

Timelike form factor measurements at BESIII

Guangshun Huang

University of Science and Technology of China (USTC) (For the BESIII Collaboration)

New Vistas in Low-Energy Precision Physics 4-7 April 2015, Mainz, Germany

Outline

- > BEPCII/BESIII
- Energy scan and ISR
- > Baryon form factor measurements
- > Meson form factor measurements

> Summary

Bird View of BEPCII /BESIII

BESIII

detector

M 20IHEP, Beijing

Storage ring

BSRF

Beijing electron positron collider BEPCII

Beam energy 1.0-2.3 GeV Energy spread: 5.16 \times 10^{-4}

Linac

Design luminosity 1×10^{33} /cm²/s @ ψ (3770) Achieved Apr.5, 2016!

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BECPII/BESIII data taking³

Luminosity!

• After 8-year struggling, BEPCII reached its goal.

BEPC II: Large Crossing Angle, Double-ring

BESIII Detector

TOF

BTOF: two layers ETOF: 48 for each

CsI(TI) EMC

- Crystals: 28 cm(15 X₀) Barrel: |cosθ|<0.83 Endcap:
 - **0.85 < |cosθ| < 0.93**

R inner: 63mm ; R outer: 810mm Length: 2582 mm Layers: 43

BESIII Detector

				-	5600
	MDC	MDC	EMC		4100 750 -
Exps.	Wire resolution	dE/dx resolution	Energy resolution		
CLEO	110 µm	5%	2.2-2.4 %		
Babar	125 μm	7%	2.67 %		TOF
Belle	130 µm	5.6%	2.2 %	Exps.	time
RESIII					resolution
(XYZ	GYZ115 μm<5%a)(Bhabha)	2.3%	CDFII	100 ps	
data)		(Bhabha)		Belle	90 ps
• Nev • Nev	v ETOF (MRF v Inner MDC	BESIII (XYZ data)	68 ps (BTOF) 100 ps (ETOF) 7		

The **BESIII** Collaboration

: Timelike Form factors @BESIII

BESIII Data Sets

- July 19, 2008: first e⁺e⁻ collision event in BESIII
- Nov. 2008: ~14M ψ (2S) events for detector calibration
- 2009: 106M ψ(2S), 42pb⁻¹@3.65GeV 225M J/ψ World

World's largest samples

- 2010: ~0.9 fb⁻¹ $\psi(3770)$ • 2011: ~2.0 fb⁻¹ $\psi(3770)$ } 3.5×CLEO-c
- 2011: ~2.0 fb⁻¹ ψ(3770) ∫ 3.5×CLEO ~0.5 fb⁻¹ @ 4.01 GeV
- 2012: tau scan: ~24 pb⁻¹; ψ(2S): 0.4B; J/ψ: 1B; J/ψ scan; R scan (2.23, 2.4, 2.8, 3.4 GeV): ~12 pb⁻¹;
- 2013-2014: ~5.0 fb⁻¹ @ 4.26, 4.36 GeV, ..., 19 points for XYZ studies; ~0.8 fb⁻¹ R scan in 3.8-4.6 GeV, 104 points;
- 2015: ~0.5 fb⁻¹ in 2-3.1 GeV, 20 points; 0.1 fb⁻¹ Y(2175);
- •2016: \rightarrow 3 fb⁻¹ @4.18 GeV for Ds.

R-QCD scan in 2 – 3.1 GeV

- 2014.12.30-2015.5.1;
- From high to low;
- Added 2.05 GeV;
- 20(21) energy points, with a total online luminosity 525 pb⁻¹;
- Allows for form factor measurements, threshold studies, ...

E_{cm}	E_{th}	LNeeded	t_{beam}	Purpose
(GeV)	(GeV)	(pb^{-1})	(days)	1
2.0		≥ 8.95	14.6	Nucleon FFs
2.1		10.8	14.8	Nucleon FFs
2.15		2.7	2.29	Y(2175)
2.175		10(+)	8.5	Y(2175)
2.2		13	11	Nucleon FFs, $Y(2175)$
2.2324	2.2314	11	4	Hyp threshold $(\Lambda\overline{\Lambda})$
2.3094	2.3084	20	16	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^0\overline{\Lambda})$
2.3864	2.3853	20	8.7	Hyp Threshold $(\Sigma^0 \overline{\Sigma}^0)$
				Hyp FFs
2.3960	2.3949	≥ 64	27.8	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^{-}\overline{\Sigma}^{+})$
2.5		0.4895	8h	R scan
2.6444	2.6434	65	18	Nucleon & Hyp FFs
				Hyp Threshold $(\Xi^{-}\overline{\Xi}^{+})$
2.7		0.5542	4.2h	R scan
2.8		0.6136	4h	R scan
2.9		100	18.5	Nucleon & Hyp FFs
2.95		15	2.8	$m_{p\bar{p}}$ step
2.981		15	2.8	$\eta_c \ , \ m_{p\bar{p}} \ {\rm step}$
3.0		15	2.8	$m_{p\bar{p}}$ step
3.02		15	2.8	$m_{p\bar{p}}$ step
3.08		120	13.2	Nucleon FFs $(+30 \text{ pb}^{-1})$

Electromagnetic Form Factors

Space-like: FF real $e^{N} \rightarrow e^{N} \qquad e^{+}e^{-} \leftrightarrow N\overline{N}, \Lambda\overline{\Lambda}, \dots$ $e^{-} \varphi^{*}(q) \qquad P^{*}(q) \qquad$

Dirac $F_1^p(q^2 = 0) = 1$ $F_1^n(q^2 = 0) = 0$ $F_2^n(q^2) = 1$ $F_2^n(q^2) = 1$

Sachs

$$G_E = F_1 + \frac{\kappa q^2}{4M^2} F_2 \qquad G_M = F_1 + \kappa F_2$$

$$G_E(4M_p^2) = G_M(4M_p^2)$$

G.S. Huang: Timelike Form factors @BESII

7 Apr. 2016, Mainz

Space-Like(SL) FF: e.g. proton

There have been many measurements of the proton form factors in the spacelike region. At JLab, the proton factor ratio was measured precisely with an uncertainty of $\sim 1\%$, based on which the proton electronic and magnetic radii could be extracted.

G.S. Huang: Timelike Form factors @BESIII

Time-Like(TL) FF: e.g. proton

$$e^{+}e^{-} \rightarrow p\bar{p}: \frac{d\sigma}{d\Omega} = \frac{\alpha^{2}\beta}{4s} C[|G_{M}(s)|^{2}(1+\cos^{2}\theta) + \frac{1}{\tau}|G_{E}(s)|^{2}\sin^{2}\theta]$$
$$|G_{M}(q^{2})| = [1+(q^{2}-4M_{p}^{2})/q_{2}^{2}]^{-2}$$
$$|G_{E}(q^{2})| = |G_{M}(q^{2})|[1+(q^{2}-4M_{p}^{2})/q_{1}^{2}]^{-1}$$

Most experiments assumed $G_E = G_M$:

Energy scan and ISR at BESIII

Scan data for form factors

- ~800 pb⁻¹ in 2.0 3.671 GeV;
- For proton, neutron, hyperons, and mesons.

Data Samples for ISR Physics

To measure timelike nucleon em FFs:

Extraction of R_{em} = |G_E/G_M| independent from normalisation through angular analysis

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(q^2,\theta) = \frac{\alpha^2 \beta C}{4q^2} \left| G_M(q^2) \right|^2 \left[\left(1 + \cos^2 \theta \right) + \mathsf{R}_{\mathrm{em}}^2 \frac{1}{\tau} \sin^2 \theta \right]$$

$$R_{em} = |G_E(q^2) / G_M(q^2)|$$
 $\tau = 4m^2/q^2$

 q^2 : 4-momentum transferred by the virtual photon θ : polar angle of nucleon at the CM

We need to collect data at different \sqrt{s} of the collider and fit with:

$$f(\cos\theta) = \text{Norm} \cdot [\tan(1 + \cos^2\theta) + R_{em} \cdot (1 - \cos^2\theta)]$$

Extraction of |G_E| and |G_M| with the knowledge of the absolute normalisation (Luminosity, rad. corr., systematics, etc.)

$$\frac{d\sigma}{d\Omega}(q^2,\theta) = \frac{\alpha^2 \beta C}{4q^2} \left[\left(1 + \cos^2 \theta \right) \left| G_M(q^2) \right|^2 + \frac{1}{\tau} \sin^2 \theta \left| G_E(q^2) \right|^2 \right]$$

$$\begin{bmatrix} G_E \\ \text{is supressed at high s by 1/s !} \end{bmatrix}$$

Proton Form Factors from 2012 test run

Phys. Rev. D 91, 112004 (2015)

Analysis Features:

- Radiative corrections from Phokhara8.0 (scan)
- Normalization to $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow \gamma\gamma$ (BABAYAGA 3.5)
- Efficiencies 60% (2.23 GeV) 3% (~4 GeV)
- $| G_E/G_M |$ ratio obtained for 3 c.m. energies

E _{cm} /GeV	L _{int} / pb ⁻¹		
2.23	2.6		
2.40	3.4		
2.80	3.8		
3.05, 3.06, 3.08	60.7		
<mark>3.40</mark> , 3.50, 3.54, 3.56	23.3		
3.60, 3.65, 3.67	63.0		

Proton FF: expectation from 2015 data

Based on the 2015 scan data in 2-3.1 GeV:

E_{cm}	Luminosity	$\delta R_{em}/R_{em}$	$\delta G_M/G_M$	$\delta G_E/G_E$] _	F	
(GeV)	(pb^{-1})				e e	1.6	Babar 469fb ⁻¹ data (stat)
2.0	8.95	9.2%	3%	9%			BES3 energy scan 2-3 GeV proposal
2.1	10.8	10%	3%	10%			
2.2	13	9.5%	3%	11%		1.2	
2.3084	20	9.7%	3%	10%		1	
2.3950	35	8.8%	3%	9%		Ē	
2.644	65	14.6%	5%	16%		0.8	
2.9	100	24%	15% 6%	25%		0.6	15%
3.1	150	$\sim 35\%$	8.5%	35%		1.8	2 2.2 2.4 2.6 2.8 3
					-		m _{pp} Gev/C

$$\begin{split} \delta |\mathsf{R}_{\mathsf{EM}}| / |\mathsf{R}_{\mathsf{EM}}| &\sim 9\% - 35\% \\ \delta |\mathsf{G}_{\mathsf{M}}| / |\mathsf{G}_{\mathsf{M}}| &\sim 3\% - 9\% \\ \delta |\mathsf{G}_{\mathsf{E}}| / |\mathsf{G}_{\mathsf{E}}| &\sim 9\% - 35\% \end{split}$$

Will top BaBar result

First time extraction without any assumption!

TL neutron form factors

Two measurements:

> Old from Fenice with 74 $e^+e^- \rightarrow n\bar{n}$ events,

assuming $G_E=0$, motivated by angular distribution

of nn events, Nucl. Phys. B517, 3 (1998)

Recent data from SND, which is consistent

with the proton FFs result of BaBar

BESIII Goal

- To extract EM FFs in wide region;
- To measure the ratio for the first time, with an uncertainty as similar as possible to the proton case.

Hyperon TL Form Factors

Key question:

"What happens with the baryon structure when a light quark is replaced by a heavier one?"

Baryon-pair production near threshold

→ The Born cross section for $e^+e^- \rightarrow \gamma^* \rightarrow B\overline{B}$, can be expressed in terms of electromagnetic form factor G_E and G_M:

$$\sigma_{B\bar{B}}(m) = \frac{4\pi\alpha^2 C\beta}{3m^2} [|G_M(m)|^2 + \frac{1}{2\tau} |G_E(m)|^2]$$

$$\alpha = \frac{1}{137} \text{ is fine structure constant, } \beta = \sqrt{1 - 4m_B^2/m^2} \text{ is the velocity,}$$

$$\tau = m^2/4m_B^2$$

> The Coulomb factor C=
$$\begin{cases} \frac{\pi \alpha}{\beta} \frac{1}{1 - \exp(-\frac{\pi \alpha}{\beta})} & \text{for a charged } B\overline{B} \text{ pair} \\ 1 & \text{for a neutral } B\overline{B} \text{ pair} \end{cases}$$

> For the neutral pair production, the cross section should be 0 at threshold, and is expected to increase with the velocity near the threshold.

Example: $e^+e^- \rightarrow \Lambda\Lambda$

The first point is just 1 MeV above threshold.

Cross section does not vanish at threshold!

Possible explanation: Coulomb interaction at quark level.

Hyperon: expectation from 2015 data

- ➢ For AA, larger data samples allow to extract angular distribution, no need model dependent efficiency;
- Form Factors $G_E \& G_M$ and ratio $R = |G_E/G_M|$ can be measured at several points with unprecedented precision.

We shall also be able to measure $e^+e^- \rightarrow \Lambda \overline{\Sigma}{}^0$, $\Sigma^0 \overline{\Sigma}{}^0$, $\Sigma^+ \overline{\Sigma}{}^-$, $\Sigma^- \overline{\Sigma}{}^+$, etc.

р

Λ polarization

- Relative phase in $G_E \& G_M : \Delta \phi = \phi_M \phi_E$;
- Nonzero phase \rightarrow polarization of Λ (P_n), to be extracted from the decay proton angle:

 $\frac{d\sigma}{d\cos\theta_p} = \frac{1}{2} (1 + \alpha_{\Lambda} P_n \cos\theta_p)$

~600 events @2.396 GeV (65 pb⁻¹)

G.S. Huang: Timelike Form factors @BESIII

Initial State Radiation (ISR)

Rev. Mod. Phys. 83, 1545-1588 (2011)

- Needs no systematic variation of beam energy
- High statistics thanks to high integrated luminosities
- Precise knowledge of radiative corrections mandatory (H_{rad})

→ Entire E range $< E_{CM}$ accessible

PHOKHARA event generator, Czyż, Kühn, et al.

ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$

G.S. Huang: Timelike Form factors @BESIII

Event yield $\mu\mu\gamma$ after π - μ separation and all efficiency corrections

Features:

- background from $\pi\pi\gamma$ very small
- PHOKHARA accuracy <0.5%
- luminosity measurement based on Bhabha events, 0.5% accuracy

→ excellent agreement with QED Δ (MC/QED-data) -1 = (1.0 ± 0.3 ± 0.9) %

> accuracy on 1% level as needed to be competitive !

ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

- Results from
 - SND: up to 2.0 GeV
 - DM2: 1.34 ~ 2.4 GeV
 - BaBar: 1.05 ~ 3.0 GeV
 - Belle: 0.7 ~3.5 GeV
- Apparent ω , ϕ , ω' , ω'' .

30

ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma_{ISR}$

BESIII work ongoing

ISR Analysis: $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

BESIII internal review

- Efficiencies: untagged ~20%, tagged ~6%;
- Dominant bkgd: $e^+e^- \rightarrow p\overline{p}\pi^0$, subtracted from data;
- Final statistics competitive with BaBar.

Summary

- Excellent data @BESIII offer timelike FF studies;
- Energy scan:
 - First result of proton form factors published;
 - Preliminary result of Λ released;
 - High statistics data in 2 3.1 GeV for: proton & neutron FFs, Λ polarization, ...
- ISR technique allows access to energy below 2 GeV:
 - $\pi^+\pi^-$ form factor in 600 ~ 900 MeV published;
 - More results to follow: $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\pi^0$, $p\overline{p}$, ...