, the only lepton heavy enough to decay into hadrons $m_{\tau} \sim 1.77 \text{GeV} > \Lambda_{ocp}$ \Longrightarrow use *perturbative tools: OPE...* fund. SM parameters $(\alpha_s(m_{\tau}), |V_{us}|, m_s)$ Inclusive τ decays : $\tau \rightarrow (\bar{u}d, \bar{u}s)v_{\tau}$ We consider $\Gamma(\tau^- \rightarrow \nu_{\tau} + \text{hadrons}_{S=0})$ (v₁+a₁)(s) ALEPH 3 Perturbative QCD (massless) $\Gamma(\tau^- \rightarrow v_{\tau} + \text{hadrons}_{S \neq 0})$ 2.5 Parton model prediction 2 ALEPH and OPAL at LEP measured with precision not only the total BRs but also 1.5 the energy distribution of the hadronic system huge *QCD activity*! 0.5 $R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v_e})}$ Observable studied: 0 0.5 1.5 2.5 3 3.5 s (GeV²)

2.2 Theory

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

parton model prediction

•
$$R_{\tau} = R_{\tau}^{NS} + R_{\tau}^{S} \approx |V_{ud}|^{2} N_{C} + |V_{us}|^{2} N_{C}$$

2.2 Theory

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

parton model prediction

•
$$R_{\tau} = R_{\tau}^{NS} + R_{\tau}^{S} \approx |V_{ud}|^{2} N_{C} + |V_{us}|^{2} N_{C}$$

Experimentally:
$$R_{\tau} = \frac{1 - B_e - B_{\mu}}{B_e} = 3.6291 \pm 0.0086$$

2.2 Theory

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

parton model prediction

•
$$R_{\tau} = R_{\tau}^{NS} + R_{\tau}^{S} \approx |V_{ud}|^{2} N_{C} + |V_{us}|^{2} N_{C}$$

• Experimentally:
$$R_{\tau} = \frac{1 - B_e - B_{\mu}}{B_e} = 3.6291 \pm 0.0086$$

• Due to QCD corrections: $R_{\tau} = |V_{ud}|^2 N_C + |V_{us}|^2 N_C + O(\alpha_s)$

 $d_{\theta} = V_{ud}d + V_{us}s$

Hadrons

2.3 Theory

- From the measurement of the spectral functions, extraction of $\alpha_{S}, \, |V_{us}|$

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v_e})} \approx N_C$$

• Extraction of the strong coupling constant :

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} = \frac{R_{\tau}^{S}}{R_{\tau}^{NS}} + O\left(\alpha_{s}\right)$$

Aim: compute the QCD corrections with the best accuracy

Emilie Passemar

QCD switch

$$O$$

 ON
 OFF
 OFF
 $(\alpha_{s} \neq 0)$
 O

naïve QCD prediction

• Calculation of R_{τ} :

 $\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \left\{ \begin{matrix} \tau^{-} & \mathbf{d}, \mathbf{s} & \tau^{-} \\ & & W & W & \tau^{-} \\ & & & V_{\tau} & \mathbf{u} & V_{\tau} \end{matrix} \right\}$

$$\square \qquad R_{\tau}(m_{\tau}^2) = 12\pi S_{EW} \int_{0}^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$

Braaten, Narison, Pich'92

• Calculation of R_{τ} :

- We are in the *non-perturbative* region: we do not know how to compute!
- Trick: use the analytical properties of Π !

Braaten, Narison, Pich'92

Non-Perturbative

• Calculation of R_{τ} :

$$R_{\tau}(m_{\tau}^2) = 12\pi S_{EW} \int_{0}^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$

$$\Gamma_{\tau \to v_{\tau} + \text{had}} \sim \text{Im} \left\{ \begin{matrix} \tau & \mathbf{d}, \mathbf{s} & \tau \\ W & W & V_{\tau} \\ V_{\tau} & \mathbf{u} & V_{\tau} \end{matrix} \right\}$$

Braaten, Narison, Pich'92

Analyticity: □ is analytic in the entire complex plane except for s real positive
 Cauchy Theorem

$$R_{\tau}(m_{\tau}^{2}) = 6i\pi S_{EW} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \Pi^{(1)}(s) + \Pi^{(0)}(s) \right]$$

• We are now at sufficient energy to use OPE:

µ: separation scale between short and long distances

Braaten, Narison, Pich'92

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

• Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04

Braaten, Narison, Pich'92

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0): $\delta_p = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + ... \approx 20\%$ $a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}$

Baikov, Chetyrkin, Kühn'08

Braaten, Narison, Pich'92

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0): $\delta_p = a_{\tau} + 5.20 a_{\tau}^2 + 26 a_{\tau}^3 + 127 a_{\tau}^4 + \dots \approx 20\%$ $a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}$ Baikov, Chetyrkin, Kühn'08
- D=2: quark mass corrections, *neglected* for R_{τ}^{NS} ($\propto m_u, m_d$) but not for R_{τ}^{S} ($\propto m_s$)

Braaten, Narison, Pich'92

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0): $\delta_p = a_{\tau} + 5.20 a_{\tau}^2 + 26 a_{\tau}^3 + 127 a_{\tau}^4 + \dots \approx 20\%$ $a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}$ Baikov, Chetyrkin, Kühn'08
- D=2: quark mass corrections, *neglected* for R_{τ}^{NS} ($\propto m_u, m_d$) but not for R_{τ}^{S} ($\propto m_s$)
- D ≥ 4: Non perturbative part, not known, *fitted from the data* Use of weighted distributions

Le Diberder & Pich'92

Exploit shape of the spectral functions to obtain additional experimental information

$$R_{\tau,U}^{k\ell}(s_0) = \int_0^{s_0} ds \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{s_0}\right)^\ell \frac{dR_{\tau,U}(s_0)}{ds}$$

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$
- Perturbative part (D=0): $\delta_p \approx 20\%$
- D=2: quark mass corrections, *neglected*
- D ≥ 4: Non perturbative part, not known, *fitted from the data* Use of weighted distributions

$$\beta_{NP} = -0.0064 \pm 0.0013$$

Davier et al'14

 $EW \left(\mathbf{I} + \mathbf{O}_{P} + \mathbf{O}_{NP} \right)$

Braaten, Narison, Pich'92

• Small unknown NP part $(\delta_{NP}: 3\% \delta_{P})$ very precise extraction of $\alpha_{S}!$

2.5 Results and determination of α_s

Pich'Tau14

Reference	Method	δ _{NP}	δ _P	$\alpha_{s}(m_{\tau})$	$\alpha_{s}(m_{Z})$	
Baikov et al	CIPT, FOPT		0.1998 (43)	0.332 (16)	0.1202 (19)	
Davier et al'14	CIPT, FOPT	- 0.0064 (13)	—	0.332 (12)	0.1199 (15)	
Beneke-Jamin	BSR + FOPT	- 0.007 (3)	0.2042 (50)	0.316 (06)	0.1180 (08)	
Maltman-Yavin	PWM + CIPT	+ 0.012 (18)	-	0.321 (13)	0.1187 (16)	
Menke	CIPT, FOPT		0.2042 (50)	0.342 (11)	0.1213 (12)	
Narison	CIPT, FOPT		_	0.324 (08)	0.1192 (10)	
Caprini-Fischer	BSR + CIPT		0.2037 (54)	0.322 (16)	-	
Abbas et al	IFOPT		0.2037 (54)	0.338 (10)		
Cvetič et al	$\beta_{exp} + CIPT$		0.2040 (40)	0.341 (08)	0.1211 (10)	
Boito et al	CIPT, DV	- 0.002 (12)		0.347 (25)	0.1216 (27)	
	FOPT, DV	- 0.004 (12)	_	0.325 (18)	0.1191 (22)	
Pich'14	CIPT	- 0.0064 (13)	0.2014 (21)	0.342 (13)	0.1213 (14)	
	FOPT		0.000+(15)	0.2014 (51)	0.320 (14)	0.1187 (17)
Pich'14	CIPT, FOPT	- 0.0064 (13)	0.2014 (31)	0.332 (13)	0.1202 (15)	

CIPT: Contour-improved	perturbation theory
------------------------	---------------------

FOPT: Fixed-order perturbation theory

- BSR: Borel summation of renormalon series
- IFOPT Improved FOPT

 β_{exp} :Expansion in derivatives of α_s (β function)PWM:Pinched-weight momentsCIPTm:Modified CIPT (conformal mapping)DV:Duality violation (OPAL only)

2.5 Results and determination of α_s

3. Charged Lepton-Flavour Violation

3.1 Introduction and Motivation

- Lepton Flavour Violation is an « accidental » symmetry of the SM ($m_v=0$)
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression in unobservably small rates!

E.g.: $\mu \rightarrow e\gamma$

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{1i}}{M^2_{W}} \right|^2 < 10^{-54}$$

Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

$$\left[Br\left(\tau\to\mu\gamma\right)<10^{-40}\right]$$

• Extremely *clean probe of beyond SM physics*

3.1 Introduction and Motivation

• In New Physics scenarios CLFV can reach observable levels in several channels

Talk by D. Hitlin	$\tau \to \mu \gamma \ \tau \to \ell \ell \ell$			
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	Undetectable		
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10-10	10-7	
SM + heavy Maj $v_{\rm R}$	5M + heavy Maj v _R Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008		10-10	
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10-9	10-8	
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10	
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10-9	

- But the sensitivity of particular modes to CLFV couplings is model dependent
- Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

3.2 CLFV processes: tau decays

• Several processes: $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y$ $\searrow P, S, V, P\overline{P}, ...$

48 LFV modes studied at Belle and BaBar

3.2 CLFV processes: tau decays

• Several processes: $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y$ $\searrow P, S, V, P\overline{P}, ...$

Expected sensitivity 10⁻⁹ or better at *LHCb, Belle II*?

3.3 Effective Field Theory approach

• Build all D>5 LFV operators:

$$\succ \text{ Dipole: } \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

> Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \ \overline{q} \Gamma q$$

 $\Gamma \equiv 1, \gamma^{\mu}$

$$\succ \text{ Lepton-gluon (Scalar, Pseudo-scalar): } \mathcal{L}_{eff}^G \supset -\frac{C_G}{\Lambda^2} m_{\tau} G_F \overline{\mu} P_{L,R} \tau \ G_{\mu\nu}^a G_A^{\mu\nu}$$

➤ 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \ \Gamma P_{L,R} \tau \ \overline{\mu} \ \Gamma P_{L,R} \mu$$

See e.g.

Black, Han, He, Sher'02

Matsuzaki & Sanda'08

Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

Crivellin, Najjari, Rosiek'13

Brignole & Rossi'04 Dassinger et al.'07

Giffels et al.'08

• Each UV model generates a *specific pattern* of them

3.4 Model discriminating power of Tau processes

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	\checkmark	_	_	_	_	—
OD	✓	1	\checkmark	✓	_	_
$O^{\mathbf{q}}_{\mathbf{V}}$	_	_	✓ (I=1)	$\checkmark(\mathrm{I=0,1})$	_	_
O_S^q	_	_	✓ (I=0)	$\checkmark(\mathrm{I=0,1})$	_	_
O_{GG}	_	_	\checkmark	\checkmark	_	_
O_A^q	_	_	—	_	✓ (I=1)	✓ (I=0)
O_P^q	_	—	—	_	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	—	—	—	—	—	✓

- The notion of "best probe" (process with largest decay rate) is model dependent
- If observed, compare rate of processes key handle on *relative strength* between operators and hence on the *underlying mechanism*

3.4 Model discriminating power of Tau processes

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
${ m O}_{{ m S},{ m V}}^{4\ell}$	1	_	—	_	_	_
OD	1	1	\checkmark	✓	_	_
O_V^q	_	_	✓ (I=1)	$\checkmark(\mathrm{I=}0{,}1)$	_	_
$O^{\mathbf{q}}_{\mathbf{S}}$	_	_	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	_	_
O_{GG}	_	_	\checkmark	\checkmark	_	_
$\mathrm{O}^{\mathrm{q}}_{\mathrm{A}}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$\mathrm{O}^{\mathrm{q}}_{\mathrm{P}}$	—	_	—	_	✓ (I=1)	✓ (I=0)
${\rm O}_{{ m G}\widetilde{{ m G}}}$	_	—	_	—	—	1

- In addition to leptonic and radiative decays, *hadronic decays* are very important sensitive to large number of operators!
- But need reliable determinations of the hadronic part: form factors $F_i(s)$ and *decay constants* (e.g. f_{η} , $f_{\eta'}$)

$$H_{\mu} = \left\langle \pi \pi \right| \left(V_{\mu} - A_{\mu} \right) e^{iL_{QCD}} \left| 0 \right\rangle = \left(\text{Lorentz struct.} \right)_{\mu}^{i} F_{i}(s) \quad \text{with} \quad s = \left(p_{\pi^{+}} + p_{\pi^{-}} \right)^{2}$$

4. Charged Lepton-Flavour Violation and Higgs Physics

4.1 Non standard LFV Higgs coupling

•
$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left(\overline{f}_{L}^{i} f_{R}^{j} H \right) H^{\dagger} H$$

In the SM:
$$Y_{ij}^{h_{SM}}$$

 $-Y_{ij}\left(\overline{f}_{L}^{i}f_{R}^{j}\right)h$

 $=\frac{m_i}{\delta_{ii}}\delta_{ii}$

Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnik, Kopp, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12

Hadronic part treated with perturbative QCD

4.1 Non standard LFV Higgs coupling

4.2 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange

• Problem : Have the hadronic part under control, ChPT not valid at these energies!

Use *form factors* determined with *dispersion relations* matched at low energy to *CHPT* Daub, Dreiner, Hanart, Kubis, Meissner'13

Celis, Cirigliano, E.P.'14
4.2 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange

4.2 Constraints from $\tau \rightarrow \mu \pi \pi$

Contribution from dipole diagrams

• Diagram only there in the case of $\tau^- \rightarrow \mu^- \pi^+ \pi^-$ absent for $\tau^- \rightarrow \mu^- \pi^0 \pi^0$ neutral mode more model independent

4.3 Determination of $F_V(s)$

Vector form factor

Precisely known from experimental measurements

$$e^+e^- \rightarrow \pi^+\pi^-$$
 and $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$ (isospin rotation)

> Theoretically: Dispersive parametrization for $F_V(s)$

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{V}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}'' - \lambda_{V}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{\left(s' + s - i\varepsilon\right)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$

4.3 Determination of $F_V(s)$

Determination of $F_V(s)$ thanks to precise measurements from Belle!

4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

- No experimental data for the other FFs → Coupled channel analysis up to √s~1.4 GeV Donoghue, Gasser, Leutwyler'90 Inputs: I=0, S-wave ππ and KK data Moussallam'99
 - Daub et al'13

• Unitarity:

4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

• General solution:

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$
Canonical solution falling as 1/s for large s (obey unsubtracted dispersion relations)
Polynomial determined from a matching to ChPT + lattice

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\mathrm{Im}X_{n}^{(N+1)}(s) = \sum_{m=1}^{2} T_{mn}^{*}\sigma_{m}(s)X_{m}^{(N)}(s) \longrightarrow$$

$$X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\text{Im}X_n^{(N+1)}(s')}{s'-s}$$

4.5 Constraints in the $\tau\mu$ sector

• At low energy

4.5 Constraints in the $\tau\mu$ sector

Emilie Passemar

Belle'08'11'12 except last from CLEO'97

4.5 Constraints in the $\tau\mu$ sector

• Constraints from LE:

> $\tau \rightarrow \mu \gamma$: best constraints but loop level > sensitive to UV completion of the theory

- Constraints from HE: *LHC* wins for $\tau \mu!$
- Opposite situation for $\mu e!$
- For LFV Higgs and nothing else: LHC bound

$$BR(\tau \to \mu\gamma) < 2.2 \times 10^{-9}$$
$$BR(\tau \to \mu\pi\pi) < 1.5 \times 10^{-11}$$

4.7 Interplay between LHC & Low Energy

- If real what type of NP?
- If $h \rightarrow \tau \mu$ due to loop corrections:
 - extra charged particles necessary
 - $\tau \rightarrow \mu \gamma$ too large

- h → τ μ possible to explain if extra scalar doublet:
 ⇒ 2HDM of type III
- Constraints from $\tau \rightarrow \mu \gamma$ important! \Rightarrow Belle II

Dorsner et al.'15

4.8 Interplay between LHC & Low Energy

- **2HDMs** with gauged $L_{\mu} L_{\tau} \Rightarrow Z'$, explain anomalies for
 - $\ h \to \tau \mu$
 - $\ B \to K^* \mu \mu$
 - $R_K = B \rightarrow K \mu \mu / B \rightarrow K e e$
- Constraints from $\tau \rightarrow 3\mu$ crucial \Rightarrow Belle II, LHCb
- See also, e.g.: Aristizabal-Sierra & Vicente'14, Lima et al'15, Omhura, Senaha, Tobe '15 Altmannshofer et al.'15 Bauer and Neubert'16, Buschmann et al.'16, etc...

Altmannshofer & Straub'14, Crivellin et al'15 Crivellin, D'Ambrosio, Heeck.'15

5. Conclusion and outlook

5.1 Conclusion

- Hadronic τ-decays very interesting to study
 - Very precise determination of α_s But error assignment and treatment of the NP part and new data needed
 - Extraction of V_{us} : \Rightarrow see Alberto Lusiani's talk
- Charged LFV are a very important probe of new physics
 - Extremely small SM rates
 - Experimental results at low energy are very precise
 very high scale sensitivity
 - Excellent model discriminating tools:
 - ≻ BRs
 - Decay distributions

Hadronic decays such as $\tau \rightarrow \mu \pi \pi$ important!

5.1 Conclusion

- Hadronic τ-decays very interesting to study
 - Very precise determination of α_s But error assignment and treatment of the NP part and new data needed
 - Extraction of V_{us} : \rightarrow see Alberto Lusiani's talk
- Charged LFV are a very important probe of new physics
- Several topics extremely interesting to study that I did not address:
 - CPV asymmetry in $\tau \rightarrow K \pi v_{\tau}$ BaBar result does not agree with SM expectation (2.8 σ)
 - Lepton universality tests, Michel parameters...
 - EDM and g-2 of the tau
- A lot of *very interesting physics* remains to be done in the tau sector!

5.2 Prospects: Belle II Theory Interface Platform

- Initiative to coordinate a *joint theory-experiment* effort to study the potential impacts of the Belle II program
- Tau, EW and low multiplicity working group
- Meetings twice a year until 2016 gathering theory experts and Belle II members
- Next meeting: May 23 25, 2016 @ Pittsburgh
- Visit: https://belle2.cc.kek.jp/~twiki/bin/view/B2TiP

6. Back-up

5. CPV in tau decays

5.1
$$\mathbf{\tau} \to \mathbf{K} \mathbf{\pi} \mathbf{V}_{\mathbf{\tau}}$$
 CP violating asymmetry
• $A_{\varrho} = \frac{\Gamma(\tau^+ \to \pi^+ K_s^0 \overline{\mathbf{v}}_{\tau}) - \Gamma(\tau^- \to \pi^- K_s^0 \mathbf{v}_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_s^0 \overline{\mathbf{v}}_{\tau}) + \Gamma(\tau^- \to \pi^- K_s^0 \mathbf{v}_{\tau})}$
 $= |p|^2 - |q|^2 \approx (0.36 \pm 0.01)^{\circ}$ in the SM
Bigi & Sanda'05
Grossman & Nir'11
• Experimental measurement : BaBar'11
 $A_{\varrhoexp} = (-0.36 \pm 0.23_{stat} \pm 0.11_{syst})^{\circ}$ $\mathbf{\Sigma} \otimes \mathbf{T}$ from the SM!

 CP violation in the tau decays should be of opposite sign compared to the one in D decays in the SM Grossman & Nir'11

$$A_{D} = \frac{\Gamma\left(D^{+} \to \pi^{+}K_{S}^{0}\right) - \Gamma\left(D^{-} \to \pi^{-}K_{S}^{0}\right)}{\Gamma\left(D^{+} \to \pi^{+}K_{S}^{0}\right) + \Gamma\left(D^{-} \to \pi^{-}K_{S}^{0}\right)} = \left(-0.54 \pm 0.14\right)\% \quad Belle, Babar, CLOE, FOCUS$$

5.1 $\tau \rightarrow K\pi v_{\tau}$ CP violating asymmetry

 New physics? Charged Higgs, W_L-W_R mixings, leptoquarks, tensor interactions (*Devi, Dhargyal, Sinha'14*)?

 Problem with this measurement? It would be great to have other experimental measurements from *Belle, BES III or Tau-Charm factory*

Belle'11

5.2 Three body CP asymmetries

• A variety of CPV observables can be studied : $\tau \rightarrow K\pi\pi\nu_{\tau}, \tau \rightarrow \pi\pi\pi\nu_{\tau}$ rate, angular asymmetries, triple products,.... e.g., Choi, Hagiwara and Tanabashi'98 Kiers, Little, Datta, London et al.,'08 Mileo, Kiers and, Szynkman'14

Same principle as in charm

Difficulty : Treatement of the hadronic part Hadronic final state interactions have to be taken into account! Disentangle weak and strong phases

• More form factors, more asymmetries to build but same principles as for 2 bodies

Comparison with Other Determinations

- Baikov, Chetyrkin, Köhn, PRL 101 (2008) 012002, [0801.1821]
- Beneke, Jamin, JHEP 0809 (2008) 044, [0806.3156]
- Maltman, Yavin, PRD78 (2008) 094020, [0807.0650]
- Menke, 0904.1796
- Caprini, Fischer, EPJC64 (2009) 35, [0906.5211]
- Magradze, Few Body Syst. 48 (2010) 143, Erratum-ibid. 53 (2012) 365, [1005.2674]
- Cvetic, Loewe, Martinez, Valenzuela, PRD82 (2010) 093007, [1005.4444]
- Caprini, Fischer, Rom.J.Phys. 55 (2010) 527, [1012.1132]
- Boito et al., PRD84 (2011) 113006, [1110.1127]; PRD85 (2012) 093015, [1203.3146]
- Beneke, Boito, Jamin, JHEP 1301 (2013) 125, [1210.8038]
- * experimental uncertainty when available is shown as inner error bar

Tau 2014, Aachen, Sept. 15-19, 2014

Zhiqing Zhang (zhang@lal.in2p3.fr, LAL, Orsay)

•
$$R_{\tau,V+A}(s_0) = N_C \sum_{\mathcal{A}}^{S} |V_{ud}|^2 (1 + \delta_P + \delta_{NP})$$

 $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90,
Erler'04

• Perturbative part ($m_q=0$)

$$-s\frac{d}{ds}\Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n \left(\frac{\alpha_s(-s)}{\pi}\right)^n$$

 $K_0 = K_1 = 1, K_2 = 1.63982, K_3 = 6.37101$ $K_4 = 49.07570$ Baikov, Chetyrkin, Kühn'08

$$\begin{split} & \longrightarrow \quad \delta_{P} = \sum_{n=1}^{\infty} K_{n} A^{n}(\alpha_{S}) = a_{\tau} + 5.20 \ a_{\tau}^{2} + 26 \ a_{\tau}^{3} + 127 \ a_{\tau}^{4} + \dots \\ & \text{with } A^{n}(\alpha_{S}) = \frac{1}{2\pi i} \oint_{|s| = m_{\tau}^{2}} \frac{ds}{s} \left(1 - 2 \frac{s}{m_{\tau}^{2}} + 2 \frac{s^{3}}{m_{\tau}^{6}} - \frac{s^{4}}{m_{\tau}^{8}} \right) \left(\frac{\alpha_{S}(-s)}{\pi} \right)^{n} \qquad a_{\tau} = \frac{\alpha_{s}(m_{\tau})}{\pi} \\ & \longrightarrow \quad \delta_{P} \approx 20\% \qquad \left(\delta_{P} = 0.2066 \pm 0.0070 \right) \quad \text{Davier et al '08} \end{split}$$

CIPT vs. FOPT

•
$$\overline{-s\frac{d}{ds}\Pi^{(0+1)}(s) = \frac{1}{4\pi^2}\sum_{n=0}^{\infty}K_n\left(\frac{\alpha_s(-s)}{\pi}\right)^n}$$

$$\delta_p = \sum_{n=1}^{\infty}K_nA^n(\alpha_s) = \sum_{n=0}^{\infty}r_n\left(\frac{\alpha_s(-s)}{\pi}\right)^n$$

$$CIPT \qquad FOPT$$

$$r_n = K_n + g_n$$

$$A^n(\alpha_s) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^3 - x^4) \left(\frac{\alpha_s(-xm_\tau^2)}{\pi}\right)^n = a_\tau + \dots$$

$$a_\tau = \frac{\alpha_s(m_\tau)}{\pi}$$

$$\overline{K_n} \quad 1 \quad 1.6398 \quad 6.3710 \quad 49.0757$$

$$\overline{K_n} \quad 1 \quad 1.6398 \quad 6.3710 \quad 49.0757$$

$$Pich Tau' 10$$

$$LeDiberder \& Pich' '92$$

The dominant corrections come from the contour integration Large running of \mathbb{W}_{S} along the circles = $m_{\tau}^{2}e^{i\varphi}$ $\varphi \in [0, 2\pi]$

$$\begin{array}{ll} \textbf{Perturbative} & (\textbf{m}_{q}=0) & -s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^{2}} \sum_{n=0}^{\infty} K_{n} \left(\frac{\alpha_{s}(-s)}{\pi} \right)^{n} \\ \hline K_{0} = K_{1} = 1 & , \ K_{2} = 1.63982 & , \ K_{3} = 6.37101 & , \ K_{4} = 49.07570 & \text{Baikov-Chetyrkin-Kilhn '08} \\ \hline \end{pmatrix} & \delta_{P} = \sum_{n=1}^{\infty} K_{n} A^{(n)}(\alpha_{s}) = a_{\tau} + 5.20 a_{\tau}^{2} + 26 a_{\tau}^{3} + 127 a_{\tau}^{4} + \cdots \\ \textbf{Le Diberder- Pich '92} \\ A^{(n)}(\alpha_{s}) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^{3} - x^{4}) \left(\frac{\alpha_{s}(-s)}{\pi} \right)^{n} = a_{\tau}^{n} + \cdots & ; \ a_{\tau} \equiv \alpha_{s}(m_{\tau})/\pi \\ \hline \\ \textbf{Power Corrections} \\ \textbf{Braaten-Narison-Pich '92} \\ & \Pi_{OPE}^{(0+1)}(s) \approx \frac{1}{4\pi^{2}} \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-s)^{n}} \\ \textbf{Braaten-Narison-Pich '92} \\ & \delta_{NP} \approx \frac{-1}{2\pi i} \oint_{|x|=1} dx \ (1 - 3x^{2} + 2x^{3}) \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-xm_{\tau}^{2})^{n}} = -3 \frac{C_{6} \langle O_{6} \rangle}{m_{\tau}^{6}} - 2 \frac{C_{8} \langle O_{8} \rangle}{m_{\tau}^{8}} \\ \textbf{Suppressed by} \ m_{\tau}^{6} \\ \hline \end{aligned}$$

Perturbative Uncertainty on $\alpha_s(m_{\tau})$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a(-s)^n$$

$$\delta_{\rm P} = \sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s) = \sum_{n=0}^{\infty} r_n a_{\tau}^n r_n$$

CIPT FOPT

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^3 - x^4) a_{\tau} (-x m_{\tau}^2)^n = a_{\tau}^n + \cdots ; \qquad a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$$

n	1	2	3	4	5
K _n	1	1.6398	6.3710	49.0757	
g _n	0	3.5625	19.9949	78.0029	307.78
r _n	1	5.2023	26.3659	127.079	

The dominant corrections come from the contour integration

Le Diberder- Pich 1992

Large running of a_s along the circle $s = m_{\tau}^2 e^{i\phi}$, $\phi \in [0, 2\pi]$

 $= K_n + g_n$

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

- No experimental data for the other FFs → Coupled channel analysis up to √s~1.4 GeV Donoghue, Gasser, Leutwyler'90 Inputs: I=0, S-wave ππ and KK data Moussallam'99 Daub et al'13
- Unitarity:

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

Inputs : $\pi\pi \rightarrow \pi\pi$, KK

Celis, Cirigliano, E.P.'14

- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Buttiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \implies *reconstruct T matrix* Emilie Passemar

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

• General solution:

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^\infty \frac{ds'}{s'-s} \operatorname{Im} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• Fix the polynomial with requiring $F_p(s) \rightarrow 1/s$ (Brodsky & Lepage) + ChPT: Feynman-Hellmann theorem: $\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d}\right) M_P^2$

$$\Gamma_P(0) = \left(\frac{m_u}{\partial m_u} + \frac{m_d}{\partial m_d} \right) M$$

$$\Delta_P(0) = \left(\frac{m_s}{\partial m_s} \right) M_P^2$$

• At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

$$P_{\Gamma}(s) = \Gamma_{\pi}(0) = M_{\pi}^{2} + \cdots$$

$$Q_{\Gamma}(s) = \frac{2}{\sqrt{3}}\Gamma_{K}(0) = \frac{1}{\sqrt{3}}M_{\pi}^{2} + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$Q_{\Delta}(s) = \frac{2}{\sqrt{3}}\Delta_{K}(0) = \frac{2}{\sqrt{3}}\left(M_{K}^{2} - \frac{1}{2}M_{\pi}^{2}\right) + \cdots$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• At LO in ChPT:

$$M_{\pi^{+}}^{2} = (m_{u} + m_{d}) B_{0} + O(m^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K$$

Problem: large corrections in the case of the kaons!
 Use lattice QCD to determine the SU(3) LECs

 $\Gamma_K(0) = (0.5 \pm 0.1) \ M_\pi^2$ $\Delta_K(0) = 1^{+0.15}_{-0.05} \left(M_K^2 - 1/2M_\pi^2 \right)$

Dreiner, Hanart, Kubis, Meissner'13 Bernard, Descotes-Genon, Toucas'12

Determination of the polynomial

• General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• For θ_P enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states

Relax the constraints and match to ChPT

$$\begin{aligned} P_{\theta}(s) &= 2M_{\pi}^{2} + \left(\dot{\theta}_{\pi} - 2M_{\pi}^{2}\dot{C}_{1} - \frac{4M_{K}^{2}}{\sqrt{3}}\dot{D}_{1}\right)s\\ Q_{\theta}(s) &= \frac{4}{\sqrt{3}}M_{K}^{2} + \frac{2}{\sqrt{3}}\left(\dot{\theta}_{K} - \sqrt{3}M_{\pi}^{2}\dot{C}_{2} - 2M_{K}^{2}\dot{D}_{2}\right)s\end{aligned}$$

Dispersion relations: Model-independent method, based on first principles that extrapolates ChPT based on data

• Vector form factor

Precisely known from experimental measurements

$$e^+e^- \rightarrow \pi^+\pi^-$$
 and $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$ (isospin rotation)

> Theoretically: Dispersive parametrization for $F_V(s)$

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{V}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}'' - \lambda_{V}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{(s' - s - i\varepsilon)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$

3.4.3 Determination of $F_V(s)$

Determination of $F_V(s)$ thanks to precise measurements from Belle!

Emilie Passemar

3.5 Results

Emilie Passemar

Belle'08'11'12 except last from CLEO'97

2.5 Model discriminating power of Tau processes

• Depending on the UV model different correlations between the BRs

Interesting to study to determine the underlying dynamics of NP

3.5 What if $\tau \rightarrow \mu(e)\pi\pi$ observed? Reinterpreting Celis, Cirigliano, E.P'14

Talk by J. Zupan @ KEK-FF2014FALL

- $\tau \rightarrow \mu(e)\pi\pi$ sensitive to $Y_{\mu\tau}$ but also to $Y_{u,d,s}!$
- $Y_{u,d,s}$ poorly bounded

- For $Y_{u,d,s}$ at their SM values : $Br(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}, Br(\tau \to \mu \pi^0 \pi^0) < 4.6 \times 10^{-12}$ $Br(\tau \to e \pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e \pi^0 \pi^0) < 6.9 \times 10^{-11}$
- But for $Y_{u,d,s}$ at their upper bound:

 $Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8}$ $Br(\tau \to e\pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e\pi^0 \pi^0) < 2.1 \times 10^{-7}$

below present experimental limits!

If discovered among other things upper limit on Y_{u,d,s}!
 Interplay between high-energy and low-energy constraints!

3.6 Prospects : τ strange Brs

• Experimental measurements of the strange spectral functions not very precise

3.6 Prospects : τ strange Brs

 PDG 2014: « Eigtheen of the 20 *B*-factory branching fraction measurements are smaller than the non-*B*-factory values. The average normalized difference between the two sets of measurements is -1.30 » (-1.41 for the 11 Belle measurements and -1.24 for the 9 BaBar measurements)

Measured modes by the 2 B factories: Mode BaBar – Belle Normalized Difference $(\#\sigma)$ $\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0}) +1.4 $K^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0}) -2.9 $K^-K^+\pi^-\nu_\tau$ -2.9 $K^-K^+K^-\nu_\tau$ -5.4 $\eta K^- \nu_{\tau}$ -1.0 $\phi K^- \nu_{\tau}$ -1.3

Emilie Passemar

• Decomposition as a function of observed and separated final states

$$R_{\tau} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

Zhang'Tau14

$$v_{1}/a_{1}\left[\tau^{-} \rightarrow V^{-}/A^{-}v_{\tau}\right] \propto \frac{\mathsf{BR}\left[\tau^{-} \rightarrow V^{-}/A^{-}v_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \rightarrow e^{-}\overline{v_{e}}v_{\tau}\right]} \frac{1}{\mathsf{N}_{V/A}} \frac{d\mathsf{N}_{V/A}}{ds} \frac{m_{\tau}^{2}}{\left(1-s/m_{\tau}^{2}\right)^{2}\left(1+2s/m_{\tau}^{2}\right)}$$
Vector/Axial-vector
spectral functions branching fractions mass spectrum kinematic factor

2.6 Inclusive determination of V_{us}

• With QCD on:
$$\frac{\left|V_{us}\right|^2}{\left|V_{ud}\right|^2} = \frac{R_{\tau}^s}{R_{\tau}^{NS}} + O(\alpha_s)$$

Use OPE:
$$R_{\tau}^{NS}(m_{\tau}^2) = N_C S_{EW} |V_{ud}|^2 (1 + \delta_P + \delta_{NP}^{ud})$$

$$R_{\tau}^{S}\left(m_{\tau}^{2}\right) = N_{C} S_{EW} \left|V_{us}\right|^{2} \left(1 + \delta_{P} + \delta_{NP}^{us}\right)$$

SU(3) breaking quantity, strong dependence in m_s computed from OPE (L+T) + phenomenology

 $\delta R_{\tau,th} = 0.0239(30)$ Gamiz et al'07, Maltman'11

HFAG'14 $R_{\tau,S} = 0.1615(28)$ $R_{\tau,NS} = 3.4650(84)$ $|V_{ud}| = 0.97425(22)$

4.3 Confronting measurement and prediction

4.4 Towards a model independent determination of HVP

- Hadronic contribution cannot be computed from first principles
 due to low-energy hadronic effects
- Use analyticity + unitarity is real part of photon polarisation function from dispersion relation over total hadronic cross section data

$$\frac{\gamma}{\mu^{+}} \xrightarrow{P} e^{-} hadrons$$

$$R_{\nu}(s) = \frac{\sigma(e^{+}e^{-} \rightarrow hadrons)}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$
Leading order hadronic vacuum polarization :
$$a_{\mu}^{had,LO} = \frac{\alpha^{2}m_{\mu}^{2}}{(3\pi)^{2}}\int_{4m_{\pi}^{2}}^{\infty} ds \frac{K(s)}{s^{2}}R_{\nu}(s)$$

Low energy contribution dominates : ~75% comes from s < (1 GeV)²

 *π*π contribution extracted from data

• Tau data can be used for 2π and 4π channels with isospin rotation

- Tau spectral functions measured by ALEPH, Belle, CLEO, OPAL
- Excellent precision of tau data. Branching ratio (ie, spectral function normalisation) for $\tau \to \pi \pi^0 v$ known to 0.4%
- Invariant mass spectrum requires unfolding using detector simulation, which is however under good control

• Tau data can be used for 2π and 4π channels with isospin rotation

- Tau spectral functions measured by ALEPH, Belle, CLEO, OPAL
- Excellent precision of tau data. Branching ratio (ie, spectral function normalisation) for $\tau \rightarrow \pi \pi^0 v$ known to 0.4%
- *Main experimental challenge*: abundance and shape modeling of feedthrough from other tau final states
- Main theoretical challenge: *isospin breaking* Radiative corrections, charged vs. neutral mass splitting and electromagnetic decays: $(-3.2 \pm 0.4)\%$ correction to a_{μ}^{had}

Davier et al.'10

• Situation for the 2 pion channel: $e^+e^-vs.\tau$ Zhang Tau'2012

Davier'Tau12

The tau data help to reduce the discrepancy between theory and ٠ experiment (1.9 σ) but open issues remain: *isospin breaking* Very challenging for theorists!

3.5 Model discriminating power of Tau processes

- Two handles:

model M

Celis, Cirigliano, E.P.'14

> Spectra for > 2 bodies in the final state:

$$\frac{dBR(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}} \quad \text{and} \quad dR_{\pi^+ \pi^-} \equiv \frac{1}{\Gamma(\tau \to \mu \gamma)} \frac{d\Gamma(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}}$$

• Studies in specific models

Buras et al.'10

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\boxed{\frac{\operatorname{Br}(\mu^- \to e^- e^+ e^-)}{\operatorname{Br}(\mu \to e\gamma)}}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	0.062.2
$\frac{\operatorname{Br}(\tau \to e^- e^+ e^-)}{\operatorname{Br}(\tau \to e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.07 \dots 2.2$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.4	$\sim 2 \cdot 10^{-3}$	$0.06 \dots 0.1$	0.062.2
$\frac{\mathrm{Br}(\tau \to e^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	0.020.04	$0.03 \dots 1.3$
$\frac{\mathrm{Br}(\tau^- \to \mu^- e^+ e^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.04 \dots 1.4$
$\frac{\mathrm{Br}(\tau^- \to e^- e^+ e^-)}{\mathrm{Br}(\tau^- \to e^- \mu^+ \mu^-)}$	$0.8.\dots 2$	~ 5	$0.3. \dots 0.5$	$1.5 \dots 2.3$
$\frac{\operatorname{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\operatorname{Br}(\tau^- \to \mu^- e^+ e^-)}$	$0.7.\dots 1.6$	~ 0.2	510	1.41.7
$\frac{\mathbf{R}(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{\mathrm{Br}(\mu \rightarrow e \gamma)}$	$10^{-3} \dots 10^2$	$\sim 5 \cdot 10^{-3}$	0.080.15	$10^{-12} \dots 26$

3.7 Model discriminating of Spectra: $\tau \rightarrow \mu \pi \pi$

