$\sin^2\theta_{W}$ with P2 in Mainz

Cluster of Excellence Precision Physics,

PRISMA

Niklaus Berger for the P2 Collaboration

Institut für Kernphysik, Johannes_FGutenberg Universität Mainz

Low Energy Precision Physics April 2016

OF THE STANDARD MODEL

• The Idea:

Precision measurement of and search for new physics with the weak mixing angle

• The Method:

Parity violating electron scattering

• The Experiment: The P2 spectrometer

Niklaus Berger – LEPP Mainz April 2016 – Slide 4

Contact interactions up to 49 TeV (comparable to LHC at 300 fb⁻¹)

Measuring the weak charge

[Gorchstein, Horowitz, Ramsey-Musolf 2011]

- Large uncertainty due to hadronic uncertainty
- Uncertainty rises with beam energy

- Want to measure $\sin^2\theta_w$ to 0.13%
- Need Q_{w} at 1.5%

$$\frac{\Delta \sin^2 \theta_W}{\sin^2 \theta_W} = \frac{1 - 4 \sin^2 \theta_W}{4 \sin^2 \theta_W} \frac{\Delta Q_W}{Q_W}$$

- Essentially means 1.5% on $\rm A_{\rm PV}$
- A_{PV} is 40 parts per billion
- + $\delta(A_{PV})$ is 0.6 parts per billion
- N a few 10¹⁸

 $\delta(A_{PV}) \propto \frac{1}{\sqrt{N}}$

- Measure 10'000 hours (absolute maximum anyone thinks shifts are organisable)
- Need close to 10¹¹ electrons/s 100 GHz

• 150 μ A of electron beam current

10'000 hours is 417 days 24/7 of measurements

Hard to get that amount of time at a shared accelerator facility...

If you cannot rent it, build it:

The MESA accelerator

Mainz Energy-recovery Superconducting Accelerator

Requirements

- Beam current 150 μ A
- Polarisation > 85%
- High precision polarimetry
- High runtime (more than 4000 h/year)
- Fit into existing halls at MAMI (plus funded new hall)
- Extremely stable

The main worry are beam fluctuations correlated with the helicity:

	Achieved at MAMI	$A_{_{PV}}$ uncertainty	requirement
 Energy fluctuations: 	0.04 eV	< 0.1 ppb	ok!
 Position fluctuations 	3 nm	5 ppb	0.13 nm
 Angle fluctuations 	0.5 nrad	3 ppb	0.06 nrad
 Intensity fluctuations 	14 ppb	4 ppb	0.36 ppb

Currently testing beam monitoring and feedback at MAMI

Polarimetry: Double Mott Polarimeter

[Gellrich and Kessler, Phys.Rev.A. 43, 204 (1991)]

Mott Polarimertry:

- Measure left/right asymmetry to obtain spin polarisation
- Analysing power of foils needs to be extrapolated

Double Mott Polarimeter:

- Obtain analysing power from measurement
- Precise measurement of spin polarisation
- Invasive measurement at source

Polarimetry: Hydro-Møller Polarimeter

Møller scattering from polarized (8 T field) atomic hydrogen in a trap

- Online capability
- High accuracy (< 0.5%)
- About 2 h to reach 0.5% statistical accuracy

Cryostat under construction
 in Mainz

P2:

How to detect 100 GHz of (the right) electrons...

●SFB<u>∃</u>

Detect Cherenkov-light created by electrons

Integrate photomultiplier current

- Low momentum electrons: Thin detectors
- Very high rates: Fast and granular detectors
- Use high-voltage monolithic active pixel sensors (HV-MAPS) thinned to 50 μm
- Last week: Beam test at MAMI, promising results

- Four layers of wedges
- Mechanical and electrical design ongoing

- Four layers of wedges
- Mechanical and electrical design ongoing

047

- P2 aims to measure $sin^2\theta_w$ to 0.13%
- Parity violating electron scattering at very high rates
- Solenoid spectrometer with integrating Cherenkov detectors

- Tracking detector with thin active silicon pixel sensors
- Data taking starts with MESA

Backup

- One of the fundamental parameters of the standard model
- Electroweak symmetry breaking creates photon and $Z^{\rm 0}$
- Angle shows up both in masses and couplings (charges)

$$\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B^0 \\ W^0 \end{pmatrix}$$

$$\cos \theta_W = \frac{m_W}{m_Z}$$

$$\sin^2 \theta_W = \frac{g'^2}{g^2 + g'^2}$$

- The last slide is true at tree level
- But there are quantum corrections...

Two options:

- Use the masses for the definition: (at all orders of perturbation theory) "On-shell scheme"
- Or use the couplings: (which change with energy, and so does the angle) "MS-scheme"

Use second option from here on

 $\sin^2 \theta_W = \frac{g'^2}{g^2 + g'^2}$

 $\cos \theta_W = \frac{m_W}{m_Z}$

 $\sin^2 \theta_W(q^2)$

JG U

Fast, thin, cheap pixel sensors

High Voltage Monolithic Active Pixel Sensors

Fast and thin sensors: HV-MAPS

JG U

High voltage monolithic active pixel sensors - Ivan Perić

- Use a high voltage commercial process (automotive industry)
- Small active region, fast charge collection via drift
- Implement logic directly in N-well in the pixel - smart diode array
- Can be thinned down to < 50 μ m
- Logic on chip: Output are zero-suppressed hit addresses and timestamps

(I.Peri**ć**, P. Fischer et al., NIM A 582 (2007) 876)

MUPIX6

HV-MAPS chips: AMS 180 nm HV-CMOS

- 5 generations of prototypes
- Current generation: MUPIX7
 40 x 32 pixels
 80 x 103 µm pixel size
 9.4 mm² active area
- MUPIX7 has all features of final sensor
- Left to do: Scale to $2 \times 2 \text{ cm}^2$

Position resolution given by pixel size

Hit efficiency above 99.5%

Hit timestamp resolution better than 11 ns

- 50 µm silicon
- 25 µm Kapton[™] flexprint with aluminium traces
- 25 µm Kapton[™] frame as support
- Less than 1‰ of a radiation length per layer

JG U

PVeS Experiment Summary

P2 Timeline

Year	Polarimeter	Spectrometer	Tracking	Theory
2012	† †	1		1
2013	Double Mott Tests with Cryostat R&D	Spectrometer conceptual dosign Detector		one loop radiative
2014	100 keV source	at MAMI		correcections
2015		Technical	Requirements, Geometry	
2016	Atomic trap R&D	design		Box graph
2017	Systematic studies Trap operational	Components assembling	R&D: Track reconstruction	uncertainties Full Monte
2018	Systematic studies	Construction	Installation at	QED corrections
2019	Reliable Installation at operation experimental site	Commissioning: 5% data	Commissioning	electroweak corrections
2020	ΔP/P ≤ 0.5%	Data taking	1	
2021	Operation	Full data set	Data taking	Search for
2022	+	Analysis	Analysis	
2023		$\Delta \sin^2 \Theta_{W} = 0.00032 \longleftarrow$		

