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Cross section and form factors for elastic
lepton-proton scattering

The cross section:
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Magnetic form factor: High-Q
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o Seen in older fits

o Mainz data < 1 (GeV/c)?

o Should be visible in Lattice
QCD



Magnetic form factor: High-Q

1.12 T T T T T T T
1.1 +
g e o Cusp between 1and 1.5
g 1 (GeV/c)?
2 o Seen in older fits
= .
O




Magnetic form factor: Low-Q
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Magnetic form factor: Low-Q
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corrections

0 Measure backward angles so r > ¢
o Lowest possible beam energy!
o Measurements like this are planned at MAGIX






Proton electric radius
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Current state
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Current state=— Next gen.

o Current best measurement:
systematic errors dominate

o Background from target walls
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extended target

o Eliminate with jet target

o point-like
o no walls

o Rinse, repeat with D *He “He, ...




“Complete” form factor experiment

o Replace target with polarized
hydrogen gas (jet or storage cell)

o Polarized beam

o Measure Gg, Gy, via Rosenbluth
and Gg/ Gy, via polarization
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Impact




Extrapolation problematic? Structures at low @27
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Smaller is better
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Smaller is better

g-) 1

) i () 764 (@)
Mottt
T = %, Q= AEE'sian

o For smalller @2 :

o smaller 8 (PRad)
o smaller E (Rosenbluth / ISR )

o At small &2, small § = = >> 7, probably OK to use
model for Gy,



Some further thoughts

A.K.A.: The rant section.




Does good absolute normalization help?

o Assume: Form factor has this form:
Ge(@)=1+a @ +b- @ (@inGeV?)

o (For Mainz fit: a~ —3.3, b~ 13, for uP : a ~ —3.08)
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Does good absolute normalization help?

o Assume: Form factor has this form:
GE(@Q) =1+a0-@+b - @& (@%inGeV?)
Q (For Mainz fit: a ~ —3.3, b~ 13, for uP : a ~ —3.08)
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Will we (be able to) see structures?

o Simplest model: Kink, i.e. linear-kink-linear

o Assume 30 data points between 0.0001 and
0.01 (GeV/c)N2,0.05% precision

o Kink just below the available data
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Structures, in numbers

Distribution of radii

2000 ‘ ‘ ‘
No kink  m—

Frequency of radius
—
o
S
o
T

0 | |
0.84 0.85 0.86 0.87 0.88 0.89

Radius [fm]




Structures, in numbers

Distribution of radii

1400

Frequency of radius
—
o
S
o

No kink ‘—

Radius with kink

0.86

0.87 0.88 0.89



Structures, in numbers
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Structures, in numbers
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Structures, in numbers
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Polynomial fits and Taylor expansions
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Polynomial fits and Taylor expansions

pOly(x,B) = Po + 1+ X + P2+ X2 + ....
o This sure looks like a Taylor expansion around zero!
o But:

bo + by - (X — Xg) + bo(X — X0)? + ... = by + b1Xg + box@ + ...
+ (b] — 2b2X0 + ) - X+

o lLe., every (fruncated) Taylor expansion can be
transformed to look like a Taylor expansion around 0.
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Polynomial fits and Taylor expansions

o Given zero errors, does the fit give a Taylor expansion
at all?

o In general, no!
o The fit has a different convergence behavior.

o No convergence radius!
o Need Weierstrass approximation theorem

o For the derivativel
o Can we optimize fitting for this?




o How bad is it to neglect higher ferms?
Q FiTﬂng C1 - X + O TO brec| . X2 + area| - X + Orea| .




o

How bad is it to neglect higher terms?
Fiting a - X + 0 10 Breg - X2 + Greal - X + Oreal -
“Taylor around average Q2. i.e. @ = Greql + 2b16a1 vg
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, - 2
Error in normalization only breq (Q2yg.)

If FF fits are true, Aa = —26 c2/GeV?2,
So for 0.01 (GeV/c)?, ~0.88 — 0.84

© ©




Thank youl!

Repeat after me: x2 tests data, not models. It only has a meaning if the model
is assumed correct, A good x2 does NOT mean the model is correct.




