Precision Form Factor Measurements in Electron-Nucleon Scattering: Assorted Topics

Jan C. Bernauer

New Vistas in Low-Energy Precision Physics (LEPP) 2016

Massachusetts Institute of Technology

History of unpolarized electron-proton scattering

History of unpolarized electron-proton scattering

Cross section and form factors for elastic lepton-proton scattering

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon \left(1 + \tau\right)} \left[\varepsilon G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right) \right]$$

with:
$$au = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

Fourier-transform of G_E , $G_M \longrightarrow$ spatial distribution (Breit frame)

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}(G_{M}/\mu_{p})}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

Magnetic form factor: High-Q

- Cusp between 1 and 1.5 $(\text{GeV}/c)^2$
- Seen in older fits
- Mainz data < 1 $(GeV/c)^2$
- Should be visible in Lattice QCD

Magnetic form factor: High-Q

Magnetic form factor: Low-Q

- Up-Down-Up structure
- Not seen in older fits
 - They approach from below
 - Lack of data
- Gives rise to small r_m
- Sensitive to radiative corrections

Magnetic form factor: Low-Q

- Up-Down-Up structure
- Not seen in older fits
 - They approach from below
 - Lack of data
- Gives rise to small r_m
- Sensitive to radiative corrections
- Measure backward angles so $\tau > \varepsilon$
- Lowest possible beam energy!
- Measurements like this are planned at MAGIX

Proton electric radius

$$\left\langle r_{E}^{2}\right\rangle = -6\hbar^{2} \left.\frac{dG_{E}}{dQ^{2}}\right|_{Q^{2}=0} \quad \left\langle r_{M}^{2}\right\rangle = -6\hbar^{2} \left.\frac{d\left(G_{M}/\mu_{\mathcal{P}}\right)}{dQ^{2}}\right|_{Q^{2}=0}$$

• Current best measurement: systematic errors dominate

- Current best measurement: systematic errors dominate
 - Background from target walls
 - Acceptance correction for extended target

- Current best measurement: systematic errors dominate
 - Background from target walls
 - Acceptance correction for extended target
- Eliminate with jet target
 - point-like
 - o no walls

- Current best measurement: systematic errors dominate
 - Background from target walls
 - Acceptance correction for extended target
- Eliminate with jet target
 - o point-like
 - o no walls
- Rinse, repeat with D,³He,⁴He, ...

"Complete" form factor experiment

- Replace target with polarized hydrogen gas (jet or storage cell)
- Polarized beam
- Measure G_E , G_M via Rosenbluth and G_E/G_M via polarization

"Complete" form factor experiment

- Replace target with polarized hydrogen gas (jet or storage cell)
- Polarized beam
- Measure G_E , G_M via Rosenbluth and G_E/G_M via polarization

Impact

 G_E/G_M : Rosenbluth \iff polarization \implies Test of radiative corrections

Extrapolation problematic? Structures at low Q^2 ?

Smaller is better

$$4m_p^2$$

- For smaller Q² :
 - smaller θ (PRad)
 - smaller E (Rosenbluth / ISR)

Smaller is better

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right)\right]$$

$$\tau = \frac{Q^2}{4m_p^2}, \quad Q^2 = 4EE'\sin^2\frac{\theta}{2}$$

- For smaller Q² :
 - smaller θ (PRad)
 - smaller E (Rosenbluth / ISR)
- At small Q², small $\theta \Longrightarrow \varepsilon >> \tau$, probably OK to use model for G_M

A.K.A.: The rant section.

- Assume: Form factor has this form: $G_E(Q^2) = 1 + a \cdot Q^2 + b \cdot Q^4$ (Q² in GeV²)
- (For Mainz fit: $a \approx -3.3$, $b \approx 13$, for $\mu P : a \approx -3.08$)
- Here: b = 0

• Assume: Form factor has this form: $G_E(Q^2) = 1 + a \cdot Q^2 + b \cdot Q^4$ (Q² in GeV²)

• (For Mainz fit: $a \approx -3.3$, $b \approx 13$, for $\mu P : a \approx -3.08$)

• Here: *b* = 0

- Assume: Form factor has this form: $G_E(Q^2) = 1 + a \cdot Q^2 + b \cdot Q^4$ (Q² in GeV²)
- (For Mainz fit: $a \approx -3.3$, $b \approx 13$, for μP : $a \approx -3.08$)
- Here: *b* = 0

- Assume: Form factor has this form: $G_E(Q^2) = 1 + a \cdot Q^2 + b \cdot Q^4$ (Q² in GeV²)
- (For Mainz fit: $a \approx -3.3$, $b \approx 13$, for μP : $a \approx -3.08$)
- Here: *b* = 0

• Assume: Form factor has this form: $G_E(Q^2) = 1 + a \cdot Q^2 + b \cdot Q^4$ (Q² in GeV²)

• (For Mainz fit: $a \approx -3.3$, $b \approx 13$, for $\mu P : a \approx -3.08$)

Normalization does not help (much)

- Full finite-size effect \approx 3% at 0.01 in G_E , 6% in cross section.
- Effect of radius difference \ll
- If you believe extrapolation, renormalization is probably better:
 - Difference between b=0 and b=13 only 0.3% at 0.01. Quadratic in Q²!
- If you don't, can't say anything.

 Q^2 in $(\text{GeV}/c)^2$

- Simplest model: Kink, i.e. linear-kink-linear
- Assume 30 data points between 0.0001 and 0.01 (GeV/c)^2, 0.05% precision
- Kink just below the available data

- Simplest model: Kink, i.e. linear-kink-linear
- Assume 30 data points between 0.0001 and 0.01 (GeV/c)^2, 0.05% precision
- Kink just below the available data

- Simplest model: Kink, i.e. linear-kink-linear
- Assume 30 data points between 0.0001 and 0.01 (GeV/c)^2, 0.05% precision
- Kink just below the available data

- Simplest model: Kink, i.e. linear-kink-linear
- Assume 30 data points between 0.0001 and 0.01 (GeV/c)^2, 0.05% precision
- Kink just below the available data

- Simplest model: Kink, i.e. linear-kink-linear
- Assume 30 data points between 0.0001 and 0.01 (GeV/c)^2, 0.05% precision
- Kink just below the available data

35

$$poly(x, \vec{p}) = p_0 + p_1 \cdot x + p_2 \cdot x^2 + \dots$$

• This sure looks like a Taylor expansion around zero!

$$poly(x, \vec{p}) = p_0 + p_1 \cdot x + p_2 \cdot x^2 + \dots$$

This sure looks like a Taylor expansion around zero!But:

$$b_0 + b_1 \cdot (x - x_0) + b_2 (x - x_0)^2 + ... = b_0 + b_1 x_0 + b_2 x_0^2 + ... + (b_1 - 2b_2 x_0 + ...) \cdot x +$$

. . .

 I.e., every (truncated) Taylor expansion can be transformed to look like a Taylor expansion around 0.

• Given zero errors, does the fit give a Taylor expansion at all?

- Given zero errors, does the fit give a Taylor expansion at all?
- In general, no!
- The fit has a different convergence behavior.
 - No convergence radius!

- Given zero errors, does the fit give a Taylor expansion at all?
- In general, no!
- The fit has a different convergence behavior.
 - No convergence radius!
- Need Weierstrass approximation theorem
 - For the derivative!
 - Can we optimize fitting for this?

- How bad is it to neglect higher terms?
- Fitting $a \cdot x + o$ to $b_{real} \cdot x^2 + a_{real} \cdot x + o_{real}$.

- How bad is it to neglect higher terms?
- Fitting $a \cdot x + o$ to $b_{real} \cdot x^2 + a_{real} \cdot x + o_{real}$.
- "Taylor around average Q^2 ". i.e. $a = a_{real} + 2b_{real}Q_{avg}^2$
- Error in normalization only $b_{
 m real} \left({\cal Q}_{
 m avg.}^2
 ight)^2$
- If FF fits are true, $\Delta a = -26 c^2/\text{GeV}^2$.
- So for 0.01 (GeV/c)², pprox 0.88 \longrightarrow 0.84

Thank you!

Repeat after me: χ^2 tests data, not models. It only has a meaning if the model is assumed correct. A good χ^2 does NOT mean the model is correct.