

Efficacy of a Radial Time Project Chamber for Tests of Lepton Universality

Keith Griffioen College of William & Mary

griff@physics.wm.edu

New Vistas in Low-Energy Precision Physics (LEPP) Mainz, Germany 4-7 April 2016

Bethe-Heitler

Measuring the angle of the recoil proton determines $M_{\rm II}$

- Bound Nucleon Structure Experiment
- d(e,e'ps)X [(deep) inelastic]
- Deuterium target, spectator proton
- 70 < p_s < 150 MeV/c
- JLab Hall B CLAS with an RTPC
- Measure F_{2^n} at high x

Fenker, NIM A **592** (2008) 273–286 Baillie, PRL **108**, 142001 (2012) Tkachenko Phys. Rev. C **89**, 045206 (2014)

N.Baillie, S. Tkachenko,

W. Melnitchouk, K. Griffioen,

S. Kuhn, C. Keppel, M.E. Christy,

H. Fenker, J. Zhang, S. Bültmann

CHARTERED 1693

Fenker

He-DME gas mixture

Radial TPC

RTPC

Fenker

Concentric Construction

Performance

500

400

300

200

100

0

80

70

60

50

40

30

20

10

0 -0.15

-0.10

0.00

 $\Theta_{a}^{CLAS} - \Theta_{a}^{BONUS}$ (radians)

-0.05

0.10

0.05

0.15

0

50

Track Ionization Density (ADC Counts/mm)

LEPP 2016

-20

-10

Δ

Z_{CLAS} - Z_{BONUS} (cm)

20

Acceptance from inclusive eD

Helix-Fitting

- Backward-emitted p is a spectator
- Struck neutron is off-shell
- $\bullet\,p_s$ and p_n are equal and opposite
- Lorentz invariants are corrected for initial neutron 4-momentum

$$\alpha_s = \frac{E_s - p_{s\parallel}}{M_s}$$
$$x^* = \frac{Q^2}{2p_n \cdot q} \approx \frac{Q^2}{2M_s\nu(2 - \alpha_s)} = \frac{x}{2 - \alpha_s}$$

BoNuS Kinematic Correction

CHARTERED 1693

WILLIAM & MARY

• VIPs are 17% of the ps distribution

♣SFB콜

Corrections make resonances stand out

ps distribution

• F₂ⁿ/F₂^p can be measured at high x*

LEPP 2016

F_2^n for E = 4, 5 GeV

Curve: Kalantarians/Christy global fit before BoNuS

5 April 2016

LEPP 2016

Very Preliminary Proton charge radius – simulations

> March 25, 2016 Patrik Adlarson

Study of $p\mu^+\mu^-$ differential distributions

Beam: 0.5 – 0.501 GeV In MC weighted with BH-process Target: proton with produced vertex at (0, 0, 0)

5 000 000 events produced for reaction, $p\mu^{+}\mu^{-}$

Observable:

Resolution in proton momentum and θ required to reach 3σ sensitivity to see effect of Lepton Universality Violation

True proton information with background

Purple vertical lines represent -t = 0.01, 0.02, 0.03, respectively

Black line top: proton associated with Compton scattering at 500 MeVMiddle line:proton associated with π^0 prod at 500 MeVBlack area:proton associated with $\pi^0\pi^0$ prod at 500 MeV

Above 50° no background contribution at all!

Event requirement

Only keep event if p_{true}

- 1. 95-105 MeV/c (-t = 0.01); 137-147MeV/c (-t = 0.02); 169-179 MeV/c (-t = 0.03);
- 2. And only if proton theta angle $> 50^{\circ}$
- 3. Run for three conditions on beam energy smearing: 0, 100 keV, 1 MeV

Patrik's Talk

Case: -t = 0.01; Beam energy smeared: 0

δp(%)

Case: -t = 0.01; Beam energy smeared: 1 MeV

Case: -t = 0.01; Beam energy smeared: 100 keV

Case: -t = 0.02; Beam energy smeared: 0

δθ (mrad)

Patrik's Talk

Case: -t = 0.02; Beam energy smeared: 100 keV

Case: -t = 0.02; Beam energy smeared: 1 MeV

×10⁻³

0.7

0.6

0.5

0.4

0.3

0.2

4 4.5 5

δθ (mrad)

Case: -t = 0.03; Beam energy smeared: 100 keV

Case: -t = 0.03; Beam energy smeared: 0

5 April 2016

Patrik's Talk

Conclusions

Some regions are completely background free. In a precision experiment these regions should be used for the Lepton Universality Measurement

The error profile changes as function of –t

No great effect of beam energy smearing

Still roughly the same conclusion though: at least 3 mrad. A few percent resolution in momentum needed. Interestingly not so sensitive at -t = 0.03. But there less curvature.

Very Preliminary Timothy Hayward William & Mary Monte Carlo Simulations of photo production of Bethe-Heitler Pairs

Resolution pushes M_{II} events out of displayed region

Situation improves with larger M_{II} range

Less sensitive to momentum smearing

LEPP 2016

Effects of beam resolution

Effects of angular resolution

Effects of momentum resolution

Effects of total M_{II} resolution

- Lepton Universality tests with an RTPC seem possible, but more realistic simulations must be done.
- A hydrogen gas-jet or pellet-jet target, with a silicon tracking detector is an option.
- Drift chamber design (Gabriel Charles, Paris) —-competitive with the BONuS detector—-is an option.
- Active hydrogen target TPC (Mark Dalton at JLab) is also an option.