The muon g-2 recent progress

Massimo Passera INFN Padova

New Vistas in Low-Energy Precision Physics Mainz 4-7 April 2016 • Kusch and Foley 1948:

$$\mu_e^{\rm exp} = \frac{e\hbar}{2mc} \ (1.00119 \pm 0.00005)$$

• Schwinger 1948 (triumph of QED!):

$$\mu_e^{\rm th} = \frac{e\hbar}{2mc} \left(1 + \frac{\alpha}{2\pi}\right) = \frac{e\hbar}{2mc} \times 1.00116$$

• Keep studying the lepton–γ vertex:

$$\bar{u}(p')\Gamma_{\mu}u(p) = \bar{u}(p') \Big[\gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_2(q^2) + \dots \Big] u(p)$$

$$F_1(0) = 1$$
 $F_2(0) = a_l$

A pure "quantum correction" effect!

The muon g-2: experimental status

• Today: $a_{\mu}^{EXP} = (116592089 \pm 54_{stat} \pm 33_{sys}) \times 10^{-11} [0.5ppm].$

Future: new muon g-2 experiments at:

- Fermilab E989: aiming at ± 16x10⁻¹¹, ie 0.14ppm. Beam expected next year. First result expected in 2018 with a precision comparable to that of BNL E821.
- J-PARC proposal: aiming at 2019 Phase 1 start with 0.4ppm.

Are theorists ready for this (amazing) precision? Not yet

The muon g-2: the QED contribution

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$

Schwinger 1948

+ 0.765857426 (16) (α/π)²

Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; MP '04

+ 24.05050988 (28) (α/π)³

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat & de Rafael '05, Mohr, Taylor & Newell 2012

+ 130.8773 (61) (α/π)⁴

Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa,Kinoshita & Nio, 2007, Kinoshita et al. 2012 & 2015; Lee, Marquard, Smirnov², Steinhauser 2013 (electron loops, analytic), Kurz, Liu, Marquard, Steinhauser 2013 (τ loops, analytic); Steinhauser et al. 2015 & 2016 (all electron & τ loops, analytic).

+ 752.85 (93) (α/π)⁵ COMPLETED!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita & Nio '06; Kinoshita et al. 2012 & 2015

Adding up, we get:

The muon g-2: the electroweak contribution

One-loop plus higher-order terms:

The muon g-2: the hadronic LO contribution (HLO)

New from BESIII: measurement of the $e^+e^- \rightarrow \pi^+ \pi^-$ cross section between 600 & 900 MeV using initial state radiation

Upcoming $e^+e^- \rightarrow \pi^+ \pi^-$ cross section data from VEPP 2000

• Alternatively, exchanging the x and s integrations in a_{μ}^{HLO} ,

$$a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \Delta \alpha_{\text{had}}[t(x)] \qquad \qquad t(x) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$$

involving the hadronic contrib. to the running of α in the space-like region, which can be extracted from Bhabha scattering data!

- Requires Bhabha cross section at small angles at better than 10⁻⁴. Challenging: must improve by at least 1 order of magnitude.
- A dedicated feasibility study is in progress.

8

HNLO: Vacuum Polarization

 $O(\alpha^3)$ contributions of diagrams containing hadronic vacuum polarization insertions:

Krause '96, Alemany et al. '98, Hagiwara et al. 2011

The muon g-2: the hadronic NLO contributions (HNLO) - LBL

Results based also on Hayakawa, Kinoshita '98 & '02; Bijnens, Pallante, Prades '96 & '02

- Improvements expected in the π⁰ transition form factor A. Nyffeler 1602.0339
 Dispersive approach proposed Colangelo, Hoferichter, Procura, Stoffer, 2014 & 2015 Pauk and Vanderhaeghen 2014.
- Lattice? Very hard but promising Tom Blum et al. 2015

μ

HNNLO: Vacuum Polarization

 $O(\alpha^4)$ contributions of diagrams containing hadronic vacuum polarization insertions:

$$a_{\mu}^{HNNLO}(vp) = 12.4 (1) \times 10^{-11}$$

Kurz, Liu, Marquard, Steinhauser 2014

• HNNLO: Light-by-light

 $a_{\mu}^{\text{HNNLO}}(\text{IbI}) = 3 (2) \times 10^{-11}$

Colangelo, Hoferichter, Nyffeler, MP, Stoffer 2014

Comparisons of the SM predictions with the measured g-2 value:

 a_{μ}^{EXP} = 116592091 (63) x 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ from CODATA'10

with the very recent "conservative" hadronic light-by-light $a_{\mu}^{HNLO}(IbI) = 102 (39) \times 10^{-11}$ of F. Jegerlehner arXiv:1511.04473, and the hadronic leading-order of:

- [1] Jegerlehner, arXiv:1511.04473 (includes BaBar, KLOE10-12 & BESIII 2π)
- [2] Davier et al, EPJ C71 (2011) 1515 (includes BaBar & KLOE10 2π)
- [3] Hagiwara et al, JPG38 (2011) 085003 (includes BaBar & KLOE10 2π)

- Can Δa_{μ} be due to hypothetical mistakes in the hadronic $\sigma(s)$?
- An upward shift of σ (s) also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$.
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} & \to \\ a &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^{3}}, \, s_{u} < M_{Z}^{2}, \\ \Delta \alpha_{\text{had}}^{(5)} & \to \\ b &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_{Z}^{2}}{(M_{Z}^{2} - s)(4\alpha\pi^{2})}, \end{aligned}$$

and the increase

$$\Delta \sigma(s) = \epsilon \sigma(s)$$

 $(\epsilon > 0)$, in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right] \quad \Longrightarrow$$

• How much does the M_H upper bound from the EW fit change when we shift $\sigma(s)$ by $\Delta\sigma(s)$ [and thus $\Delta\alpha_{had}^{(5)}(M_Z)$] to accommodate Δa_{μ} ?

W.J. Marciano, A. Sirlin, MP, 2008 & 2010

U

Given the quoted exp. uncertainty of $\sigma(s)$, the possibility to explain the muon g-2 with these very large shifts $\Delta\sigma(s)$ appears to be very unlikely.

- Solution Also, given a 125 GeV SM Higgs, these hypothetical shifts $\Delta\sigma(s)$ could only occur at very low energy (below ~ 1 GeV) where $\sigma(s)$ is precisely measured.
- Vice versa, assuming we now have a SM Higgs with M_H = 125 GeV, if we bridge the M_H discrepancy in the EW fit decreasing the low-energy hadronic cross section, the muon g-2 discrepancy increases.

The tau g-2: opportunities or fantasies?

Τ

The SM prediction of the tau g-2

- The very short lifetime of the tau makes it very difficult to determine a_T measuring its spin precession in a magnetic field.
- DELPHI's result, from e⁺e⁻ → e⁺e⁻T⁺T⁻ total cross-section measurements at LEP 2 (the PDG value):

 $a_{\tau} = -0.018 (17)$ PDG 2014

 With an effective Lagrangian approach, using data on tau lepton production at LEP1, SLC, and LEP2:

 $-0.007 < a_{\perp}^{NP} < 0.005$ (95% CL)

Gonzáles-Sprinberg et al 2000

• Bernabéu et al, propose the measurement of $F_2(q^2=M_Y^2)$ from e⁺e⁻ $\rightarrow \tau^+\tau^-$ production at B factories. NPB 790 (2008) 160 • a_{τ} via the radiative leptonic decays $\tau \rightarrow e \bar{\nu} \nu \gamma, \ \tau \rightarrow \mu \bar{\nu} \nu \gamma$ comparing the theoretical prediction for the differential decay rates with precise data from high-luminosity B factories:

$$d\Gamma = d\Gamma_{ extsf{o}} + \left(rac{m_{ au}}{M_W}
ight)^2 d\Gamma_W + rac{lpha}{\pi} d\Gamma_{ extsf{NLO}} + ilde{a}_ au \, d\Gamma_{ extsf{a}} + ilde{d}_ au \, d\Gamma_{ extsf{d}}$$

 Detailed feasibility study performed in Belle-II conditions: we expect a (modest) improvement of the present PDG bound.

Eidelman, Epifanov, Fael, Mercolli, MP, arXiv:1601.07987 (JHEP 2016)

Radiative leptonic tau decays: branching ratios

B.R. of radiative $ au$ leptonic decays ($\omega_0=10{ m MeV})$		
	$ au o e ar u u \gamma$	$ au o \mu ar u u \gamma$
$\mathcal{B}_{ ext{lo}}$	1.834×10^{-2}	3.663×10^{-3}
$\mathcal{B}_{_{ m NLO}}^{ m Inc}$	$-1.06(1)_n(10)_N imes 10^{-3}$	$-5.8(1)_n(2)_N imes 10^{-5}$
$\mathcal{B}_{_{ m NLO}}^{ m Exc}$	$-1.89(1)_n(19)_N imes 10^{-3}$	$-9.1(1)_n(3)_N imes 10^{-5}$
$\mathcal{B}^{ ext{Inc}}$	$1.728(10)_{ m th}(3)_{ au} imes 10^{-2}$	$3.605(2)_{ m th}(6)_{ au} imes 10^{-3}$
$\mathcal{B}^{ ext{Exc}}$	$1.645(19)_{ m th}(3)_{ au} imes 10^{-2}$	$3.572(3)_{ m th}(6)_{ au} imes 10^{-3}$
$\mathcal{B}^{\dagger}_{\scriptscriptstyle\mathrm{EXP}}$	$1.847(15)_{ m st}(52)_{ m sy} imes 10^{-2}$	$3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$

(n): numerical errors(N): uncomputed NNLO corr. $\sim (lpha/\pi) \ln r \ln(\omega_0/M) imes {\cal B}_{
m NLO}^{
m Exc/Inc}$ †BABAR - PRD 91 (2015) 051103

(th): combined $(n) \oplus (N)$ (τ) : experimental error of τ lifetime: $\tau_{\tau} = 2.903(5) \times 10^{-13}$ s

$$\begin{aligned} \tau \to e\bar{\nu}\nu\gamma & \tau \to \mu\bar{\nu}\nu\gamma \\ \Delta^{\mathrm{Exc}} & 2.02\,(57)\times10^{-3} \to 3.5\sigma & 1.2\,(1.0)\times10^{-4} \to 1.1\sigma \end{aligned}$$

 Agreement with MEG's recent μ→evvγ measurement [EPJ C76 (2016) 3, 108] Fael, Mercolli and MP, 1506.03416 (JHEP 2015) Fael and MP, 1602.00457

Conclusions

- The muon g-2 discrepancy is $\Delta a_{\mu} \sim 3.5 \sigma$. Is it NP? Or an exp issue? New upcoming g-2 experiment: QED and EW ready for the challenge. How about the hadronic contributions?
- Hadronic VP contribution: new BESIII and upcoming Vepp-2000 time-like data. New space-like data proposal.
- Future of hadronic LBL: dispersive approach and lattice?
- Solution Δa_{μ} be due to mistakes in the hadronic $\sigma(s)$? Given a 125 GeV SM Higgs, these hypothetical shifts $\Delta \sigma(s)$ could only occur below ~ 1GeV: very unlikely.
- The tau g-2 is essentially unknown: new proposal to measure it at Belle II via radiative leptonic tau decays. Modest improvement of the present PDG bound expected.
- BaBar's recent precise measurement of $\mathcal{B}(\tau \to e \bar{\nu} \nu \gamma)$ differs from our SM prediction by 3.5 σ !

The End