Carl Carlson William and Mary New Vistas in LEPP 4-7 April 2016

The Proton

Radius Puzzle

The puzzle

- Measure charge radius of the proton different ways, get different answers
- Difference is 7 s.d. (was 5 s.d. when first announced, 2010)
- Why? Don't yet know.

This talk

- 1. The measurements: where the differences came from
- 2. Suggested explanations
 - A. Exotic explanations
 - Physics Beyond the Standard Model
 - My opinion: likelihood decreasing, but still possible
 - May mention other possibilities (later)
 - B. Ordinary explanations
 - Atomic physics: more experiments coming
 - Electron scattering: maybe some things are harder than they seem
- 3. Highlight: List of coming relevant data

This talk

- 1. The measurements: where the differences came from
- 2. Suggested explanations
 - A. Exotic explanations
 - Physics Beyond the Standard Model
 - My opinion: likelihood decreasing, but still possible
 - May mention other possibilities (later)
 - B. Ordinary explanations

some arriving in 2016 (maybe)

new stuff here

- Atomic physics: more experiments coming
- Electron scattering: maybe some things are harder than they seem
- 3. Highlight: List of coming relevant data

New stuff here too

some relatively soon

Measuring proton radius

- Methods: scattering or atomic spectroscopy
- Probes: electrons or muons
- *I.e.*,
- *e*-*p* elastic scattering
- μ-p elastic scattering
- spectroscopy of electronic Hydrogen
- spectroscopy of muonic Hydrogen
- 4 categories of measurements, 3 done with adequate accuracy (and more data coming), and new μ-p scattering experiment in preparation

e-p scattering

Measure differential cross section, fit results to form factors,

$$\frac{d\sigma}{d\Omega} \propto G_E^2(Q^2) + \frac{\tau}{\epsilon} G_M^2(Q^2)$$

$$\left[\tau = Q^2 / 4m_p^2 ; \quad 1/\epsilon = 1 + 2(1+\tau) \tan^2(\theta_e/2) \right]$$

- Low Q^2 , mainly sensitive to G_E .
- Extrapolate to $Q^2 = 0$, whence

$$R_E^2 = -6\left(dG_E/dQ^2\right)_{Q^2=0}$$

Low-Q² scattering data

• Most extensive current data comes from Mainz, famous for Gutenberg and for electron accelerator.

- Data, Jan Bernauer et al., PRL 2010 (and later articles).
- Has fairly low Q^2 data, range 0.004 to 1 GeV²
- From their analysis,

$$R_E = 0.879(8) \text{ fm}$$

• Compatible with Zhan *et al.*, PLB 705 (2011) 59-64.

Atomic energy level splittings

• Basic: Schrödinger equation, H-atom, point protons

$$E = -\frac{\text{Ryd}}{n^2}$$
, where $\text{Ryd} = \frac{1}{2}m_e\alpha^2 \approx 13.6\text{eV}$

- plus QED corrections
- plus finite size proton, pushing energy upward a bit.

$$\Delta E_{\text{finite size}} = \frac{2\pi\alpha}{3}\phi_{nS}^2(0)R_E^2$$

fine print: $\phi_{nS}^2(0) = (m_r \alpha)^3 / (n^3 \pi)$

measure energy accurately ⇐⇒ measure radius

• Reminder, H-atom energy levels (diagram not to scale)

Atomic results

• Scattering and atomic results combined (CODATA, 2014): $R_E = 0.8751(61)$ fm

2010 Revolution

• CREMA = Charge Radius Experiment with Muonic Atoms

- Did atomic physics, specifically Lamb shift, with muons (muon= electron, but weighs 200 times more, orbits 200 times closer).
- Goal: measure proton radius with factor 10 smaller uncertainty

CREMA

- 2S-2P Lamb shift in μ -H.
- Measured two energy differences,

- Interpreting difference from QED as finite size effect, get $R_E = 0.84087(39) \, {\rm fm}$
- Success on uncertainty goal: but result 4% or 7σ small

Other data-deuteron

- Reported at conferences 2013
- 2015 experimenters circulate draft of theory paper!
- Measured three lines

• Quick summary: if proton radius is shrunken, the deuteron radius is also.

Other data-deuteron (detail)

- Note: accuracy of current directly measured deuteron radius from electron scattering inadequate for comparison to Lamb shift result. Work ongoing at Mainz.
- Existent atomic result for *d* vs. *p* "isotope shift,"

$$\left(R_E^d\right)^2 - \left(R_E^p\right)^2 = 3.82007(65) \,\mathrm{fm}^2$$

• Measured for electrons. If used for muons, find muonic deuteron radius compatible with muonic proton radius.

Other data — Helium

- New 2013/2014 data
- μ -4He at Mainz Proton Radius Workshop, 2014
- μ -³He at Gordon Conference, N.H., 2014
- Found: He radii from μ Lamb shift in accord with electron scattering radii.

Explanations?

- Hard to see problems with μ experiment
 - Hard to get working
 - But once working, easy to analyze
- BSM explanations?
 - If so, further tests?
- Problems with analysis of electron experiments? But there are a lot of them.

Exotic possibilities

- Breakdown of Lorentz invariance? (Gomes, Kostelecky, & Vargas, 2014)
- Unanticipated QCD corrections? (G. Miller, 2013)
- Higher-dimensional gravity(?) (1509.08735, Dahia and Lemos)
- Renormalization group effects for effective particles (Glazek, 2014)
- Will consider breakdown of muon-electron universality. New particle coupling to muons and protons. Small or no coupling to other particles.
- References (positive or neutral side): Tucker-Smith & Yavin (2011), Batell, McKeen, & Pospelov (2011), Brax & Burrage (2011), Rislow & Carlson (2012, 2014), Marfatia & Keung (2015), Pauk & Vanderhaeghen (2015)
- References (less positive): Barger, Chiang, Keung, Marfatia (2011, 2012), Karshenboim, McKeen, & Pospelov (2014)

µ-H Lamb shift

- Point: Experimenters do not directly measure proton radius. Measure energy deficit, 320 µeV. Interpret as proton radius deficit.
- Idea: Proton radius unchanged. Energy deficit due to new force, carried by exchange of new particle.
- New particle is scalar or vector. Pseudoscalar or axial vector have little effect on Lamb shift for similar couplings.

Energy shift

• e.g., scalar case

$$V(r) = -\frac{C_S^{\mu} C_S^{\rho}}{4\pi r} e^{-Mr}$$

Pick C_S^μ C_S^p to give
 320 μeV for given mφ.
 (Plot for C_S^μ = C_S^p.)

Other muon processes

- Worry about other processes where new particle couples to muons. *First:*
 - Loop corrections to μ magnetic moment
 - Reminder: 3 σ discrepancy between measured and standard model calculated (g-2)_µ.
 - If new exchange particle light, effect on (g-2)_μ small enough (Tucker-Smith & Yavin, 2011).
 Otherwise, need to fix by fine tuning.

Fixing $(g-2)_{\mu}$

- $p_1 + p_2 + p_2 + p_2 + p_2 + k$ If new particle not light, lucky break: $p_1 k + p_2 k + p_2 k$ corrections to (g-2) from regular vector and axial vector have opposite sign. Same is true of scalar and pseudoscalar.
 - With extra particle, have new coupling, say $C_{P^{i}}$. Choose coupling to cancel in $(g-2)_{\mu}$. Does not much affect Lamb shift.
 - Couplings now fixed, albeit mass sensitive. Hence predictions for other processes fixed.

BSM problems

- Come from "other muon processes,"
 - 1. Radiative corrections to W-decay
 - 2. Non-effect in He

W decay

- Remark of Karshenboim, McKeen, and Pospelov: fast growth with energy of amplitudes involving massive vector particles
- If light new particle *φ* or V coupling to muon, it gives large radiative correction to W decay via W→ µvV, larger than measured error in W decay rate.

W decay

• Reminiscent of (from early days of W.S. model),

 Left diagram grew unpleasantly at high energy, right diagram cancelled it at high energy, was small at lower energy

Here

• Should have interaction also with W to make theory renormalizable.

• Problem ameliorated (see Freid and me (2015))

Helium Lamb shift

- A pair (³He & ⁴He) of non-contradictory results.
- He radii measured in electron scattering, to about 1/4%. These radii go into prediction for Lamb shift.
- Preliminary data on μ -He Lamb shift agrees with prediction, to about 1 σ . If due to heavy BSM particle exchange, should disagree by about 5 σ .
- How does mass creep in?

Heavy atom Lamb shift

- Physics: Range of potential is controlled by mass. Light mass, long range, like Coulomb potential, does not split S and P states.
- Application: Z=2 helium has orbital muons closer to nucleus than Z=1 hydrogen. What looks like long range to helium is short range to hydrogen, if mass chosen correctly.
- Quick bottom line: Get result for proton big enough and for He small enough if $m\phi \approx 1$ MeV.

New force seen elsewhere?

• Older suggestion: correction to *K*-decay, *viz.*, $K \rightarrow \mu v e^+e^$ as correction to $K \rightarrow \mu v$.

 Of course, QED gives same final state, with smooth (calculable) spectrum of e⁺e⁻.

$\boldsymbol{\varphi}$ visible?

- *φ* (new BSM particle)
 will give bump. Size
 calculable.
- Is it observable?
 Wow, Yes. (If it exists.)
 [Red = QED background, solid = bump from *φ*]

Note: TREK experiment (E36) at JPARC (Japan) will observe 10¹⁰ kaon decays, or about 200,000 K→µve⁺e⁻ events, about 1000 per MeV bin in the mass range we are considering. (Thanks to M. Kohl)

Back to atomic spectroscopy

- Same plot, but *µ*-H value added
- Possible: correlated systematic errors. There are more measurements than independent expt'l groups.

Short term future

- 3+ independent groups are doing more precise experiments that will individually get the proton radius to under 1%.
 - York University (Canada): Ordinary hydrogen 2S-2P Lamb shift ("We have run into some systematic effects that we want to understand better")
 - MPI Quantum Optics (Garching): 2S-4P transition
 ("...about 2S-4P: things are progressing great, but you haven't missed anything concerning publications. I will be happy to let you know as soon as there is some news from our side.")
 - Laboratoire Kastler Brossel (Paris): 1*S*-3*S* transition ("...In parallel, we have another failure with a RF amplifier, we put another which has failed after sone week... We are fighting with a little bit of luck I hope to get a result for 1S-3S before the end of this year.")
 - + National Physical Lab (U.K.), several 2S–*nS*,*D* transitions
- Under way, may see results soon. Will be important, one way or another.

Review e-p scattering data

- Point: Measurements at finite Q^2 . Need to extrapolate to $Q^2 = 0$ to obtain charge radius. (Mainz group itself: $R_E = 0.879(8)$ fm.)
- Because of importance, others have tried, using different ways of fitting data. Three recent fits found "big" values:
- Graczyk & Juszczak (2014), using Bayesian ideas and pre-Mainz world data, obtained $R_F = 0.899(3)$ fm.
- Lee, Arrington, & Hill (2015) using Mainz data and neat mapping ideas to ensure convergence of expansions, obtained $R_E = 0.895(20)$ fm.
- Arrington & Sick found

 $R_E = 0.879(11)$ fm.

But...

- Several recent fits found "small" values (*i.e.*, compatible with muonic Lamb shift experiment):
- Lorenz, Meißner, Hammer, & Dong (2015), dispersive ideas, also using timelike data, obtained $R_E = 0.840(15)$ fm.
- Horbatsch and Hessels (1509.05644)
- Carlson, Griffioen, Maddox (1509.06676)
- Higinbotham, Kabir, Lin, Meekins, Norum, Sawatzky (1510.01293)

Contrarian view

- Two "low" values of *R_E* from *e-p* scattering data
- Lorenz, Meißner, Hammer, & Dong (2015), using dispersive ideas to obtain their fit functions, and also using timelike data, obtained $R_F = 0.840(15)$ fm.
- Griffioen, Maddox, and me (1509.06676) believe that one should be able to obtain accurate R_E from just lower- Q^2 data, finding $R_E = 0.840(16)$ fm.

Recent e-p analyses, I

- Maddox et al. (1509.06676)
- Viewpoint: Form factor is analytic function of Q^2 , except for cut starting at $4m_{\pi^2}$. Hence, polynomial expansion in Q^2 converges for $Q^2 < 4m_{\pi}^2$.
- 1.00 • Fit low Q^2 data, 0.99 $Q^2 < 0.02 \text{ GeV}^2$ 0.98 0.97 0.96 0.96 0.96 (243 data points) linear plus quadratic in Q^2 , 0.95 got $R_E = 0.850(19)$ fm 0.94 0.93^L... 0.000

35

0.005

0.015

0.020

0.010

 Q^2 (GeV²)

Recent e-p analyses, I

• Also fit whole Mainz 2010 data set with simpler functions (i.e., 4 or so parameters), that extrapolate more reliably. From collection of such fits quote $R_E = 0.840(16)$ fm

Recent e-p analyses, II

- Higinbotham, Kabir, Lin, Meekins, Norum, Sawatzky (1510.01293)
- One contribution: resurrecting Saskatoon 1974 and Mainz 1980 data. Excellent data. Overlap region, $0.005 < Q^2 < 0.03$ GeV².
- Emphasized correlations among fit parameters
- Used statistical arguments for accuracy of linear fits in this data range
- Obtained R_E compatible with muonic atomic data, 0.84 fm

Recent e-p analyses, III

- Horbatsch and Hessels (1509.05644)
- believe "the rms charge radius of the proton is a small-Q² concept. Thus, if possible, it should be determined from low-Q² data."
- Look at Mainz 2010 data restricting Q² < 0.1 GeV².
 Analyze two ways, get bifurcated result.
- their take-away conclusion: scattering data can't help
- proton radius problem remains, but between electron atomic physics and muon atomic physics

Η. Η.

- dipole fit: $G_E = (1 + R_E^2 Q^2 / 12)^{-2}$, similarly for G_M
- Got $R_E = 0.842(2)$ fm and $R_M = 0.800(2)$ fm
- Fits look o.k.

Η. Η.

• zvariable expansion,
$$z = \frac{\sqrt{4m_\pi^2 + Q^2} - 2m_\pi}{\sqrt{4m_\pi^2 + Q^2} + 2m_\pi}$$

- reason: for functions like G_E , polynomial expansion in z converges for all 0 < z < 1, i.e., all spacelike Q^2
- Fit data with expansion linear in z: $G_E = 1 (8/3)m_{\pi}^2 R_E^2 z$
- Now got $R_E = 0.888(1)$ fm and $R_M = 0.874(2)$ fm

0.20

1.00

H.H

- Fit looks not good
- This is $Q^2 < 0.1 \text{ GeV}^2$ data
- Concavity when plotted in this variable not well fit by linear polynomial
- Overly large R_E not surprise
- (Plot is mine; theirs would look better, but principal problem remains. Can explain.)
- My take-away 1: should include z term if doing this way. My result when doing so: $R_F = 0.838$ fm.
- My take-away 2: low R_E o.k., high R_E not o.k.

Scattering future

- 3 further experiments lower lowest Q^2 , and one will do μ scattering
- PRad at JLab: Just target and detector screen, allowing very small scattering angles. Anticipate $Q^2|_{low} \approx 0.0002 \text{ GeV}^2$. Hope running soon. (H. Gao talk here.)

- ISR (Initial State Radiation) at Mainz. Photon radiation takes energy out of electron, allowing lower *Q* at given scattering angle. Anticipate *Q*²|_{low} ≈ 0.0001 GeV². Data taken, more data to be taken; under analysis. (M. Mihovilovic talk here.)
- MUSE = Muon scattering experiment at the PSI. Anticipate $Q^2|_{low} \approx 0.002 \text{ GeV}^2$. Production runs 2017/2018. (G. Ron talk.)

Reminder: new data coming

- New CREMA measurements (out at conferences, 2013/14)
- 3 scattering expts. underway or coming
- Electron deuteron scattering (Distler, Griffioen *et al.*, Mainz) (data taken)

- 3+ atomic energy level measurements
- TREK at JPARC
- Maybe also:
 Trumuonium (μ+μ) at
 JLab

count 13 items, 10 new, some maybe out this year

Ending

- Remarkable: 5 years after the first announcement, the problem persists.
- Interestingly little discussion of the correctness of the μ -H Lamb shift data.
- Serious and good new data coming.
- Opinion: Either
 - All radii correct, and BSM—muonic specific force—is explanation despite problems, or
 - The electron based radius measurements will reduce to the muonic value.
- Comment: the theory for $(g-2)_{\mu}$ cannot be considered settled until the proton radius problem is settled. Further, there may be striking corrections to other processes that involve muons.

The end for now!

True-muonium

 Reminder: for BSM particle, muonic-H Lamb shift energy deficit implies couplings given mass

• True muonium = μ - μ bound state. From QED,

$$E_{g.s.} = \frac{1}{4}m_{\mu}\alpha^2 = 1.41 \text{ keV}$$

• Extra μ -specific exchange modifies binding.

True-muonium

- For muon-specific BSM exchange shifts to the g.s. energy, if $C_V^\mu = C_V^p$ (Rislow and me), get shifts about ppm.
- More striking are asymmetric couplings from Batell *et al.*/ Karshenboim *et al.*

(footnote for me)

 Karshenboim *et al.* have coupling to proton that is dark photon, so same magnitude as to electron. Then get constraints on electron coupling from disturbance to (g-2)_e.

New force seen elsewhere?

- Recent suggestion: μ-p scattering at JLab or Mainz a.k.a., lepton pair photoproduction, γ p → ℓ+ ℓ-p.
 (Pauk & Vanderhaeghen, 2015)
- Extra force, even coupling only to μ and p will affect muons production. Get normalization by comparing $\mu^+\mu^-$ to e^+e^- production.

 \mathcal{D}^{\prime}

• Believe 2% measurement will show effect of extra force consistent with proton radius conflict.

$\gamma p \rightarrow \ell^+ \ell^- p$

 Gap between lines corresponds to difference in G_{Ep} suggested by electron- and muon-measured charge radii at Q² of 0.02 GeV².

 Contribution from timelike Compton process small at this kinematics

